Florida Aquarium Parking Lot

a Treatment Train Approach for Stormwater Management

Swales

Strands

Wet Detention Ponds

Cover: Views of the three elements in the treatment train – the swales, the strand and the pond. Locations in parentheses are noted on the site plant (Figure 1a).

Swales:

A view of the basin without a planted swale (F2) and a view of the porous pavement basin with a planted swale (F6). The small garden areas and sampling equipment are shown in the foreground.

Strand:

A view of the strand after the berm repair showing the newly installed side bank filter that discharges into the wet-detention pond (S10) and a view of a different section of the strand before the berm was blown out and before the vegetation was well established (S9).

Wet Detention Pond:

A view of the wet detention pond taken during the winter with the outfall structure in the fore ground (P12) and a view taken in the summer with the inflow structure in the foreground (P11).

Cover Design: Allen Yarbrough

FINAL REPORT

FLORIDA AQUARIUM PARKING LOT

A TREATMENT TRAIN APPROACH TO STORMWATER MANAGEMENT

December 2001

FDEP CONTRACT NUMBER WM 662

Betty T. Rushton, Ph.D. Rebecca Hastings

Southwest Florida Water Management District Brooksville, Florida

The Southwest Florida Water Management District (District) does not discriminate upon the basis of any individual's disability status. This non-discrimination policy involves every aspect of the District's functions, including one's access to, participation, employment, or treatment in its programs or activities. Anyone requiring reasonable accommodation as provided for in the Americans With Disabilities Act should contact the Resource Management Department, at 352-796-7211 or 1-800-423-1476 (Florida), extension 4226; TDD ONLY 1-800-231-6103 (Florida); FAX 352-797-5806/SUNCOM 663-5806.

Acknowledgements

This project, including the preparation of this report has been funded in part by a Section 319 Nonpoint Source Management Program grant from the U.S. Environmental Protection Agency (US EPA) through a contract with the Stormwater/Nonpoint Source Management Section of the Florida Department of Environmental Protection. The total estimated cost of the monitoring project is \$328,327 of which \$196,996 was provided by the US EPA. Eric Livingston and David Worley at FDEP provided support and guidance. The parking lot design was prepared by Art Woodworth, Jr., Engineer, Florida Technical Services and Thomas Levin, Environmental Planner, Ekistics Design Studio, Inc. The Southwest Florida Water Management District laboratory staff was indispensable in carefully analyzing samples that could never be collected on a pre-determined schedule. Innumerable interns kept samplers iced, entered data into tables and collected samples. Allen Yarbrough designed the cover of the report, the site plan and parking lot swale diagrams. The Finance Department and especially Donna Farrell tracked our budgets, submitted invoices and kept us posted about our expenditures. Chuck Tornabene, our librarian, and his staff edited the report and also Dr. Tricia Dooris, Manager of the Environmental Section. A special thanks to the very careful review provided by Dr Woo-Jun Kang, one of our laboratory scientist, who gave special scrutiny and advice about the sediment and water quality data, an area of expertise where he is especially well-qualified. Everyone receives our grateful appreciation.

iii

Table of Contents

Executive Summary		 	 . 2
Hydrology		 	 . 2
Water Quality Concentrations	 	 	 . 3
Water Quality Loads	 	 	 . 3
Sediment Samples			
Introduction		 	 . 6
Methods		 	 . 8
Site Description			
Experimental Design			
Hydrology Measurements		 	 11
Flow			
Rainfall amounts		 	 12
Water Quality Measurements		 	 12
Sediment Samples			
Discrete Samples		 	 14
Statistical Analysis	 •	 	 15
Results and Discussion		 	 16
Hydrology			
Rainfall Characteristics			
Runoff	 	 	 17
Comparison of Flow			
Water Quality			
Concentrations		 	 21
First Flush Effect		 	 24
Water Quality Loads		 	 33
Load Efficiencies	 	 	 36
Sediment Samples		 	 40
Metals	 	 	 39
Nutrients	 	 	 40
Polycyclic Aromatic hydrocarbons (PAHs)		 	 40
Concentrations Measured at Different Depths	 	 	 45
Pesticides & PCB's	 	 	 45
Particle Size Analysis		 	 46
Percent Organic Matter			
Statistical Analysis (SAS v 8.1)			
Tests for Normality		 	
Differences Between Years			52

	Differences Between Basins 51 Correlations 53
Conclusions	54
Summary of Re	esults
-	Author
	57
ADDENDUM	
QUALI	
	TF COEFFICIENTS 80
	F AMOUNTS 84
	OGRAPHS88
	SSION EQUATIONS
APPENDIX I . WATEF	164 R QUALITY DISCRETE SAMPLES

APPE	NDIX J	/4
	CONSTITUENT LOADS	
	SUMMARY OF SUMMARIES	
	INDIVIDUAL EVENTS WITH SUMMARIES	
APPE	NDIX K	92
APPE	NDIX L	00
APPE	NDIX M)4
APPE	NDIX N	20

Executive Summary

An innovative parking lot at the Florida Aquarium in Tampa was used as a research site and demonstration project to show how small alterations to parking lot designs can dramatically decrease runoff and pollutant loads. Over two years of data were collected which included most storm events that produced enough flow to collect water samples. A total of 59 rain events are included in the data set and represent storms which produced as little as 0.15 cm (0.37 in) of rain to a maximum amount of 1.15 cm (2.91 in). Three paving surfaces were compared as well as basins with and without swales to measure pollutant concentrations and estimate infiltration. To determine how these modifications and paving types might change runoff amounts and pollutant concentrations, both water quality and quantity were measured in eight small basins in the parking lot. To evaluate long term consequences and estimate maintenance requirements sediment samples were collected. To better understand conditions that influence pollutant concentrations, rainfall characteristics, vegetated areas and paving types were analyzed. Once the berm was repaired, water quality, sediment samples, and flow measurements were collected in the strand and wet detention pond to estimate what additional stormwater treatment they might provide. Finally the data were evaluated with statistical procedures to determine differences between years, differences between basins and relationships between variables. In this report, swales are defined as vegetated open channels that infiltrate and transport runoff water while strands are larger vegetated channels collecting runoff after treatment by swales.

Hydrology

Rainfall during both years of the study was considerably below normal, but lack of rain was much more severe during the second year. Normal rainfall for central Florida is usually about 20.5 cm (52 in) and rain measured at the site for year one was 106 cm (42in) and for year two, 86 cm (34 in). Drought conditions also reduced the amount of runoff for the parking lot and results might not have been as dramatic for a normal rainfall year, but even so, the data demonstrated that runoff volume can be reduced by even the small swales and garden areas in a parking lot. The runoff coefficient is one measure for judging the amount of runoff reduction that can be provided by increasing small depressions in parking lots. The runoff coefficient is a ratio that can be converted to a percentage. For traditional parking lots a typical range for this coefficient estimates that 70 to 90 percent of rain falling on the site would run off, but at our site even the basins with only small garden areas and no swales measured the yearly average runoff at about 55 percent. The basins with swales and paved in asphalt or concrete reduced runoff to 30 percent and porous paving, to about 16 percent. The basins with larger garden areas, about the size of one parking space, reduced runoff by an additional 50 percent. Swales and garden areas are most effective for small storms while large storms show about the same amount of runoff for all basins.

When the volume of water discharged from all the different elements in the treatment train (the swales, the strand and the pond) are compared, calculations showed almost all the runoff was retained on site. Although the year sampled was during an extreme drought, it is still remarkable that stormwater was discharged from the site only once and even in a normal rainfall year discharge would probably have only taken place about four or five times and the amount would have been greatly reduced.

Water Quality Concentrations

The individual basins in the parking lot and the various elements in the treatment train had significantly different water quality concentrations measured in their runoff. For inorganic nitrogen, nitrate levels were highest in the parking lot and much lower once water collected in the strand and pond. Although ammonia was higher in the swales, especially in the basins paved in asphalt, it was about the same as nitrate in the strand and pond. At least some of the ammonia concentrations can be attributed to the stagnant conditions in the strand and pond since these systems seldom discharged. The highest concentrations of phosphorus were measured in basins where runoff had traveled through vegetated areas. Some of the high concentrations in the strand and pond may have been caused by one of several conditions: mulch added to the system, filter material in the under drain, or grass clippings in the mowed areas. Some metals in runoff reflected the type of paving material it traveled over. Iron, manganese, lead, copper and zinc were measured at concentrations over twice as high in the basins paved with asphalt compared to the basins paved with concrete products.

The first flush effect is important because it is believed that the beginning of storms carry the most pollutants, therefore, this concept is the basis for many stormwater treatment designs. Total suspended solids and some metals demonstrated a definite first flush effect in the asphalt basins while the basins paved with concrete products exhibit no consistent pattern. Although all the nine storms sampled for discrete events were large storms, the storms greater than 5 cm (2 in) exhibited the greatest first flush effect. Nitrogen and phosphorus did not have a first flush effect.

Water Quality Loads

A more reliable measurement than pollutant concentrations for understanding the impact of stormwater on receiving waters is to evaluate pollutant loads. The most effective method for reducing pollutant loads is to keep runoff on site and allow time for infiltration as well as for chemical, biological and hydrological processes to take place. This is the rationale behind the design for the Florida Aquarium parking lot as well as low impact developments in general. Annual loads discharged from each basin type were calculated for each pollutant and since more runoff was discharged from the basins without swales they usually had higher loads for all the constituents except for phosphorus. For metal constituents and some nutrients, loads were greater for year one, as was expected, since year one had more rainfall and larger storms. Opportunities for infiltration

do no reduce runoff as much for large storms as for small storms and since there were more large storms in year one, there was more runoff contributing pollutant loads. In almost all cases the larger garden areas typical of the odd numbered basins reduced loads by a considerable amount in addition to the reduction provided by the planted swales. The effect was more dramatic for metals than for nutrients, probably a result of vegetative die back, although larger garden areas appear to ameliorate this effect somewhat.

Load efficiencies were calculated to quantify how much pollutant loads can be reduced by infiltration with vegetated depressions. Loads in the basins with swales were compared to the basins without swales since the latter are typical of most parking lots. Basins paved with porous pavement had the best percent removal, with many removal rates for metals greater than 75 percent in the basin with a smaller garden area and greater than 90 percent with larger gardens. Inorganic nitrogen was reduced by 60 to 90 percent, but total nitrogen was only reduced by about 50 percent in the basins with smaller garden areas; this was improved to 70 to 80 percent with larger gardens. More phosphorus loads were discharged from basins with vegetated swales than from basins with no swales. This was expected since there are few sources for phosphorus in paved areas. For example, there is not much phosphorus in rainfall, asphalt or automobile residues, but there is phosphorus in vegetation and especially in soils. It should be emphasized here that even with some poor removal rates by the swales for phosphorus, when the entire system is evaluated, efficiency is good since the site only discharged to the receiving waters once during the year it was evaluated.

Sediment Samples

Sediment samples were collected in front of the outfall drop box in each swale as well as two locations in the strand and the pond. For basins without swales, the sediments that had accumulated in the asphalt depressions were analyzed. For metals, fairly consistent results were seen, with concentrations usually measured higher in basins paved in asphalt when compared to basins paved with concrete products. Aluminum, iron and copper concentrations measured in the strand and pond only occasionally showed concentrations as high or higher than the asphalt basins in the parking lot even though most of the 10 acre parking lot is paved in asphalt. This indicates that swales are effective for sequestering metals near the source. The strand concentrations were much lower in 2000 as a result of the berm repair which uncovered deeper cleaner soils and these were the source for our sediment samples. The higher concentrations of copper measured in the pond when compared to the other locations is probably the result of algicide treatment for nuisance plants, although there was a hot spot detected in the pond, left from previous industrial uses of the site, which may also have contributed to higher concentrations.

One concern about using the process of sedimentation to remove pollutants is the fear of groundwater contamination. Samples were collected at two depths to test if contamination might be a problem. Lower concentrations in the deeper sediments did not always hold true in 1998, but by the year 2000 all samples in the deeper soils were less than the surface soil indicating that metals

washed into the swales and incorporated in the sediments were not migrating to the deeper strata, at least during the three years of the study. The results for copper and zinc indicate no migration, while the results for aluminum, iron, lead and cadmium are not as clear cut.

Total phosphorus and Kjeldahl nitrogen measured in the soils indicate an increase in most locations from 1998 to 2000, especially for nitrogen. Usually nutrients are quite low for the basin without a swale which has no vegetation or deeper soils to contribute nutrients. The pond showed a considerable increase in phosphorus and nitrogen from 1998 to 2000. Total phosphorus in the deeper sediments also showed an increase for 2000, but a corresponding increase in nitrogen was not usually seen.

Polycyclic aromatic hydrocarbons (PAHs) were detected in the soils at the site and some approached the significantly toxic levels while one, benzo(b)fluoranthene, reached the probably toxic level. Gasoline pollution from previous industrial uses has been identified in the soils at the site and this may have contributed to some of the concentrations. The highest percentage of detection was found at the deeper depths also implicating previous hydrocarbon contamination. The least number of samples with hydrocarbon detection occurred in the surface soils in 2000 indicating that PAH contamination may be decreasing. The most frequently measured hydrocarbon was fluoranthene and it was detected in at least 50 percent of the samples collected in each category (surface soils, deeper soils and drop boxes). Chrysene and pyrene were also frequently detected followed by the benzoseries. PAHs are a concern since they are suspected of causing cancer in humans, are bioaccumulative, do not break down easily in the environment and are subject to long range air transport.

Pesticides were also measured at the site. Chlordane was the pesticide most often detected in measurable quantities and it was found at all locations but three. Unlike the PAH data where concentrations in the boxes were low, the drop boxes measured the highest percent detection for pesticides. These concentrations must be from past land uses since most persistent pesticides have been banned or restricted and pesticides were detected more frequently in 1998 than in 2000. However, chlordane was detected more often in the surface sediments than in the deeper sediments. DDT and its daughter products were detected at almost all locations and DDE was found in measurable quantities, but the quantities were in the non-toxic to amphipod survival range. DDT and DDD were more often measured in the deeper soil profile and DDE in the surface soils.

Particle size measurements in 1998 showed that the highest percentages (27% to 61%) were measured in an intermediate size range described as medium sand. Although this intermediate size range also characterized a large percentage of samples in 2000, for these more recent measurements more were in the largest size ranges. Most sites exhibited a similar pattern for particle size and there were no obvious differences between paving types or the pond and the strand. Both years had the least percentage of particles in the two smallest size ranges. Percent organic matter ranged from 2 to 9 percent in the samples collected.

Introduction

Impervious surfaces, such as parking lots and roof tops, cause more stormwater runoff and pollutant loads than any other type of land use. As little as ten percent impervious surfaces in the watershed can begin to impact downstream rivers, lakes and estuaries (Shaver *et al.* 1995, Horner *et al.* 2001). These hard surfaces which often replace natural vegetative cover increase both the volume and peak rate of runoff and also provide a place for traffic-generated residues and airborne pollutants to accumulate and become available for washoff. Additionally, urban runoff management as it is practiced today, increases flooding during wet years and decreases base flow during dry years by reducing infiltration and soil storage while increasing evapotranspiration (Ferguson and Suckling 1990).

Stormwater management has often focused on end-of-the-pipe treatment using structural Best Management Practices (BMPs) such as ponds, infiltration basins and sand filters. These methods have an emphasis on trying to reduce peak flow instead of trying to mimic some of the processes of natural systems which would also reduce the volume and timing of flow. In addition, there has been little relationship between these practices and ecological requirements or even any assessment of how well they work to sustain the biological communities in the receiving waters they are supposed to protect. The few studies that have been conducted, have concluded that appropriately sited and designed BMPs provide some mitigation of stormwater impacts, but that the resulting biologic communities downstream were still greatly altered from those in undeveloped watersheds (Horner et al. 2001). One piece that has been missing in our assessment of stormwater management is the linkage between landscapes and aquatic habitats; and lacking this systematic picture, management efforts have not been broadly successful in fulfilling the Federal Clean Water Acts' stipulation to protect the biological integrity of the nation's waters (Horner et al. 1999). It is obvious that stormwater management practices in use today can be improved and more thought has to be placed in reducing storm volume, restoring soil structure and maintaining vegetative buffers. Also more data are needed to evaluate how well our man-made systems are able to protect the natural environment when land development does occur.

Low Impact Development (LID 1999) design criteria developed in Prince George's County, Maryland, are alternatives that have been successful in reducing runoff and pollution while protecting natural streams in the rapidly growing Washington, DC area (LID 1999). Techniques include reducing imperviousness, conserving ecosystems, maintaining natural drainage courses, reducing the use of pipes and minimizing clearing and grading. Providing storage opportunities within the entire drainage basin disperses runoff uniformly throughout a site's landscape by using a variety of detention, retention, and other practices. These landscape depressions can help maintain pre-development time of concentrations by routing flows with techniques designed to maintain travel time and by controlling the rate of discharge. This practice in itself has also been noted to decrease nonpoint source pollution. These design alternatives can also be effective by recreating vegetative structure when there are no natural systems left to conserve.

Some of these low impact development ideas were incorporated in the parking lot design at the Florida Aquarium. Instead of relying solely on end-of-the pipe treatment such as stormwater ponds or effluent filtration ponds, stormwater treatment began as soon as rain hit the ground. Some of the methods used included lengthening the stormwater flow path, providing landscape depressions and increasing vegetative treatment. Small depressions (swales) were left between parking rows and garden areas were left at the ends of each parking lane. These shallow depressions were designed to collect and store runoff before it was discharged to the next element (treatment train) in the stormwater system. The driving lanes were designed with the crown of the road in the center of the lane instead of letting the center act as the collection system for storm runoff that would then be rapidly sent to a storm drain – the practice used in most parking lots. The next design element in the Florida Aquarium parking lot was a forested strand surrounding part of the site which collected runoff after it had passed through the garden areas and swales. The final treatment for storm runoff was a small wet detention pond that acted much like a cypress dome by drying out during the dry season and storing water during the wet season. This low impact development design required a much smaller detention pond. As a comparison, the parking lot pond required only 0.008 ha (0.12 ac) to treat a 4.3 ha (10.65 ac) drainage basin while an effluent filtration pond on site required 0.133 ha (0.33 ac) to treat 4.2 ha (10.4 ac) of city streets and parking garages.

To have swales in the parking lot without reducing the number of parking spaces, local ordinances had to be altered. Changing the rules by making each parking space 61 cm (2 ft) shorter provided drainage depressions between parking rows and allowed the front end of vehicles to hang over a 122 centimeter-wide (4 ft) grassed swale instead of pavement. (In this report, swales are defined as vegetated open channels that infiltrate and transport runoff waters and strands are larger vegetated channels collecting runoff after treatment by swales).

The parking lot was monitored for a two-year period to quantify how much runoff and pollutant loads can be reduced by using swales and landscaped depressions. To determine how these modifications and paving types might affect water quality and quantity, eight small basins in the parking lot were monitored during storm events. To evaluate long term consequences and estimate maintenance requirements: sediment samples were collected. To better understand conditions that influence pollutant concentrations, rainfall characteristics, vegetated areas and paving types were analyzed. During the final year of the study: water quality, sediment samples and flow measurements were also taken to estimate the additional stormwater treatment by the strand and wet detention pond. Some measurements were taken during the summer and fall of 2001 to compare with a similar time period for three other years. This additional data analysis is included as an addendum in the appendix section.

Methods

Site Description

The parking lot design for the Florida Aquarium uses the entire drainage basin for low-impact stormwater treatment. The study site is a 4.65 hectare (11.25 acre) parking lot serving 700,000 visitors annually. The research is designed to determine pollutant load reductions measured from three elements in the treatment train: different treatment types in the parking lot, a planted strand with native wetland trees, and a small pond used for final treatment (Figure 1). The final treatment pond discharges directly to Tampa Bay (HUC 03100206) an Estuary of National Significance included in the National Estuary Program, and identified as a water body in need of attention (Section 19, Township 29, Range 19, Hillsborough County).

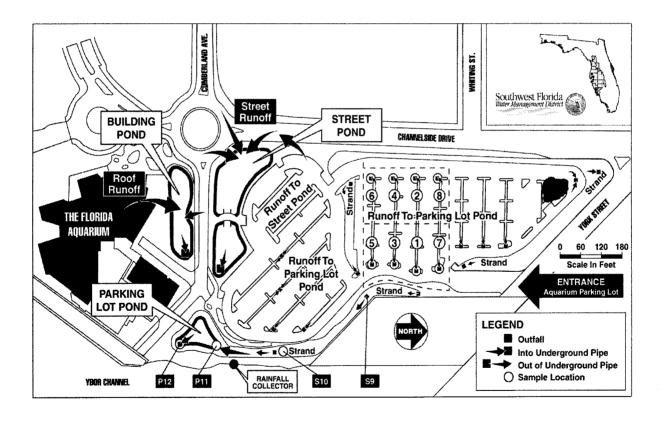


Figure 1a. Site Plan of the Parking Lot Demonstration Project showing sampling locations. The eight drainage basins evaluated in the parking lot are outlined by the dotted lines and shown in more detail in the next diagram. Numbered black boxes indicate sampling locations in the strand and the pond.

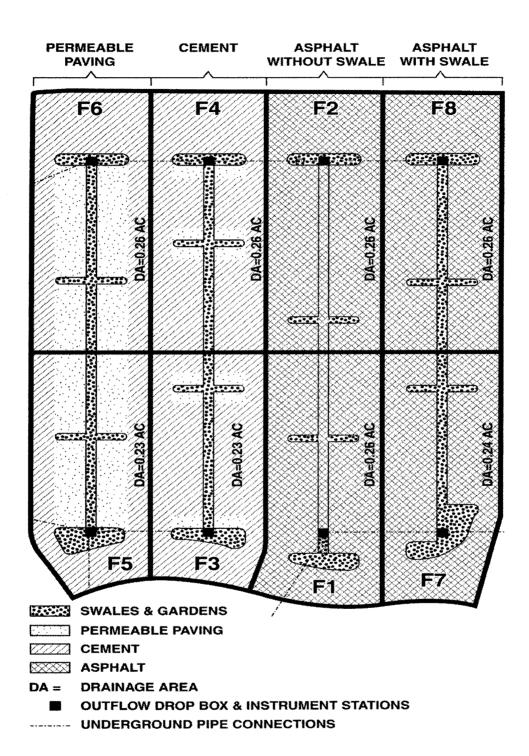


Figure 1b. Site plan of the parking lot swales delineated by the dotted lines in Fig 1a.

Based on the "Soils Survey of Hillsborough County, Florida", published by the United States Department of Agriculture's Soil Conservation Service (SCS 1958 now NRCS), the on-site soils consist of urban land use. Urban lands are classified by SCS as areas so much modified by urban development that they cannot be identified. The land also falls under the classification of made land built up by dredgings taken from the bottom of the bay. This material consists of sand and shell, which was pumped into low-lying areas when nearby channels were constructed or made deeper. A geotechnical exploration of the site was conducted for WilsonMiller (2000), and indicated that the on-site soils consist of slightly silty to slightly clayey fine sands with the groundwater table elevations tidally influence and ranging from 2 to 6 feet below existing grade. Other data at the site indicates the surface soils are limestone and shell fill. When we tried to install wells at the site, we found great hunks of asphalt, concrete and rebar making the installation of wells impossible with our equipment.

The pond used for final treatment (parking lot pond, Fig 1a) has a large outcropping consisting of a mass of concrete over 10 feet thick as a result of waste left by a concrete plant that was once located at the site. The pond has an impermeable liner to keep pollutants found at the site from migrating through the pond bottom and causing contamination to Ybor channel or the groundwater. Sections of the parking lot included in our study (area C) are also contaminated. The delineation of the petroleum contaminated areas are shown in Figure 2 (Environmental Consulting and Technology, Inc., personal communication). Information in the permit indicates there were 4 or 5 monitoring wells (12 to 14 ft deep with 10 ft screens) still in place.

Experimental Design

The experimental design in the parking lot allowed for the testing of three paving surfaces as well as basins with and without swales creating four treatment types with two replicates of each type. The eight basins were instrumented to measure discharge volumes and take flow-weighted water quality samples during storm events. The four treatment types include: 1) asphalt paving with no swale (typical of most parking lots), 2) asphalt paving with a swale, 3) concrete (cement) paving with a swale, and 4) porous (permeable) paving with a swale. The swales are planted with native vegetation. The basins without swales still had depressions similar to the rest of the parking lot, but the depressions were covered over with asphalt. All basins also had some landscaped garden areas providing opportunities for runoff to infiltrate. The comparative size of the garden areas can be seen in Figure 1b. Three different breaches through the berm that was located between the strand and Ybor Channel interfered with collecting data in the strand and pond as planned, but even so, over one year of data were collected and analyzed once the problem was corrected in July 1999.

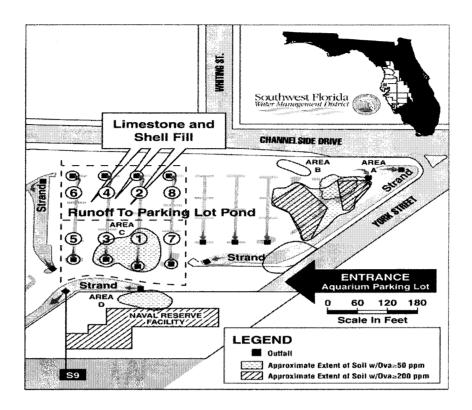


Figure 2. Identification of soils contaminated with subsurface petroleum products.

Hydrology Measurements

Flow out of each of the eight small parking lot drainage basins (0.09 to 0.105 ha) was measured using identical H-type flumes and shaft encoders (float and pulleys) connected to four Campbell Scientific CR10TM data loggers. The data loggers were programmed to take readings every minute and averaged these for 15 minute intervals. The data loggers also stored two other reports, 1) a daily summary and 2) a storm event report. The fifteen minute report recorded average, maximum and minimum water levels and flows as well as cumulative flows. These data were used to make comparison graphs, collect flow weighted water quality samples and calculate pollutant loads for storm events. An instrument shelter, located at the parking lot pond, stored data for the strand, the pond and rainfall using data loggers and a similar routine as that described for the parking lot. The major differences at the pond site compared to the parking lot were the primary measuring devices which used weirs instead of flumes. Problems with breaches in the berm limited the amount of quantifiable strand and pond data collected in this part of the treatment train until after July 1999. Since the strand, the under drain and the pond rarely discharged, grab samples taken during rain events were used to characterize the water quality at these locations. Diagrams of the weir structures and the formulas used for estimating flow are located in Appendix A. In addition, the berm repair

required a side bank filter in the strand, and a ThelmarTM weir was installed in the under drain pipe to estimate this flow into the pond.

Rainfall amounts were calculated with a tipping bucket rain gauge, summed over 15 minute intervals and stored in Campbell Scientific CR10TM data loggers.

Rainfall was characterized by calculating total rainfall, duration, inter-event dry period, and rainfall intensity using the following formulas:

Rainfall (cm, in) = rainfall amounts for each event >0.40 cm (0.15 in)

Inter-event dry (hr) = time period since previous rain event (> 6 hours separates

storms).

Duration (hr) = period of active rainfall

Average Intensity = total event rainfall / duration of storm (cm/hr, in/hr)

Maximum intensity = a one hour period during the storm with the highest total

maximum intensity (cm/hr, in/hr)

Runoff coefficient = $\inf_{m=1}^{\infty} (m^3, ft^3) / (rain amount(m,ft) * basin area (m^2, ft^2))$

Runoff coefficients (RC), LOADS, and LOAD EFFICIENCY were calculated using the following formulas:

```
RC = (volume discharged) / ((basin size)*(rainfall amount))
LOADS (kg/ha-yr) = ((concentrations)*(volume discharged))/(basin size)
LOAD EFFICIENCY (%) = ((Sum of Loads (SOL) in - SOL out)/SOL in)*100
```

Summary tables in the report are given in metric units or both metric and English and the data in the appendices are in English units.

Water Quality Measurements

Water quality samples were collected on a flow-weighted basis and stored in iced ISCO samplers until picked up, fixed with preservatives and transported to the Southwest Florida Water Management District (SWFWMD) laboratory. Samples were analyzed according to the guidelines published in their Quality Assurance Plan (SWFWMD 1998). Duplicate samples and blanks were periodically collected for quality assurance. De-ionized water (blanks) were run through the equipment when the tubing was changed to check for possible equipment contamination. Results show that the tubing sometimes contaminated the sample in this worst case scenario, but sample concentrations were still much lower than the average values measured during storm events. (See quality assurance appendix A). Samples for the analysis of total nitrogen, ammonia, nitrate-nitrite, orthophosphorus and total phosphorus were stored in 500 ml polyethylene bottles and preserved with the addition of sufficient concentrated sulfuric acid to

lower the sample pH below 2.0. Samples for the analysis of metals were collected in 250 ml EPA approved pre-washed bottles and preserved with the addition of sufficient nitric acid to lower the sample pH below 2.0. Samples for the analysis of total suspended solids, and hardness were collected in 1 liter polyethylene bottles for TSS and 500 ml polyethylene bottles for major ions. All samples were placed with ice in coolers and transported to the SWFWMD Laboratory for analysis using standard methods (Table 2). Grab samples were collected in the strand, the pond and in the under drain pipe once the berm repairs were made.

Table 2. Description of laboratory analyses for parameters measured in stormwater study. References refer to section in Standard Methods (APHA 1992) or (US EPA 1983) where more detailed descriptions can be found. When values were below the laboratory detection limit, one half the detection limit was substituted for statistical analysis.

Parameter	Method	Det. Limit	Reference.
Suspended Solids	Total filterable residue dried at 103-105°	0.05 mg/l	SM 2540
Total lead	Electrothermal atomic absorption spectrometry	0.001 mg/l	SM 3113 B
Total copper	Electrothermal atomic absorption spectrometry	0.001 mg/l	SM 3113 B
Total cadmium	Electrothermal atomic absorption spectrometry	0.0003 mg/l	SM 3113 B
Total chromium	Electrothermal atomic absorption spectrometry	0.002 mg/l	SM 3113 B
Total zinc	Direct aspiration into air-acetylene flame	0.015 mg/l	SM 3111 B
Total iron	Direct aspiration into air-acetylene flame	0.025 mg/l	SM 3111 B
Ammonia-N	Automated phenate	0.1 mg/l	SM4500
Organic nitrogen	Semi Automatic Block Digestor	0.01 mg/l	EPA 351.2
Nitrate-nitrite-N	Cadmium reduction	0.01 mg/l	EPA 353.2
Total Phosphorus	Colorimetric automated	0.01 mg/l	EPA 365.1
Ortho-phosphorus	block digester	0.01 mg/l	SM 4500-P
Chlorophyll	Spectrophotometric	1.0 ug/l	SM 10002G
Bacteria	Membrane Filtration	1.0 cfu/100ml	
Priority Pollutants	Standard	variable	

Rainfall water quality was collected using an Aerochem MetricsTM model 301 wet/dry precipitation collector. A sensor detected precipitation and activated a motor which removed the lid from the wet bucket and transferred it to the dry bucket. When the rain stopped the cycle was reversed. A small refrigerator was mounted under the collector to immediately store the sample until it could be fixed with the appropriate preservatives and transported to the laboratory. Dryfall was not measured

Sediment Samples

Sediment samples were collected right in front of the outfall (drop box) in each of the swales, and also at two locations in the strand and two locations in the pond during the fall of 1998 and again in the fall of 2000 (see Figure 1). Samples were extracted intact from the sediments using a two-inch diameter hand driven stainless steel corer. Cores were collected at two depths, representing sediments in the top 2.54 cm (1 in) layer and sediments 10 to 13 cm (5 to 6 in) below the surface. Residue in the drop boxes used to transport stormwater to the strand were also collected in 1998. To collect enough sample to analyze, four to five cores in the same vicinity were necessary and each was tested for particle size, metals, nutrients, pesticides and polycyclic aromatic hydrocarbons. Cores at each location were mixed using the four corners method and other procedures outlined in the laboratory's approved Comprehensive Quality Assurance Plan (SWFWMD 1998). Sediment samples were analyzed by the Department of Environmental Protection laboratory in Tallahassee by the methods outlined in their approved Comprehensive Quality Assurance plan (FDEP 1996) for total Kjeldahl nitrogen, total phosphorus, priority organic pollutants, particle size and percent organic matter.

Discrete Samples

Most of the water quality samples in the parking lot were composite samples collected in one bottle on a flow-weighted basis. However, the ISCO model 3700 used for the even numbered basins was outfitted with a 4-bottle (1 gallon) configuration which allowed for the analysis of discrete samples for some of the larger rain events. These were composited on a flow weighted basis depending on how the sampler was programmed. Since each sampler was programmed to put about the same number of aliquots in each bottle for the four-bottle configuration, comparable discrete samples could be collected. To compare these samples to the composite samples the individual samples were combined on a flow-weighted basis. The individual samples were also analyzed to determine if there was a first flush effect. The difference in magnitude of each storm and the different amount of runoff in each basin makes exact measurements over the hydrograph difficult, but comparisons for time collected in each basin for the data recorded to the data logger approximated the shape of the hydrograph and these are identified as the rising limb, the top, the falling limb and sometimes the tail of the storm.

Statistical Analysis

Statistical computations were performed using the SAS system, version 8.1, to determine significant differences and to analyze relationships between variables. Most statistical tests assume the variables are from an independent and normally distributed population and that the variances are homogeneous. This is rarely the case for water quality data, and even log transformations did not improve the distribution enough to make at least half the samples suitable for parametric procedures according to the Shapiro-Wilk Statistic (W) calculated using PROC UNIVARIATE. Other methods for assessing the normality of the data were investigated; these included skewness and kurtosis and these results are presented in table form. Results for all the data used in the univariate analysis to verify the data and also to find possible transcription errors are available, but are not included in the report because of space constraints.

To investigate the relationship between variables, non-parametric correlations were run using the Spearman rank correlation procedure with PROC CORR SPEARMAN. With Spearman's method differences between data values ranked further apart are given more weight, similar to the signed-rank test. It is perhaps easiest to understand as the linear correlation coefficient computed on the ranks of the data (Helsel and Hirsch 1992). Spearman's rho is best suited for large sample sizes (n>20) and the 58 storm events sampled in this study met this criterion.

To determine significant differences between years and between basins, the Wilcoxon Rank Sum Test was run using PROC NPAR1WAY WILCOXON for a one tailed test. Since this procedure only tests for the difference between two samples and we were interested in comparing all of the even numbered basins, an analysis of variance procedure for multiple comparisons was made using PROC MEANS/DUNCAN and the differences between two means by that test were further evaluated. The Wilcoxon rank sum test and Kruskal-Wallis chi-square test were then used to determine significant differences. Since it is easier to show differences with the Duncan output, these results are the ones shown in the report.

Results and Discussion:

Data for the two-year study are reported here with emphasis on rainfall characteristics, hydrology, water quality, sediment analyses and statistical verification.

Hydrology

Rainfall Characteristics - The type of storms and the amount of rainfall are relevant not only to water quantity issues where they affect flooding, volume of runoff and peak discharge, but also to water quality results where they may influence constituent concentrations and removal efficiency. Antecedent conditions (inter-event dry period) and rainfall intensity increase pollutant concentrations by providing time for pollutant accumulation on land surfaces as well as the rain energy to flush pollutants through the system. Also wet and dry years affect input and output concentrations by changing subsurface flow and evapotranspiration. Rainfall during both years of the study experienced drought conditions, but lack of rain was much more severe during the second year (Table 3).

Table 3. Comparison of rainfall characteristics between years (August through July of each year). The long term average for the region is 127.0 to 137.7 cm per year. The data include all storm events greater than 0.40 cm. (See Appendix B for complete data).

STATISTICS	RAIN (cm)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (cm/hr)	AVG. INT, (cm/hr)		
Year One Summary Data	Total rain 105.83 cm Number of storms 60						
Cummary Data	Mannber 0	1 31011113	50				
Average	1.79	143.78	2.58	1.23	1.02		
Median	1.30	70.25	1.50	0.94	0.93		
Maximum	6.45	921.25	20.50	3.73	4.11		
Minimum	0.38	3.75	0.25	0.28	0.15		
Std.Dev.	1.35	194.36	3.05	0.85	0.75		
C.V.	0.75	1.35	1.18	0.69	0.73		
Year Two	Total rain	86.30 cm					
Summary Data	Number o	f storms	48				
Average	1.76	155.13	3.07	1.16	0.95		
Median	1.09	50.50	2.25	0.71	0.79		
Maximum	7.39	1723.00	12.75	5.05	5.05		
Minimum	0.41	6.00	0.25	0.23	0.09		
Std.Dev.	1.51	284.70	2.89	1.13	0.88		
C.V.	0.89	1.84	0.95	0.97	0.92		

Area newspapers reported that not only was the drought in central Florida the worst in the nation during 1999 and 2000, but it was considered "exceptional". The drought center, along with the National Oceanic and Atmospheric Administration and the National Weather Service, put together a U.S. Drought Monitor web site to track dry weather and Central Florida was ranked a level 4 (U.S. Drought Monitor 2001). This is the level that might be expected twice a century. The Southwest Florida Water Management District also reported extreme conditions where the aquifer measured two feet below where it should be and lakes measured three to five feet below normal.

Runoff - Drought conditions also reduced the amount of runoff and the runoff coefficients for the parking lot. But even with drought conditions, the calculation of runoff coefficients for each basin demonstrates the reductions that can result from even small swales and garden areas.

The runoff coefficient (Table 4 and Appendix C) accounts for the integrated effect of rainfall interception, infiltration, depression storage, evaporation and temporary storage in transit. Engineers use conservative runoff coefficients for sizing conveyance pipes and have developed typical ranges for various land uses: the range for pavement such as parking lots is 0.70 to 0.95 (ASCE/WEF 1992). A basin similar to ours, that also had 90 percent imperviousness, calculated a median value for a runoff coefficient of 0.61 (Driscal et al. 1990), comparable to our median value of about 0.55. If all the rain falling on a drainage basin ran off, the coefficient would be 1.0 or 100 percent. Except for basin F1, the odd numbered basins are slightly smaller and have larger recessed garden areas than the even numbered basins. The larger garden areas (about the size of one parking space) in the odd numbered basins accounts for their 40 to 50 percent lower runoff coefficients. Another factor that may account for the good infiltration rate is the soil structure. From soil analysis, the Florida Aquarium parking lot had a high gravel content (average 9.9% for soil particles > 2 mm) and it usually took a rain event of at least 0.84 cm (0.33 in) to produce enough flow to collect samples, especially in the basins with swales. Also the data suggest that for large rain events, basin F2 overflows its boundaries and some of its runoff is actually discharged from basin F1. This accounts for the smaller runoff coefficient for both years in basin 2 despite the similarity between the two basins..

For runoff amounts (Table 5 and Appendix D), the summary statistics for each year are similar and also exhibit a consistent pattern. For all basins, runoff from basins with swales was significantly less than in the basins without swales. The concrete and the asphalt basins with swales (F8 and F4), which also have the same size garden areas, both produced about the same amount of total runoff each year. Porous pavement with swales had the least amount of runoff, but the size of the larger garden areas in the odd-numbered basins (F7 and F3) often decreased runoff as much as the porous pavement (F6). Therefore, the larger garden area found in F7, F3 and F5 were the most effective technique for reducing runoff with about 40 to 50 percent less total runoff in basins with larger garden areas compared to similar basins (F8, F4 and F6) with smaller garden areas. The increased size of the garden area was about the same size as one parking space, except in F7 where it was about the size of two parking spaces. For comparable basins (F2, F8, F4 and F6) the swales

reduced runoff for the concrete and asphalt basins by over 30 percent in year one and over 20 percent in year two when compared to the basin (F2) without a planted swale, while porous pavement decreased runoff by about 50 percent for both years.

Table 4. Summary of runoff coefficients for the eight basins in the Florida Aquarium Parking Lot calculated for two different years. All the data are found in Appendix C. Rainfall amounts included for comparison.

SAMPLE DATE	RAIN AMOUNT cm	ASPHALT WO/SWALE F1 F2		VO/SWALE W/SWALE		CONCRETE W/SWALE F3 F4		POROUS W/SWALE F5 F6	
YEAR O TOTALS STATIST Average Median max Stddev c.v.	NE 87.71	0.58 0.57 0.97 0.18 0.31	0.50 0.48 0.86 0.17 0.33	0.15 0.12 0.43 0.12 0.83	0.31 0.30 0.78 0.19 0.60	0.19 0.13 0.67 0.19 1.01	0.29 0.25 0.75 0.22 0.76	0.09 0.02 0.51 0.12 1.44	0.17 0.14 0.59 0.17 0.98
YEAR TV TOTALS STATIST Average Median max Stddev c.v.	77.22	0.50 0.53 0.78 0.18 0.36	0.43 0.46 0.67 0.15 0.34	0.15 0.08 0.53 0.15 1.00	0.29 0.29 0.74 0.18 0.63	0.17 0.06 0.65 0.20 1.18	0.27 0.26 0.72 0.18 0.66	0.10 0.04 0.56 0.15 1.49	0.15 0.13 0.72 0.17 1.09

The garden areas would probably reduce runoff even more if they had been constructed with proper soils according to the low impact development design criteria which are identified by them as bioretention areas (LID 1999). Bioretention is a practice to manage and treat stormwater runoff by using a conditioned planting soil bed and planting materials to filter runoff stored within a shallow depression. Bioretention criteria combine physical filtering and adsorption with biological processes. The system can include the following components: a pretreatment filter strip of grass channel inlet area, a shallow surface water ponding area, a bioretention planting area, a soil zone, an underdrain system, and an overflow outlet structure (LID 1999). The garden areas in our study included existing soil and were only slightly recessed below grade when compared to the surrounding parking lot, instead of the 16 to 20 cm (6 to 8 in) maximum suggested in the manual and the garden depressions were not as deep as the swales.

Table 5. Summary comparison data for rainfall and runoff amounts for the two years. Also included are comparison data corrected for volume if all storms had produced runoff as well as estimates for runoff if the average amount of rain had occurred and produced runoff.

YEAR ONE	RAIN AMOUNT	ASPHALT WO/SWALE			HALT WALE	CONCRETE W/SWALE		POROUS W/SWALE	
		F1	F2	F7	F8	F3	F4	F5	F6
	cm	cu meter	cu meter	cu meter	cu meter	cu meter	cu meter	cu meter	cumeter
TOTALS	87.71	581	499	169	343	221	347	111	225
STATIST									
Average	2.66	17.61	15.11	5.11	10.39	6.70	10.51	3.35	6.82
Median	2.08	13.25	11.37	2.12	6.74	1.78	6.26	0.53	2.35
Max	6.60	55.37	43.47	26.45	38.26	37.50	43.75	29.99	38.69
Std.dev.	1.57	13.37	10.93	6.42	9.81	8.91	11.06	6.13	8.93
C.V.	0.59	0.76	0.72	1.26	0.94	1.33	1.05	1.83	1.31
BASIN SI	ZE								
hectare		0.105	0.105	0.097	0.105	0.093	0.105	0.093	0.105
(M3/ha)	RUNOFF F	5522	4740	E N 1736	3259	2376	3296	1188	2140
H '	RUNOFF I					•			
	RE RAIN II			40 CIVI (U. 1	S IN) HAD	KUNUFF	AND DAD	DEEN SAI	MIPLED
(M3/ha)		6516	5593	2049	3846	2803	3889	1402	2525
	RUNOFF I								
(M3/ha)		7289	6257	2292	4302	3136	4351	1569	2825
(IVIO/IIa)		1209	0237	2232	4302	3130	4001	1309	2023
YEAR		F1	F2	F7	F8	F3	F4	F5	F6
TWO	cm	cu meter	cu meter	cu meter	cu meter	cu meter	cu meter	cu meter	cu meter
TOTALS	77.22	452	387	152	300	185	276	90	181
STATIST									
Average	3.09	18.07	15.50	6.10	11.99	7.42	11.03	3.60	7.23
Median	2.72	12.63	10.28	1.93	6.94	1.56	5.64	1.22	3.91
max	7.49	61.82	53.02	35.43	58.14	45.62	56.81	31.69	57.06
Stddev	1.55	14.69	12.02	8.94	13.49	11.86	12.65	6.95	12.00
C.V.	0.50	0.88	0.83	1.47	1.13	1.60	1.15	1.93	1.66
BASIN SI	ZE								
hectare		0.105	0.105	0.097	0.105	0.093	0.105	0.093	0.105
	RUNOFF F	• • • • • • • • • • • • • • • • • • • •				-		•	
(M3/ha)		4305		1570	2849	1992	2621	968	1717
YEARLY	RUNOFF II	F ALL STO	DRMS > 0.	40 CM (0.1	5 IN) HAD	RUNOFF A	AND HAD	BEEN SAI	MPLED
	RE RAIN I)			-			
(M3/ha)		5166	4422	1883	3418	2391	3145	1161	2060
YEARLY	RUNOFF IF	NORMAL	RAINFAL	L YEAR A	ND ALL ST	ORMS HA	D RUNOF	F (40% MC	RE RAIN
(M3/ha)		6027	5159	2197	3988	2789	3669	1355	2404
/ N/L3/n21									

Swales and garden areas are most effective for small storms while large storms show about the same amount of runoff for all storms. One example shows this effect in Figure 3. For these comparisons only the even numbered basins were used because they are all the same size and have the same size garden areas. Instead of a grassed swale, the basin without a swale has a recessed asphalt area the same size as the planted swales in the other treatments, but it also has recessed garden areas similar to the rest of the basins. The garden areas probably account for its relatively low runoff coefficient (0.51 and 0.40) for a parking lot as well as the fact that this basin overflows into basin F1 during large storm events. These results demonstrate that even small areas in parking lots can increase infiltration rates. A comparison of the hydrographs for the even numbered basins for all storms are found in Appendix E.

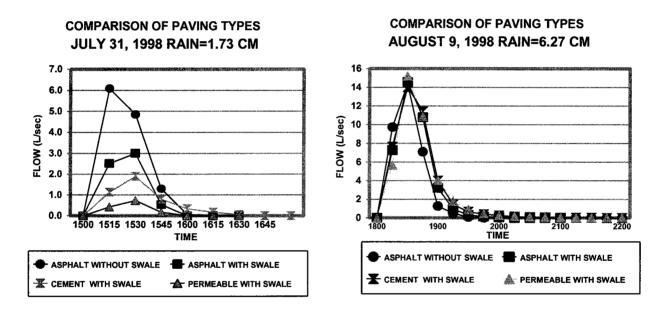


Figure 3. Comparison of storm runoff amounts with the amount of rainfall showed that swales reduced runoff for all events, and that paving type, especially permeable paving, was effective in reducing runoff from storms with less than two cm of rainfall (Cement with swale also has a few parking spaces with permeable paving). Note: Graphs have different scales. (See Appendix E for graphs of all rain events greater than 0.94 cm (0.37 in)).

Comparison of Flow One of the major advantages of low impact development for parking lots is the reduction in the volume of water discharged from the site. When the volume of water discharged from the different elements of the treatment train at the Florida Aquarium site are compared, the results show almost all runoff was retained on site (Table 6). Although the year sampled was during an extreme drought, still it is remarkable that stormwater was discharged for only one storm event. The data represent almost all major storms that produced significant flow for a one year period.

Table 6. Discharge data collected for four basins with paving similar to the rest of the 4.65 hectare parking lot compared to the measured flow from the strand, under drain and out of the pond. Since the four basins included in the analysis represent about 8.8% of the parking lot that ratio was used to estimate the total discharge from all basins.

SAMPLE DATE	RAIN AMOUNT	ASPH W/SW		CONC W/SW		SUM 4 BASINS	ESTIMATE ALL PARKING	STRAND OVER WEIR	UNDER DRAIN	POND
		F7	F8	F3	F4	8.8%	100%			
	cm	m ³	m³	m ³	m ³	m ³	m ³	m³	m ³	m³
11/01/99	4.14	7.22	16.25	6.09	12.94	42.50	374.04	0.00	248.68	0.00
12/17/99	1.91	0.00	0.42	0.00	0.14	0.57	4.98	0.00	0.00	0.00
01/06/00	2.01	1.76	6.48	0.88	4.36	13.48	118.62	0.00	0.00	0.00
01/24/00	1.73	0.00	1.81	0.00	1.70	3.51	30.90	0.00	0.00	0.00
01/31/00	1.78	0.31	3.45	0.00	2.52	6.29	55.32	0.00	0.00	0.00
06/13/00	3.28	1.61	5.41	1.56	9.74	18.32	161.23	0.00	0.00	0.00
06/22/00	0.99	0.06	0.57	0.00	0.17	0.79	6.98	0.00	0.00	0.00
06/***/00	3.53	0.28	3.43	0.06	2.89	6.65	58.56	0.00	0.00	0.00
06/29/00	1.80	1.16	5.01	1.05	4.47	11.70	102.92	0.00	0.00	0.00
07/01/00	2.06	0.82	4.53	0.48	4.81	10.65	93.70	0.00	34.04	0.00
07/04/00	4.95	16.99	30.78	25.26	30.95	103.98	915.04	0.00	381.89	0.00
07/08/00	2.72	8.50	12.74	3.26	11.44	35.93	316.23	0.00	0.00	0.00
07/15/00	5.03	17.67	28.09	21.32	24.64	91.72	807.14	0.00	211.67	0.00
07/26/00	3.15	2.15	4.87	0.65	5.01	12.69	111.64	0.00	0.00	0.00
07/31/00	6.83	35.43	36.50	35.93	31.86	139.72	1229.52	0.00	413.94	19.65
08/29/00	3.05	7.82	13.79	11.04	13.90	46.55	409.67	0.00	5.18	0.00
09/07/00	4.98	13.76	23.08	18.04	22.14	77.02	677.80	0.00	182.82	0.00
09/17/00	5.21	12.03	19.88	12.12	23.73	67.76	596.32	0.00	173.47	0.00
09/24/00	2.95	7.08	11.30	7.31	10.59	49.81	438.33	0.00	60.23	0.00
11/26/00	3.48	5.04	10.00	6.26	6.20	27.50	242.00	0.00	79.35	0.00

Water Quality

The concentration of pollutants is useful for looking at processes taking place in stormwater systems, while pollutant loads are more appropriate for assessing impacts to downstream habitats where cumulative effects are important considerations. Both types are discussed below.

Concentrations - The average concentrations of constituents measured in each of the basins for all storms sampled showed some differences between paving types as well as other variables. Appendix F summarizes the water quality data and Appendix G presents all the data. A comparison of constituents for all storms (Figure 4) indicates some of the processes taking place in the parking lot, the strand, the under drain and the pond.

For inorganic nitrogen, nitrate levels were highest in the parking lot and much lower once water collected in the strand and pond. High concentrations were also measured in rainfall. Ammonia reflects almost the same pattern as nitrates except it shows about the same concentration as nitrate in the strand and pond and measures higher concentrations in the basins paved with asphalt. At least some of the higher than expected ammonia concentrations in the strand and pond can be attributed to stagnant conditions they seldom discharged. The lowest concentrations of organic nitrogen were measured in rainfall and also the basins without a planted swale. This may reflects the transformation of nitrates in rainfall to organic nitrogen as runoff traveled through the vegetated system. However, median values of total nitrogen fluctuated within a narrow range between 0.40 and 0.60 mg/L, which is low when compared to most stormwater ponds in Florida (Rushton 1997, Carr and Rushton 1995, Rushton 2001, Harper 1993).

Phosphorus concentrations were much lower in rainfall and only somewhat higher than rainfall in the basins without planted swales (F1, F2). The highest concentrations of phosphorus were measured in basins where runoff had traveled through grassed areas (F3, F4, F5, F6, F7, F8) and in the vegetated strand. Even higher concentrations were measured in the underdrain and in the pond. These may have been caused by mulch that was applied when the pond and strand were constructed and by the filter material used in the under drain when it was installed.

The major ions (Figure 4), represented by sulfate and chloride, varied within a narrow range in the parking lot. The slightly higher concentrations in the strand and under drain were caused by residual salt water that entered through the third breach in the berm. The much higher concentrations in the pond represent not only the breaches through the berm, but backflow into the pond during several hurricanes.

Some metals in runoff reflected the type of paving material it traveled over (Figure 4). Iron, manganese, lead, copper and zinc were measured at concentrations over twice as high in the basins paved with asphalt (F1, F2, F7, F8) compared to the basins paved with concrete products (F3, F4, F5, F6). Other researchers have also measured increased metal contaminant loading from asphalt streets compared to concrete pavement (Sartor *et al.* 1974). Suspended solids were usually higher in basins paved with asphalt, although TSS was measured at low levels when compared to other stormwater studies (Harper 1994). Copper is an exception to higher concentrations only in the basins paved with asphalt since it also had elevated levels in the strand and pond. A hot spot with higher sediment concentrations of metals was noted in the sediment samples in the pond as will be discussed later and may have contributed to higher concentrations in the pond, or pond maintenance, higher salinity and other processes may have contributed to these results.

Nitrates were evaluated with regression graphs. The results indicate that the concentration of nitrate discharged from the parking lot reflected the amount of nitrate measured in rainfall. The relationship was strongest for the basin without a swale, but also helped explain elevated concentrations measured in the other basins (Figure 5).

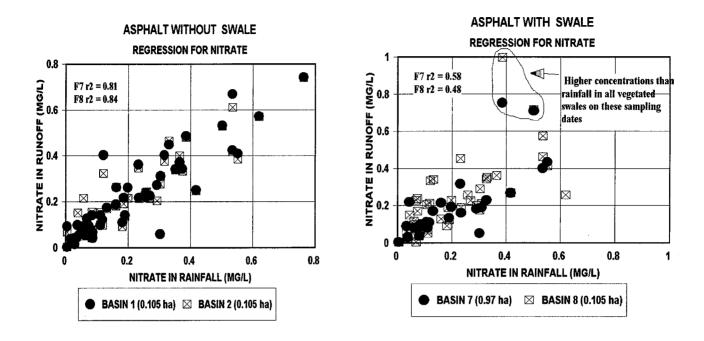


Figure 5. Relationships between nitrate measured in rainfall and nitrate measured in runoff for two basin types.

When the regression graphs are analyzed in the basins without a swale, there is a much better relationship (1:1 ratio) between concentrations of nitrate in rainfall and runoff compared to basins with a swale. This is expected if no residual nitrates are deposited from automobiles or dry atmospheric deposition. Similar concentrations between basin 1 and basin 2 are also evident. The basins with swales demonstrate lower nitrate levels than rainfall, especially when both have high concentrations, indicating the garden vegetation or infiltration by soil is reducing nitrate concentrations. This trend is not as evident for basin 8 with more values actually above the 1:1 ratio line; it will be remembered this basin also has a smaller garden area. For two sampling dates, concentrations in the swales were significantly greater than expected; probably caused by landscape practices. (It should be noted that two sampling dates were removed from the regression because rainfall as well as all the basins sampled had nitrate levels above 1 mg/L. These outliers skewed the data enough that no visual analysis for the rest of the storms could be detected).

Metals were also evaluated with regression graphs (Figure 6). The results show many metals tend to vary together and also vary with total suspended solids. In this study, this relationship is more obvious in the basins without swales. Other regression graphs are in Appendix H.

Concentrations were also compared between years (Figure 7). The results demonstrate a

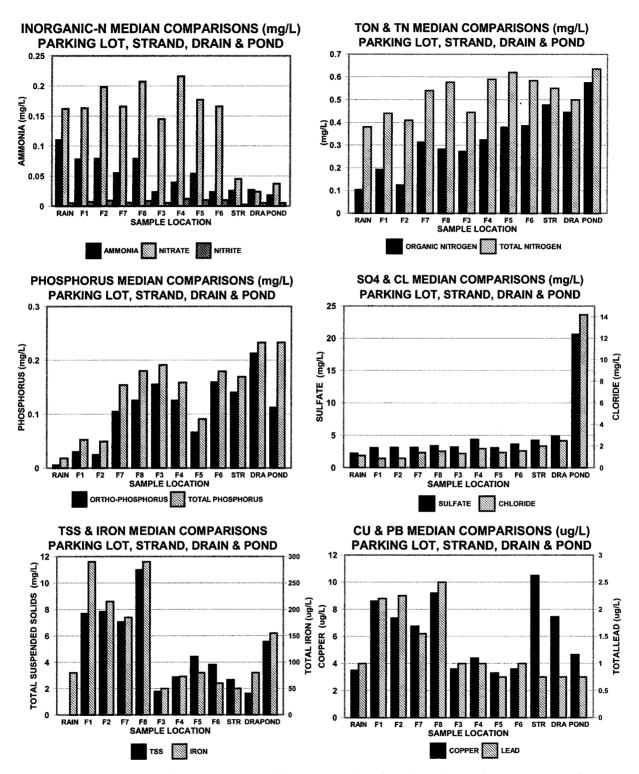


Figure 4. Comparison of median water quality concntrations for selected constituents measured at different outflows in the stormwater treatment train. These include the outflow of each of the basins as well as the strand, the under drain pipe into the pond and near the outfall of the pond. (see Figure 2 for sampling locations. Abbreviations: STR=strand, DRA=under drain, POND=pond

close relationship between years, except that concentrations were usually higher during the second drier year. All the data are in Appendix G-2. The higher concentrations in year two were probably the result of drier conditions, but higher concentrations could also be attributed to pollutant build up in the soils as the system ages. The increase is more pronounced for nutrients than metals which may be the result of more mature vegetation.

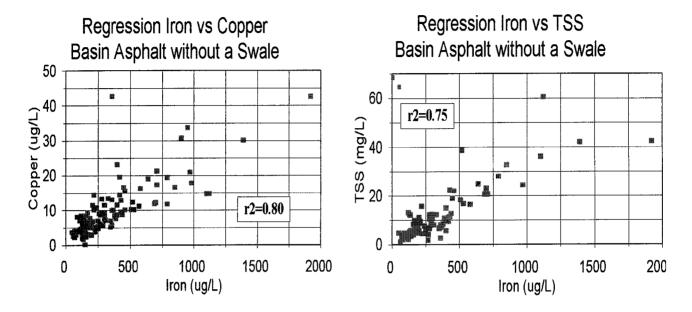


Figure 6. Metals often vary with iron and total suspended solids. The regression was strongest in the basins without a vegetated swale. (Also see Appendix H).

First Flush Effect - Individual samples representing the rising limb, the top, and the falling limb or tail of the hydrograph were collected for nine storm events (Appendix I) and seven of these are shown in bar graphs in Figures 8a - 8f. Some metals and total suspended solids demonstrate a definite first flush effect in the asphalt basins while the basins with swales exhibit no consistent pattern. Although all the storms sampled for discrete events were large storms (> 3.56 cm 1.40 in), the storms greater than 5 cm (2 in) exhibited the greatest first flush effect. Nitrogen and phosphorus did not have a first flush effect.

First Flush is important because it is believed that the beginning of storms carry the most pollutants, therefore, this concept is the basis for many stormwater treatment designs that are sized to treat the first inch or half-.inch of runoff. The theory assumes that pollutant concentrations are highest early in the runoff process and that as rainfall continues, the surface pollutant accumulation is washed out of the system and dilution by the larger flow will reduce pollutant concentrations.

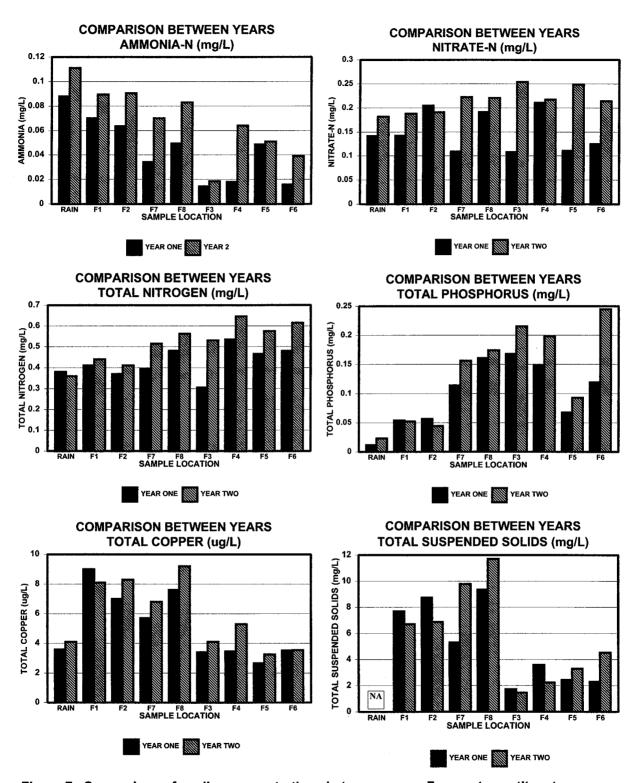


Figure 7. Comparison of median concentrations between years. For most constituents concentrations were higher during YEAR TWO which had less rainfall.

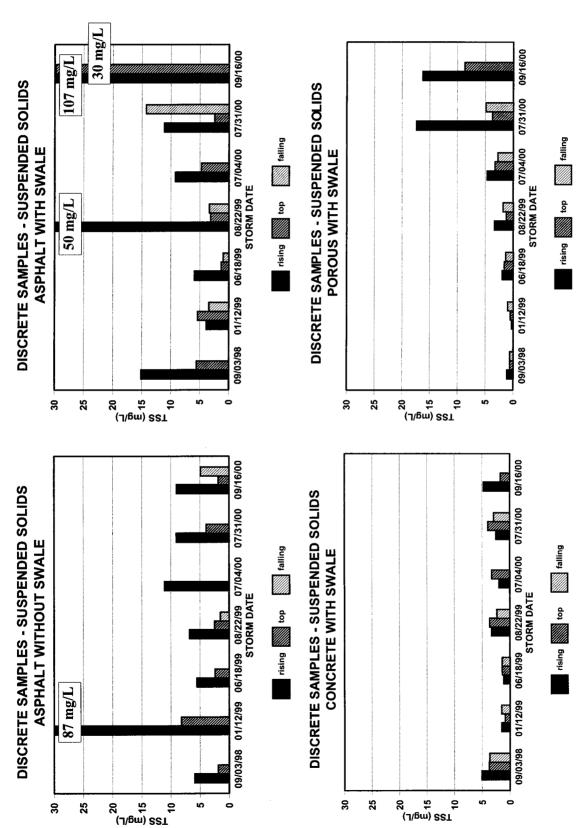


Figure 8a. Discrete samples taken over the hydrograph for suspended solids show a first flush effect for all storms in the basin without a swale and for most storms in the other basins. The asphalt basins have higher TSS than basins paved with cement products. For some sampling dates the tail end is included with the top of the hydrograph.

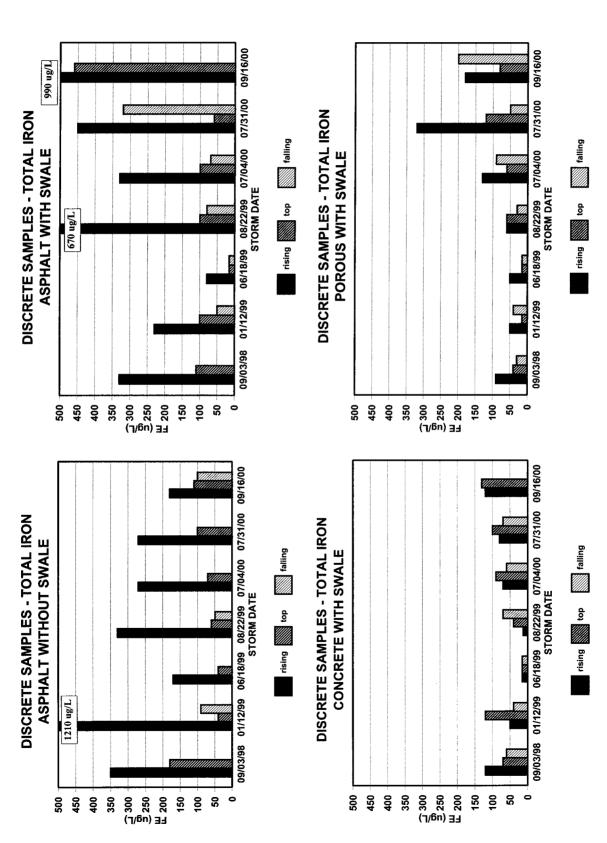


Figure 8b. Discrete samples taken over the hydrograph for total iron does show a first flush effect. Especially for the basins paved in asphalt. Many other metals tend to follow the same trend as iron.

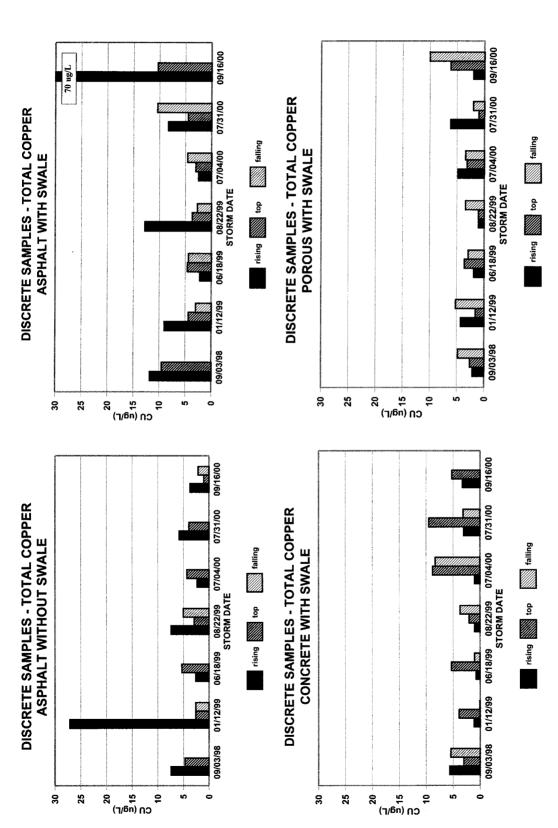


Figure 8c. Discrete samples taken over the hydrograph for total copper do show a first flush effect for the basins paved in asphalt, but the much lower levels measured in the basins paved with concrete product do not. (It should be noted that the laboratory detection limit is 2 ug/L and many of the samples were below this level.

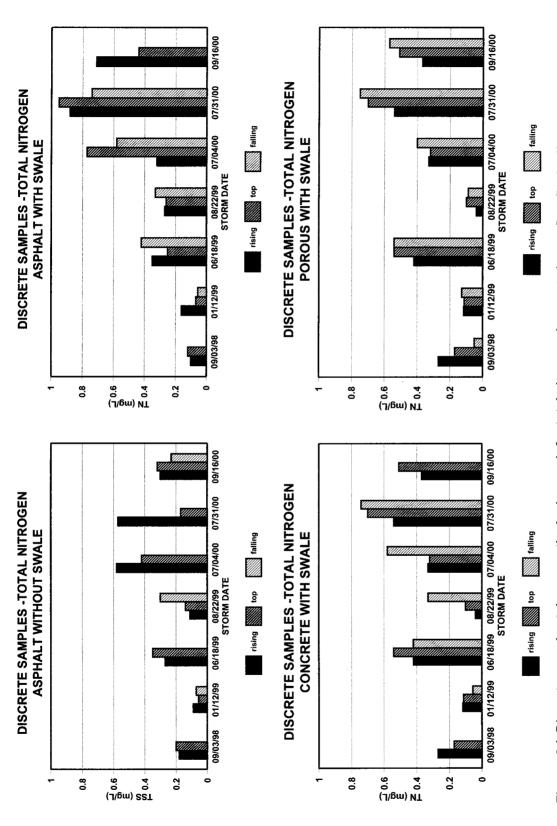


Figure 8d. Discrete samples taken over the hydrograph for total nitrogen does not show a first flush effect

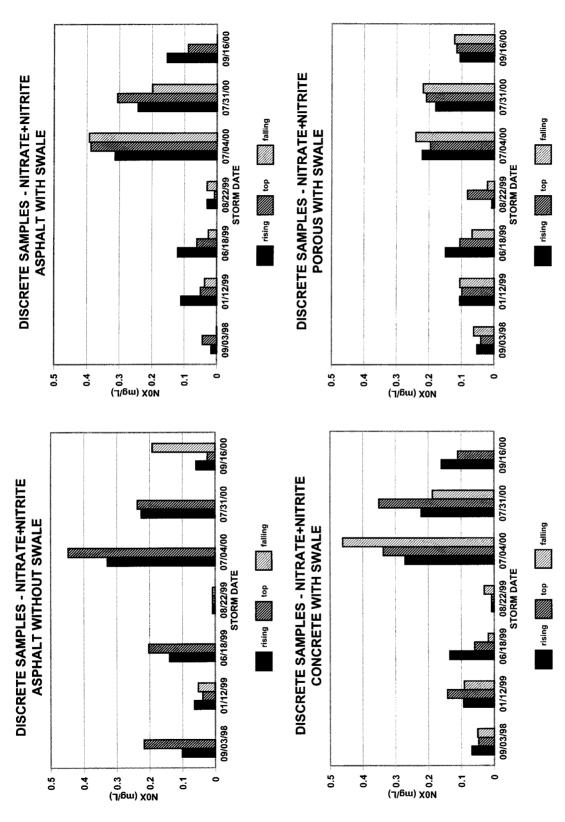


Figure 8e. Discrete samples taken over the hydrograph for nitrate+nitrite nitrogen does not show a first flush effect

Figure 8f. Discrete samples taken over the hydrograph for total phosphorus does not show a first flush effect. In fact, it appears to increase during the last part of the storm.

Certain conditions enhance a first flush effect. Since the effect is the result of pollutants that have accumulated since the last storm and then are washed off by rainfall, the results are site specific. A direct correspondence between pollutant concentrations and start of the storm generally diminish as the size of the drainage basin increases and the percent impervious decreases (Livingston 1988). This is demonstrated in this parking lot study with the decreased effect in the basins with less impervious area. Also the first flush is strongest if the runoff flow time is short and that describes the characteristics of runoff from these small basins. Also the first flush is reduced when directly connected impervious areas are reduced and more vegetation intercepts stormwater runoff, a characteristic exhibited by the basins with swales.

Water Quality Loads - A more reliable measurement than pollutant concentrations for understanding the impact of stormwater on receiving waters is to evaluate pollutant loads. Pollutant loads include in the calculations, both the volume of water discharged and the concentration of pollution measured. The most effective method for reducing pollutant loads is to keep runoff on site and allow time for infiltration as well as for chemical, biological and hydrological processes to take place. This is the rationale behind the design for the Florida Aquarium parking lot and low impact development in general. Some background information about LID development is reviewed first (also see the introduction section) followed by the results of how these concepts reduced pollutant loads at the Florida Aquarium.

Bioretention practices are soil and plant-based stormwater management practices employed to reduce and filter runoff when land is being developed or runoff infrastructure retrofitted. Typically, bioretention depressions are integrated throughout a land development project and are strategically placed to intercept runoff near the source. Originally designed to provide an element of water quality control, recent studies have shown that attenuation can be achieved as well. Also known as rain gardens, bioretention systems function similar to infiltration/filtration practices with the added advantage of aesthetically pleasing landscaping in the form of a dense vegetative cover. Bioretention systems can be designed to mimic nature's hydrologic processes found in woodland areas which absorb and filter water through evapotranspiration and soil mechanisms. As discussed above, the Florida Aquarium parking lot was designed to measure the differences achieved using some of these concepts. Although the garden areas were not designed using bioretention criteria, they still proved effective, but would probably have been even better able to infiltrate storm water if they had included the restoring of soils and other elements of low impact criteria.

The positive effect of the low impact development design features is demonstrated with summary data in Figure 9a and 9b (the complete data set is in appendix J). Annual loads discharged from each basin type were calculated for each pollutant. Since more runoff was discharged from the basins without swales (F1, F2), they usually had much higher loads for all the constituents except phosphorus. See Table 5 for the amount of runoff discharged from each basin during the years of study and you will notice that the basins with larger garden areas (F7, F3, and F5) also have much lower runoff amounts. This demonstrates the value of providing recessed areas to allow opportunities for runoff to infiltrate in much the same manner as it did before development. These

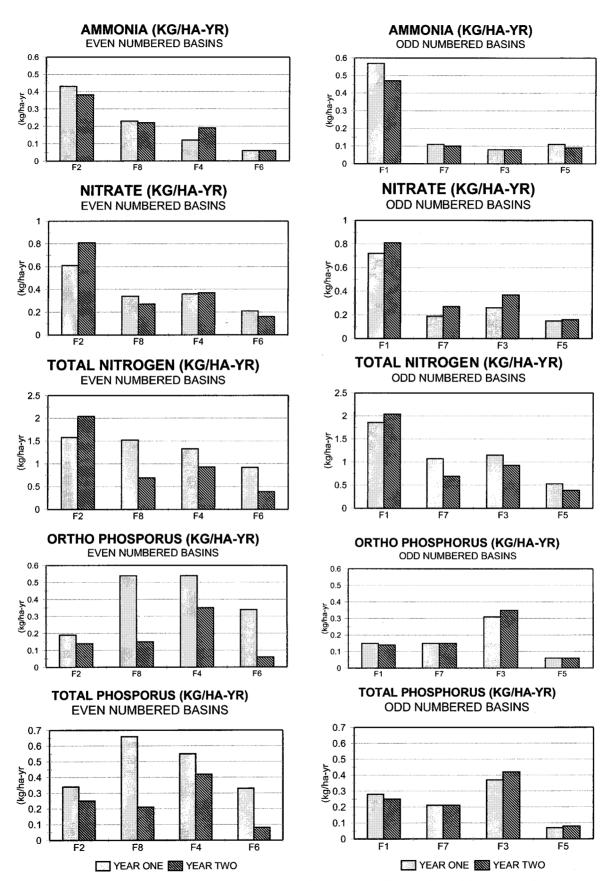


Figure 9a. Comparison of nutrient loads in each of the basins. For basins with swales, the odd numbered basins (F7, F3, F5) have larger garden areas, especially F7.

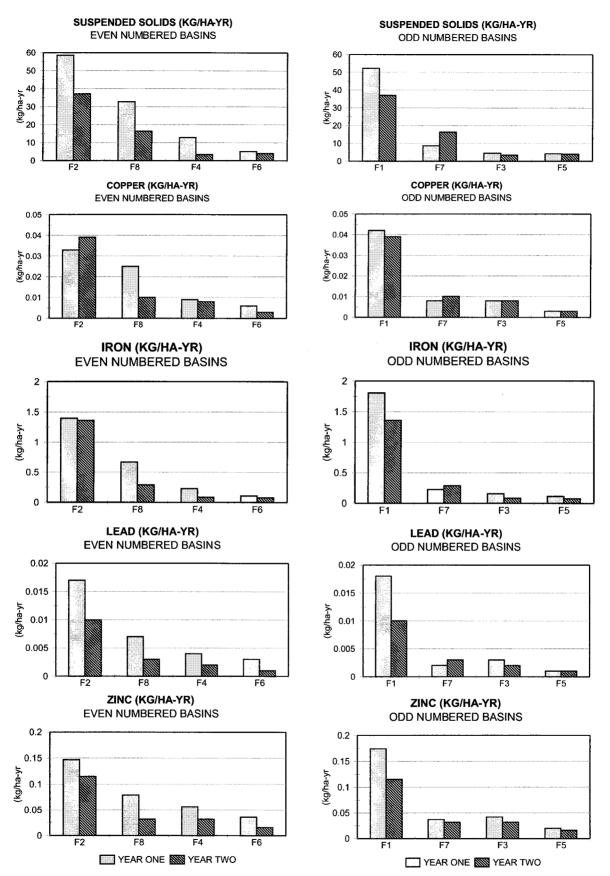


Figure 9b. Comparison of metals and suspended solids loads in each of the basins. For basins with swales, the odd numbered basins (F7, F3, F5) have larger garden areas, especially F7.

garden areas also make more attractive parking lots with less pavement to act as heat sinks. Although it is important to reduce pollutant concentrations, it is an even better strategy to reduce runoff volume using low impact development concepts.

Other observations from a comparison of the load data in Figure 9 are the similarities of most constituents for both years (i.e. basin loads for each year are usually more like each other than like the other basins). For metal constituents and some nutrients, loads were greater for year one, as was expected, since year one had more rainfall (see Table 3). Also the higher median rainfall amounts listed in Table 3 indicate more large storms and, as shown in Figure 3, large storms are not as effective in reducing runoff amounts as smaller storms. The higher phosphorous loads in the even numbered basins were probably caused by much higher phosphorus concentrations (>2mg/L) measured in the vegetated basins in March 1999 and the somewhat higher concentrations that persisted into June 1999 (see Appendix G 6a). In almost all cases the larger garden areas in the odd numbered basins (F7, F3 and F5) reduced loads by a considerable amount in addition to the reduction of concentrations provided by the planted swales. The effect was more dramatic for metals than for nutrients, probably a result of vegetative die back, although larger garden areas appear to ameliorate this effect.

When the load data from the Florida Aquarium parking lot are compared to other low-intensity commercial developments, the pollution loads from runoff were usually less than data measured in other studies, even for the basin without a swale (Harper 1994). In addition to the low impact design features, other factors may have contributed to these low loads: 1) rainfall was much less than normal for the years of study, 2) this part of the parking lot is not used as much as other areas and is often empty, 3) all basins have recessed gardens and the average runoff coefficient, even for the basin without a swale, is much less than the average parking lot, and 4) the study included all storms that produced runoff, therefore, many small storms with low runoff coefficients were included in the medians and averages, while the comparison studies often used large events and extrapolated these values to the entire year. The parking lot is receiving much more use during the summer of 2001 and data are being collected to compare the summer and fall data for 1998, 1999, 2000 and 2001. These data are being analyzed and some appear in the addendum to this report.

Load Efficiencies - Load efficiencies were calculated to quantify how much pollutant loads can be reduced by infiltration with vegetated depressions (Table 7a and 7b). The low impact design produced impressive reduction for most constituents, especially in the basins with larger garden areas (Table 7b). Also basins paved with porous pavement had the best per cent removal, with most removal rates greater than 75%. Phosphorus is a notable exception to this pattern of increased efficiency in basins with swales. More phosphorus loads were discharged from basins with vegetated swales than from the basins with no swales. This might be expected since there is not much phosphorus in rainfall, asphalt or automobile residues, but there is phosphorus in vegetation and especially in soils. Also total nitrogen was not removed as well as other pollutants. As will be discussed later, larger garden areas tend to improve this result.

In general, efficiency was much better for the first year than for the second year. This is probably the result of more runoff during the first year (see Table 5), but perhaps, the storage capacity in the swales had been decreased by the second year caused by increased vegetative mass when the grass in the swales was replaced with shrubs. Reduced efficiency was most noticeable in the asphalt basin with a swale (F8). In contrast, efficiency of total nitrogen was usually improved during the second year especially in basins with larger garden areas. Some of the low reduction in phosphorus loads may be attributed to landscaping practices since high concentrations, some greater than 1 mg/L, were sometimes measured in the basins with swales during the spring (see Appendix G - 6a & 6b).

Table 7a. Load efficiency (% reduction) of pollutants for the even numbered basins. The basins with swales (F4, F6, F8) were compared to the basin (F2) without a swale to determine the amount of reduction in pollutant loads that are possible using these small alterations.

Constituents		vith swale	ll .	with Swale	Porous w/swale F6		
	YEAR 1	YEAR 2	YEAR 1	YEAR 2	YEAR 1	YEAR 2	
Ammonia	46%	42%	73%	49%	85%	75%	
Nitrate	44%	21%	41%	22%	66%	60%	
Total Nitrogen	4%	12%	16%	8%	42%	55%	
*Ortho Phosphorus	-180%	-230%	-180%	-337%	-74%	-153%	
*Total Phosphorus	-94%	-157%	-62%	-216%	3%	-77%	
Suspended Solids	46%	-11%	78%	78%	91%	71%	
Copper	23%	14%	72%	60%	81%	82%	
Iron	52%	-16%	84%	83%	92%	87%	
Lead	59%	28%	78%	75%	85%	83%	
Manganese	40%	15%	68%	76%	92%	91%	
Zinc	46%	15%	62%	50%	75%	41%	

^{*} Notice that some efficiencies are negative, indicating an increase in loads in the basins with a swale.

Additional infiltration capacity such as porous paving or larger garden areas (F5, F3, F7) improved efficiency, indicating both infiltration and more mature vegetation is improving total nitrogen efficiency (Table 7b). In no place was this more evident than the porous pavement with both a swale and larger garden area (F5). This basin reduced by over 80 percent almost all constituents

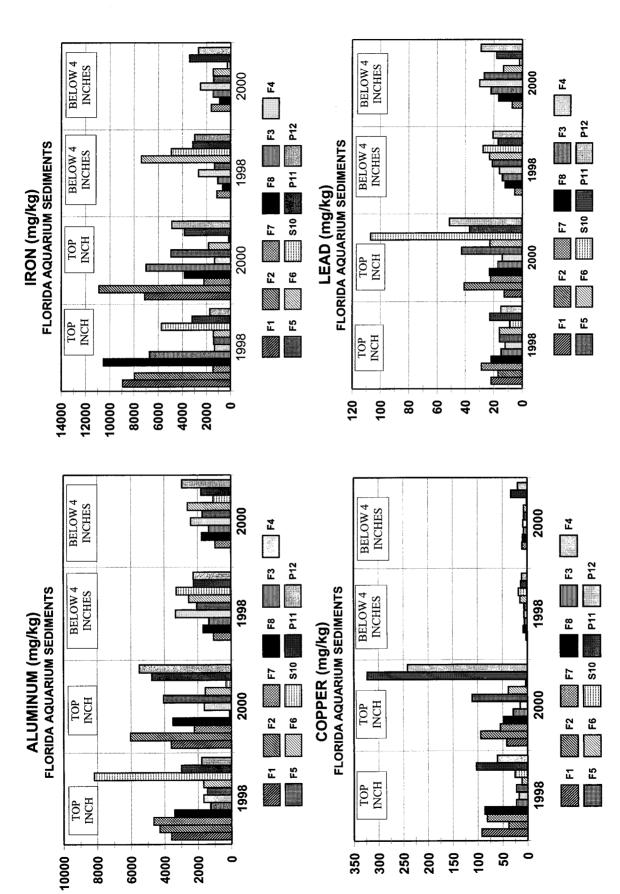
except phosphorus. Eighty percent removal of pollutant loads, especially for TSS, is a state water quality goal.

Table 7b. Load efficiency (% reduction) of pollutants for the odd numbered basins. Basins with swales and larger garden areas (F7, F3, F5) were compared to the basin (F1) without a swale and garden area the same size as the even numbered basins to determine the amount of reduction in pollutant loads that are possible using these small alterations.

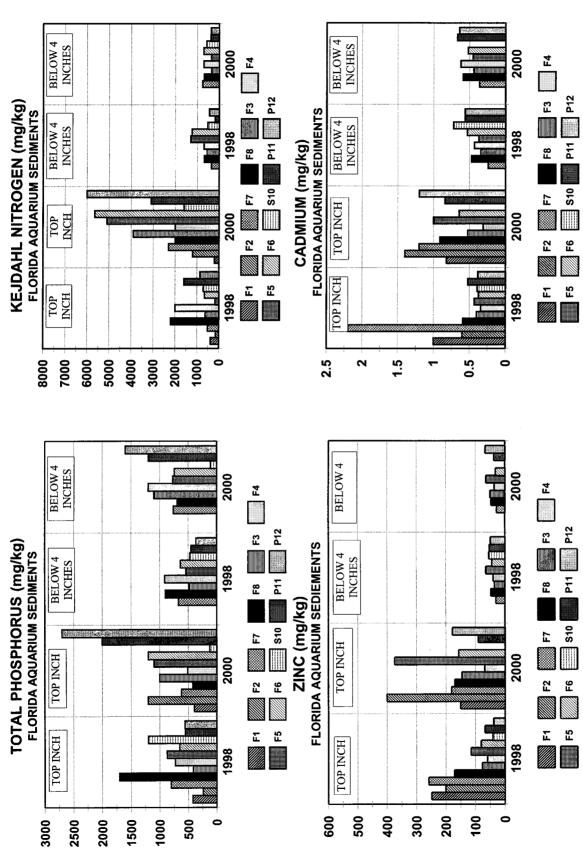
Constituents	Asphalt wi F	_	!	w/ Swale	Porous w/swale F5		
	YEAR 1	YEAR 2	YEAR 1	YEAR 2	YEAR 1	YEAR 2	
Ammonia	80%	79%	86%	83%	80%	90%	
Nitrate	73%	67%	64%	55%	79%	80%	
Total Nitrogen	58%	66%	58%	54%	71%	81%	
Ortho Phosphorus	-1%	-4%	-105%	-149%	-61%	55%	
Total Phosphorus	-26%	16%	-32%	-69%	76%	66%	
Suspended Solids	83%	56%	91%	91%	92%	89%	
Copper	81%	75%	81%	79%	94%	94%	
Iron	87%	79%	91%	94%	94%	94%	
Lead	87%	73%	83%	85%	93%	94%	
Manganese	83%	75%	90%	90%	93%	95%	
Zinc	79%	72%	76%	72%	89%	86%	

^{*} Notice that some efficiencies are negative, indicating an increase in loads in the basins with a swale.

Sediment Samples


Soil samples were collected in the swales, the strand and the pond in 1998 and again in 2000. Samples were collected at two depths, the top 2.54 cm (1 inch) of sediments and in the deeper soils between 10.16 cm to 12.7cm (5 to 6 inches). For 1998, samples were also collected in the drop boxes that received runoff from the swales. For the basins without swales, the sediments that had accumulated in the asphalt depressions were analyzed and there were no deeper soils to sample. Metals and nutrients will be discussed first and then the priority pollutants will be analyzed (Figure 10a and 10b; also see Appendix K for the entire data set).

Metals - The heavy metals in stormwater that are of most environmental concern for contamination of groundwater are aluminum, arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel and zinc (Pitt *et al.* 1996). Of these, all except arsenic and mercury were analyzed for the site. Samples were collected in front of the outfall in each swale as well as sites in the strand and the wet detention pond (see Figure 1 for site locations). For metals (Figures 10a and 10b), fairly consistent results were seen for 1998, with concentrations of metals usually measured at higher concentrations in basins paved in asphalt (F1, F2, F7, F8) compared to basins paved with concrete (F3, F4) or porous paving (F7, F8). Aluminum, iron and copper concentrations measured in the strand and pond only occasionally showed concentrations as high or higher than the asphalt basins in the parking lot even though most of the 10 acre parking lot is paved in asphalt. An indication that the swales, strand and pond are effective for sequestering metals near the source.


When the metal concentrations in 1998 in the swales are compared to 2000, values are about the same or only marginally higher in 2000 when considering the inherent variability that is characteristic of soils. The possible exception of comparable concentrations is porous pavement (F5, F6) which almost always had higher concentrations in 2000. When the site in the strand in 1998 (S10) is compared to values in 2000, the year 2000 concentrations are usually significantly lower which can be explained by the berm repair. All of the soils in the strand were excavated during berm construction, so these data are the result of deeper, cleaner soils. When the Pond data are compared between years, the concentrations are much higher in 2000, probably the result of Ybor channel water pumped into the pond during the repair and the subsequent inflow of stormwater into the pond through the under drain. The higher concentrations of copper measured in the pond when compared to the other sites may have been caused by algicide treatment for nuisance plants in the pond or the higher salinity in the pond. The high concentration of lead in the strand in 2000 was probably an artifact of the berm construction.

One concern about using the process of sedimentation to remove pollutants is the fear that pollutants might contaminate ground water. But since metal concentrations were usually higher in the surface sediments compared to the deeper sediments (note that no deeper sediments were collected for F1 and F2) this does not appear to be a problem for metals at this site. Lower concentrations did not always hold true in 1998, but by the year 2000, all samples in the deeper soils were less than the surface soil. This indicates that metals washed into the swales and incorporated in the sediments were not migrating to the deeper sediments, at least during the two years of this study. The results for copper and zinc indicate no migration, while the results for aluminum, iron, lead and cadmium are not quite as clear cut.

Other researchers have also investigated the possibility of contamination of groundwater by treating stormwater using infiltration practices. The consensus is that the majority of metals, with the consistent exception of zinc, are mostly found associated with the particulate solids in stormwater and are thus relatively easy to remove through sedimentation (Pitt *et al.*1996). The author further explained that recharge basins receiving large metal loads usually successfully removed metals either in the basin sediments or in the vadose zone while dissolved metal ions such as zinc are removed

in the pond. Surface samples were collected as well as samples 4 to 5 inches below the surface to compare to each other. (See Figure Figure 10a. Sediment samples collected in 1998 and again in 2000 at the outfall of each drainage basin as well as in the swale and 1 for site locations)

in the pond. Surface samples were collected as well as samples 4 to 5 inches below the surface to compare to each other. (See Figure Figure 10b. Sediment samples collected in 1998 and again in 2000 at the outfall of each drainage basin as well as in the swale and 1 for site locations)

during infiltration by adsorption on near-surface soil particles. These findings substantiate the results measured at the Florida Aquarium site. The Pitt (1996) report further explained that the use of percolation devices such as swales and ponds with substantial thickness of underlying soils above the groundwater are preferable to infiltration devices such as dry wells and french drains since surface devices take greater advantage of natural soil pollutant removal processes.

A major concern with stormwater runoff is that it will affect habitat values or will harm micro-organisms necessary to transform or rid the system of toxins. Although not strictly comparable, it is reassuring to note that concentrations in the sediments would not necessarily be toxic to marine biota. When metals measured in the sediments were compared to chemical toxicity guidelines developed for marine sediments by the Environmental Protection Agency (EPA) and the National Oceanic and Atmospheric Administration (NOAA), none of the samples exceeded the level where toxicity to organisms is probable. However, concentrations of copper and zinc were above the level where toxicity is possible. The level below which sediment is unlikely to be toxic is 34 ug/g for copper and 150 ug/g for zinc (Long *et al.* 1995). Sediment contamination indicates swales may have to be cleaned out and depression storage renewed on a regular basis.

Nutrients - Total phosphorus and Kjeldahl nitrogen measured in the soils showed an increase in most basins from 1998 to 2000, especially for nitrogen (Figures 10 a and 10b). Usually nutrients are quite low for the basin without a swale which has no vegetation or deeper soils to cycle nutrients. Although roadway runoff can contain phosphorus from motor oil use or residue such as bird droppings (Schiffer 1989) and road residue can adsorb nitrogen in rainfall, only low levels of nitrogen and phosphorus were measured in the basins without a swale. Nitrogen, and to a certain extent phosphorus, increased in the swales from 1998 to 2000. The pond showed a considerable increase in phosphorus and nitrogen from 1998 to 2000. Total phosphorus in the deeper sediments also increased by 2000, but a corresponding increase in nitrogen in the deeper sediments was not usually seen.

Nitrogen is of particular concern since nitrogen-containing compounds in contact with soils have a potential for leaching into groundwater. Nitrate is highly soluble and will stay in solution after percolation through the root zone (Pitt et al.1996) and a nitrate increase has been measured in the Aquifer and springs of Florida according to SWFWMD's data collection program. In a study of highway runoff both nitrate nitrogen and phosphorus concentrations were highest in groundwater near swales and exfiltration pipes; and the Kjeldahl nitrogen was highest near ponds (Schiffer 1989). Although the results of the other studies cited measured groundwater, not sediments, they are relevant since the natural processes occurring in soils that attenuate organic constituents prior to reaching groundwater also have the potential for releasing inorganic nitrogen to the receiving groundwater (Schiffer 1989).

Polycyclic Aromatic hydrocarbons (PAHs) - The increasing dependence of today's society on technology derived from organic chemicals has led to widespread hydrocarbon pollution in stormwater runoff. Some of the many pathways available for PAHs to enter the environment are

air pollution, exhausts from automobiles and trucks, and from asphalt paving material (ATSDR 2001). PAHs do not easily dissolve in water and those present in air as vapors and stuck to the surfaces of small solid particles settle to the bottoms of rivers or lakes. Breakdown in soil and water generally takes weeks to months and is caused primarily by the actions of microorganisms (ATSDR 2001).

Sediment samples were tested for more than 100 organic pollutants, but only those listed in Table 8 were detected at the site and only those found in the top 2.5 cm of soil are discussed here. The PAHs detected were the same ones that were found in a study of sediment toxicity in Tampa Bay (Long *et al.* 1994). In that study the most toxic sites found in the Tampa Bay area were in the vicinity of the Florida Aquarium. The high concentrations found in both the Long (1994) study cited above and this study indicate that most of the hydrocarbon pollutants may come from atmospheric deposition. Pitt and Barron (1990) also concluded that urban runoff PAHs were probably associated more with atmospheric fallout processes and regional air pollutant emissions than with direct source area sheetflow. Also, increased PAH air pollution has been documented in emissions from incinerators (Yasuda and Takahashi 1998) and an incinerator is located adjacent to the site.

Although the soils sampled at the Florida Aquarium site, except for the pond, were not considered aquatic habitats, they were compared to aquatic standards to estimate if they might be detrimental to organisms that transform pollutant concentrations to non-toxic compounds such as carbon dioxide and water. When these results are compared to the toxic and non-toxic concentrations in amphipod tests conducted for marine sediments, most of the results are below the significantly toxic levels as identified by Long *et al.* (1995). The exception is the concentration for Benzo(b)fluoranthene where the concentrations were sometimes above the significantly toxic level of 2958 ug/kg. Other concentrations approached significantly toxic levels and these pollutants need careful study since they are harmful to man and animals. Gasoline pollution has been identified in the soils at the site (see Figure 2) and this may have contributed to the higher concentrations measured in 1998, but another site identified at F3, does not appear to be contaminated any more than the the rest of the surface soils. By 2000, no greater number of PAH detections were found at the locations identified in Figure 2 than at any of the other sites (Appendix K).

Concentrations Measured at Different Depths - The Polycyclic Aromatic Hydrocarbons (PAHs) are compared by percentages in Table 9. The highest percentage of detection was found at the deeper depths implicating previous hydrocarbon contamination at the site (see Figure 2). The least number of samples with hydrocarbon detection occurred in the surface soils in 2000. In 1998 more sites detected PAHs in the soils than in 2000 indicating that hydrocarbon pollution may be decreasing at the site. Although two years of data can hardly detect trends for these long lived pollutants, when the PAHs are compared by the percentage found at each depth, and for 1998 also in the drop boxes, more detections of hydrocarbons were measured in the soils than in the drop boxes. The most frequently measured hydrocarbon was fluoranthene and it was detected in at least 50 percent of the samples collected in each category. Chrysene and pyrene were also frequently detected, followed by the benzo-series (Table 9 and Appendix K). PAHs are a concern since they

are suspected of causing cancer in humans, are bioaccumulative, do not break down easily in the environment, and are subject to long range air transport (US EPA 2001).

Table 8. The Polycyclic Aromatic Hydrocarbons (PAH'S) measured in the sediments. F1 through F8 represent basins in the parking lot and the other samples were collected in the strand and the pond. Data represent PAH's found in the top 2.5 cm (1 inch) of sediments and are reported in ug/kg.

POLYCYCLIC AROMATIC HYDROCARBONS			halt wale		ohalt swale	i .	icrete swale	1	rous swale	Stı	and	Po	ond
		F1	F2	F7	F8	F3	F4	F5	F 6	S9	S10	P11	P12
Acenaphthene	yr 1	U	U	U	U	U	U	U	U	U	U	U	U
	yr 2	U	U	U	U	U	U	U	U	U	U	U	U
Anthracene	yr l	U	U	U	U	U	U	U	U	U	U	U	U
	yr 2	U	U	U	U	U	det	U	U	U	U	U	U
Benzo(a)anthracene	yr 1	det	U	290	det	det	det	det	U	U	det	det	det
	yr 2	U	U	U	det	U	det	det	det	U	U	U	U
Benzo(a)pyrene	yr 1	det	det	380	det	det	det	U	U	U	det	det	det
	yr 2	U	det	U	U	det	det	det	det	U	U	U	U
Benzo(b)fluoranthene	yr 1	2100	det	940	det	U	det	det	det	det	2300	3300	det
	yr 2	3900	U	det	det	U	det	U	det	U	U	U	U
Benzo(k)fluoranthene	yr 1	730	U	290	det	U	det	U	U	Ū	det	det	U
7	yr 2	U	det	U	U	U	det	det	det	U	U	U	U
Benzo(g,h,i)perylene	yr 1	U	det	det	det	U	U	U	U	U	det	U	U
	yr 2	U	U	U	U	U	det	det	U	U	U	U	U
Bis(2-ethylhexyl)phthalate	yr 1	U	U	U	U	U	U	U	U	U	U	U	U
	yr 2	U	U	U	U	U	U	U	U	U	U	U	U
Butyl benzyl phthalate	yr 1	U	U	det	U	U	U	U	U	U	U	U	U
, , ,	yr 2	U	U	U	U	U	U	U	U	U	U	U	U
Chrysene	yr 1	1300	det	470	det	U	det	U	U	U	1400	det	det
·	yr 2	U	det	U	det	det	det	det	U	U	U	U	U
Di-n-octyl phthalate	yr 1	U	U	det	U	U	U	U	U	U	U	U	U
	yr 2	U	U	U	U	U	U	U	U	U	U	U	U
Fluoranthene	yr 1	1900	det	640	1700	U	1700	det	U	U	2600	2800	det
	yr 2	U	3800	U	1500	det	1500	U	U	U	det	U	U
Fluorene	yr l	U	U	U	U	U	U	U	U	U	U	U	U
	yr 2	U	U	U	U	U	U	U	U	U	U	U	U
Indeno(1,2,3-cd)py rene	yr 1	U	U	det	det	U	U	U	U	U	det	det	U
	yr 2	U	det	U	U	U	U	U	U	U	U	U	U
Phenanthrene	yr 1	det	det	310	det	det	det	U	det	U	det	det	det
	yr 2	U	det	U	U	U	1300	det	det	U	U	U	U
Pyrene	yr 1	1900	det	670	det	det	1300	det	det	U	2400	2100	det
	yr 2	U	det	790	1100	det	1400	det	det	П	IJ	U	U

Abbreviations include: U=sediment was analyzed for but not detected, det=constituent was detected but was less than the minimum quantification limit.

Table 9. Percentage of samples that detected pollutants in each of the soil strata for each of the eleven sampling sites. See figure 1 for sampling locations. Soils were sampled for the top 2.54 cm (1 inch), the deeper strata 10.16 cm (4 inches) below the surface and for 1998 in the drop boxes at the swale sites.

PAH SEMI-VOLATILE OR	GANIC	1998 TOP	1998 DEEP	1998 BOX	2000 TOP	2000 DEEP
		0	20	25	0	17
Acenaphthene Acenaphthylene	ug/kg ug/kg	0	0	0	0	17
Anthracene	ug/kg ug/kg	0	17	25	0	17
Benzo(a)anthracene	ug/kg ug/kg	67	70	38	40	70
Benzo(a)pyrene		75	70 70	38	33	60
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg	42	70 70	36 25	33 17	70
Benzo(b)fluoranthene Benzo(k)fluoranthene	ug/kg	50 50	50	25 25	17	20
	ug/kg	30 17	30 30	13	17	20
Benzo(g,h,i)perylene	ug/kg	8	0	0	0	20 10
Bis(2-ethylhexyl)phthalate	ug/kg	0	0	50	0	
Butyl benzyl phthalate	ug/kg	67	70	30 38	50	10 70
Chrysene	ug/kg	8	/0 0	38 0	0	10
Di-n-octyl phthalate	ug/kg	0	0	0	0	
Dibenzo(a,h)anthracene	ug/kg	0	0	0	0	10
Diethyl phthalate	ug/kg	75		63	50	10
Fluoranthene	ug/kg		100			80
Fluorene	ug/kg	17	0	13	0	10
Indeno(1,2,3-cd)pyrene	ug/kg	17	30	25	17	30
Phenanthrene	ug/kg	75 02	70	25	25	40
Pyrene	ug/kg	83	90	50	58	80
PESTICIDES						
Chlorpyrifos Ethyl	ug/kg	0	0	25	0	0
Diazanon	ug/kg	10	0	50	0	0
Parathion Methyl	ug/kg	0	10	0	0	10
Aldrin	ug/kg	8	0	0	0	10
Chlordane	ug/kg	75	40	63	25	10
DDD-p,p'	ug/kg	17	30	13	8	20
DDE-p,p'	ug/kg	83	60	50	66	30
DDT-p,p'	ug/kg	33	50	12	42	50
Dieldrin Dieldrin	ug/kg	0	20	63	0	8
Endosulfan Sulfate	ug/kg	0	0	8	42	10
Endrin Aldehyde	ug/kg	0	0	0	8	0
Methoxychlor	ug/kg	0	0	0	17	8
PCB-1248	ug/kg	8	0	13	0	0
PCB-1260	ug/kg	33	70	38	17	20

Pesticides & PCB's - At most sites pesticides and polychlorinated biphenyls (PCBs) were undetected but there were some exceptions (Table 9 and Appendix K). Chlordane was the pesticide most often detected in measurable quantities and it was found at all locations but three. Unlike the

PAH data where concentrations in the boxes were low, the drop boxes measured the highest percent detection of pesticides. These concentrations must be from past land uses since most persistent pesticides have been banned or restricted. Chlordane was used in the United States from 1948 to 1978 as a pesticide and fumigating agent. In 1978, EPA canceled its use on food crops and phased out other above ground use except to control termites. In 1988, all approved uses of chlordane in the United States were terminated (US EPA 2001). In soil, chlordane attaches strongly to particles in the upper layers of soil and is unlikely to enter into groundwater (ATSDR 2001). It is not known whether chlordane breaks down in most soils, but if it does it must be slow since it has remained in some soils for over 20 years (ATSDR 2001). One pathway out of the system is by evaporation to the atmosphere where evaporation is more rapid from light, sandy soils than from heavy soils and may evaporate in 2 or 3 days. It is not known whether much breakdown occurs in water or in sediments (ATSDR 2001). Chlordane followed these patterns at the Florida Aquarium site where it had a greater percent detection in 1998 than in 2000 amd chlordane was detected more often in the surface sediments than the deeper sediments.

Dichlorodiphenyltrichloroethane (DDT) and its daughter products were measured at almost all locations and DDE was found in measurable quantities, but the quantities were in the non-toxic to amphipod survival range for marine environments. In 1972, EPA banned all uses of DDT, except in cases of public health emergencies, because amounts were building up in the environment and possibly hurting wildlife (ATSDR 2001). Once in the environment, DDT in soil lasts for a long time. Although some studies show that half the DDT in soil breaks down within 2 years, other researches report that it takes more than 15 years (ATSDR 2001). DDT in soil usually breaks down to form DDE or DDD. In surface water it either evaporates into the air or the sun and microorganisms break down the DDT left in the water (ATSDR 2001). At the Florida Aquarium, DDT and DDD were more often measured in the deeper soil profile and DDE in the surface soils.

Polychlorinated biphenyl (PCB-1260) was frequently detected in the soils and it was more often detected in the deeper sediments than in the surface soils. PCBs are synthetic organic chemicals comprising 209 individual chlorinated biphenyl compounds (known as congeners) (ATSDR 2001). Although PCBs are banned or tightly restricted in almost all industrial and commercial uses because of their persistence and high toxicity, they still reside in sediments, hazardous waste sites, and other areas as a result of past use and disposal practices. PCBs were used in the production of dielectric fluids for transformers and capacitors because of their unique properties, such as low conductivity, high boiling point, chemical stability and flame retardant properties. The most significant health consequence is associated with consumption of large amounts of fish in PCB contaminated waters.

Particle Size Analysis - Soil particles are composed of widely varying sizes and shapes which influence their sedimentation rate. The size of sediment particles also affects the removal of pollutants in stormwater runoff by sedimentation. Usually the smaller the particle size, the greater the attachment of metal ions to the soil particle and the longer it takes for it to settle out of suspension in the water column.

Table 10. Percent particle size and percent organic matter for sediment sampling sites. Sediments were well mixed samples that included the entire top 14 cm (5.5 in) of soil. In 2000, F6D was a duplicate sample and no samples were taken in the strand and pond. 1998

Sediment Particle Size				asphalt with swale		concrete with swale		porous with swale		and	pond	
	F1	F2	F7	F8	F3	F4	F5	F6	<u>S9</u>	S10	P11	P12
>2.0 mm	2	16	13	3	11	10	21	3	4	2	20	2
0.5 - 2.0 mm	7	28	16	5	8	11	9	8	5	7	11	12
0.25 - 0.5 mm	22	17	13	12	13	15	11	15	23	22	16	16
0.125 - 0.25 mm	32	27	43	61	40	43	38	46	39	32	40	51
0.063 - 0.125 mm	14	7	10	14	11	12	11	21	10	14	8	13
< 0.063 mm	24	5	5	5	17	10	9	8	19	24	5	5
% ORGANIC	8.4	5.5	2.5	8.4	5.8	5.8	5.5	4.4	3.2	6.2	2.9	1.6

2000

Sediment Particle Size	asphalt no swale			lt with ale	ce	ement w swale		1 -	porous with swale		
	F1	F2	F3	F4	F5	F6	F6 D	F7	F8		
>2.0 mm	15	17	14	21	22	31	20	25	11		
0.5 - 2.0 mm	50	50	26	21	30	21	17	26	32		
0.25 - 0.5 mm	25	16	28	17	17	19	19	20	19		
0.125 - 0.25 mm	17	13	31	31	25	30	30	32	28		
0.063 - 0.125 mm	4	8	11	13	10	13	15	10	11		
< 0.063 mm	4	12	14	19	18	17	20	12	11		
% ORGANIC	2.6	7.7	4.1	3.9	6.5	7.3	7.1	5.9	4.5		

NOTES:

Units = % dry weight

For all sites sampledat the Florida Aquarium in 1998, the highest percentage (27 to 61 percent) of sediment was measured in an intermediate size range (0.125 to 0.25 mm) described as medium sand

(Table 10 and Appendix L). Although this intermediate size range also characterized a large percentage of the sites in 2000, most of the particles were measured in the largest size ranges from 0.25 to greater than 2 millimeters. Most sites exhibited a similar pattern for particle size and there were no obvious differences between paving types or the pond and the strand. Both years had the least percentage of particles in the two smallest size ranges.

Percent Organic Matter - Organic matter improves soil structure and provides conditions conducive to healthy soil microbes. These microbes are important for transformation and degradation processes that remove pollutants. Also, the behavior of metals in aquatic ecosystems is connected to the role of organic matter in processes such as sorption and/or chelation/complexation of metals. Complexation is the single most important abiotic factor in reducing metal toxicity (Guilizzoni 1991). Once the metals are bound with organic and inorganic compounds they can settle rapidly and become incorporated in the sediments removing them from the water column and possible transport out of the system. Microorganisms further eliminate pollutants by tranformation processes. For suitable soil structure a minimum of 2 to 4 percent organic matter is desirable in even the sandiest soils (Pritchett 1979). This percentage is available in the soils in the Florida Aquarium stormwater system (Table 10 and Appendix K).

Statistical Analysis (SAS v 8.1)

Statistical analyses were performed for the entire data set (59 storms) to further verify some of our conclusions. A few storms with questionable data were removed from this data set, otherwise all storms for the two years and four months of data collection are included and the data are the same as discussed in the previous sections. Summary statistics, tests for normality, significant differences between years, significant differences between basins and some correlation analysis are all part of this section.

Tests for Normality - A summary of all the data with descriptive statistics is shown in Table 11 and all the data are printed out in Appendix M-1. The summary data are identified by their abbreviation and also with a descriptive name. The basin number or rain gives the sample location or type (see Figure 1). Hydrology data include the amount of rainfall for each event, the inter-event dry period, the storm duration and the maximum intensity for a one hour period for each storm. The remaining parameters describe the water quality data from each basin and also in rainfall. N represents the number of observations used in the computation and NMISS is the number of observations with missing values. The basins with swales and larger garden areas have fewer data points since they had less runoff. MIN represents the lowest value for the data while MAX is the maximum value. This information is useful for detecting outliers. The Coefficient of Variation (CV) is the standard deviation divided by the mean and in SAS is multiplied by 100 and presented as a percentage. The CV is a useful measure for evaluating results from data collected by different experimenters, but to know if a particular CV is unusually large or small requires experience with similar data (Steel and Torrie 1960). Water quality in the stormwater samples we collect usually vacillates in a fairly wide range around 1.0 when presented as a ratio or around 100 when given as

Table 11. Summary statistics for the hydrology and water quality data used for statistical analysis.

FF2 Flow 3 cu ft 59 6 599.391 \$22.443 \$97.000 \$1872.000 67.2 \$1.123 \$0.683 FF3 Flow 3 cu ft 59 6 \$274.838 \$47.073 \$0.000 \$161.000 \$13.6 \$1.888 \$3.512 \$1.878	Vari- able	Parameter Identity	Basin	Units	N	N Miss	Mean	Std Error	Min	Max	Coeff of Variation	Skew- ness	Kurtosis
Note	DA1	Dain Amount	noin	inahaa	50	6	1 172	0.079	0.370	2 910	51.7	0.950	0.553
DURA Duration	1												
MAX Max Intensity rain in/hr 57 8 0.696 0.060 0.100 1.990 65.4 0.934 0.325 FF1 Flow 1 cu ft 59 6 688.416 64.131 131.000 218.3000 70.5 1.172 0.786 FF2 Flow 2 cu ft 59 6 589.391 52.443 97.001 1872.000 67.2 1.123 0.683 FF3 Flow 3 cu ft 59 6 274.838 47.073 0.000 1611.000 131.6 1.888 3.512 FF4 Flow 5 cu ft 59 6 481.829 53.479 0.525 2006.000 98.2 1.123 0.683 FF5 Flow 5 cu ft 59 6 246.838 47.073 0.000 1011.000 168.0 2.778 8.730 FF6 Flow 6 cu ft 59 6 267.668 47.407 0.000 1015.000 136.0 2.788 8.730 FF7 Flow 7 cu ft 59 6 267.668 47.407 0.000 2015.000 168.0 2.778 8.730 FF7 Flow 7 cu ft 59 6 267.676 47.407 0.000 2015.000 136.0 2.788 8.730 FF7 Flow 7 cu ft 59 6 226.572 34.818 0.000 1251.000 121.2 1.823 3.547 FF8 Flow 8 cu ft 59 6 428.697 52.251 15.000 2053.000 93.6 6.788 3.649 SS1 Susp. Solids 1 mg/L 48 17 11.476 1.682 1.990 60.619 101.5 2.423 6.786 SS3 Susp. Solids 2 mg/L 38 17 11.476 1.682 1.990 60.619 101.5 2.423 6.786 SS3 Susp. Solids 4 mg/L 39 35 2.754 0.713 0.160 21.867 141.7 337 21.838 SS4 Susp. Solids 6 mg/L 34 31 5.530 0.741 0.507 15.310 78.1 0.799 0.591 SS8 Susp. Solids 8 mg/L 40 25 16.021 2.255 2.710 77.035 89.0 2.435 7.038 SS7 Susp. Solids 8 mg/L 40 25 16.021 2.255 2.710 77.035 89.0 2.435 7.038 SS8 Susp. Solids 8 mg/L 40 25 16.021 2.005 0.000 12.1076 1591 31.06 12.788 SS8 Susp. Solids 8 mg/L 56 9 0.140 0.018 0.005 0.761 94.3 2.341 8.208 SS8 Susp. Solids 8 mg/L 55 10 0.014 0.005 0.005 0.761 94.3 2.341 8.208 SS9 Susp. Solids 8 mg/L 56 9 0.140 0.018	f .	•											
FFI Flow 2 cu ft 59 6 698.416 64.131 131.000 2183.000 70.5 1.172 0.789 FF2 Flow 3 cu ft 59 6 599.391 52.443 97.000 1872.000 67.2 1.123 0.683 FF3 Flow 3 cu ft 59 6 274.838 47.073 0.000 1611.000 131.6 1.888 3.512 FF4 Flow 4 cu ft 59 6 418.249 53.479 0.000 1611.000 131.6 1.888 3.512 FF4 Flow 5 cu ft 59 6 136.920 29.947 0.000 1611.000 131.6 1.888 3.512 FF6 Flow 6 cu ft 59 6 267.668 47.407 0.000 2015.000 136.0 2.602 9.066 FF6 Flow 7 cu ft 59 6 267.668 47.407 0.000 2015.000 136.0 2.602 9.066 FF7 Flow 7 cu ft 59 6 220.572 34.818 0.000 1251.000 136.0 2.602 9.066 FF7 Flow 8 cu ft 59 6 428.697 52.251 15.000 2053.000 93.6 1.678 3.649 FF8 Flow 8 cu ft 59 6 428.697 52.251 15.000 2053.000 93.6 1.678 3.649 FF8 Flow 8 cu ft 59 6 26.486.97 52.251 15.000 2053.000 93.6 1.678 3.649 FF8 Flow 8 cu ft 59 6 220.572 34.818 0.000 1251.000 136.0 2.071 4.477 FF8 Flow 8 cu ft 59 6 220.572 34.818 0.000 2053.000 93.6 1.678 3.649 FF9 Flow 9 7 cu ft 59 6 220.572 34.818 0.000 0.000 2053.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 220.572 34.91 0.000 1.200 0.000 0.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 220.572 34.91 0.000 0.000 0.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 220.572 34.91 0.000 0.000 0.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 220.572 34.91 0.000 0.000 0.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 220.572 34.91 0.000 0.000 0.000 0.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 22.754 0.713 0.100 0.000 0.000 0.000 93.6 1.678 3.649 FF9 Flow 9 8 cu ft 59 6 22.754 0.713 0.100 0.000 0	l .												
FF2 Flow 3 cu ft 59 6 599.391 \$2.443 \$7000 \$1872.000 67.2 \$1.123 \$0.683 FF3 Flow 3 cu ft 59 6 \$274.838 \$47.073 \$0.000 \$161.000 \$13.6 \$1.888 \$3.512 FF4 Flow 4 cu ft 59 6 \$16.924 \$73.479 \$0.525 \$2006.000 \$9.22 \$1.640 \$3.146 FF5 Flow 5 cu ft 59 6 \$267.668 \$47.074 \$0.000 \$101.000 \$18.0 \$2.778 \$7.000 \$1.0000 \$1.000 \$1.000 \$1.0000 \$1.000 \$1.0000 \$1.0000 \$1.0000 \$1.0000 \$1.0000 \$1.0000 \$1.00	L												0.789
FF3 Flow 4 cu ft 59 6 274.838 47.073 0.000 1611.000 131.6 1.888 3.512 FF4 Flow 4 cu ft 59 6 418.249 53.479 0.525 2006.000 98.2 1.640 3.146 FF5 Flow 5 cu ft 59 6 426.7668 47.407 0.000 1119.000 136.0 2.602 9.066 FF7 Flow 7 cu ft 59 6 267.668 47.407 0.000 1215.000 136.0 2.602 9.066 FF7 Flow 8 cu ft 59 6 267.668 47.407 0.000 1215.000 136.0 2.602 9.066 FF7 Flow 8 cu ft 59 6 26.2572 34.818 0.000 1251.000 136.0 2.602 9.066 FF7 Flow 8 cu ft 59 6 26.2572 34.818 0.000 1251.000 136.0 2.602 9.066 FF7 FF8 Flow 8 cu ft 59 6 220.572 34.818 0.000 1251.000 136.0 2.602 9.066 FF7 FF8 Flow 8 cu ft 59 6 220.572 34.818 0.000 1251.000 0.35.0 0.603 0.6478 3.649 SF8 FF8 Flow 8 cu ft 59 6 220.572 34.818 0.000 1251.000 0.35.0 0.653 0.649 SF8 FF8 Flow 8 cu ft 59 6 220.572 34.818 0.000 0.053.000 93.6 1.678 3.649 SF8 SF8 Susp. Solids 1 mg/L 48 17 11.476 1.682 1.090 60.619 101.5 2.423 6.786 SF8													0.683
FF4									0.000	1611.000	131.6	1.888	3.512
Fig. Flow 6	I			cu ft		6	418.249	53.479	0.525	2006.000	98.2	1.640	3.146
FF7	FF5		5	cu ft	59	6	136.920	29.947	0.000	1119.000	168.0	2.778	8.730
FFB	FF6	Flow	6	cu ft	59	6	267.668	47.407	0.000	2015.000	136.0		9.066
SSI	FF7	Flow	7	cu ft	59	6	220.572						3.547
SS2 Susp. Solids 2 mg/L 48 17 11.476 1.682 1.090 60.619 101.5 2.423 6.786 SS3 Susp. Solids 3 mg/L 30 35 2.754 0.713 0.160 21.867 141.7 4.337 21.138 SS4 Susp. Solids 6 mg/L 21 44 7.212 1.957 1.380 41.613 124.3 3.129 11.289 SS5 Susp. Solids 6 mg/L 27 38 16.415 5.026 0.000 121.076 159.1 3.106 10.278 SS8 Susp. Solids 8 mg/L 26 9 0.140 0.018 0.000 121.70 15.310 78.1 0.799 -0.591 SS8 Susp. Solids 8 mg/L 26 9 0.140 0.018 0.000 10.705 10.24 13.10 0.011 0.014 0.014 0.014 0.005 0.761 94.3 <th< td=""><td>FF8</td><td>Flow</td><td>8</td><td>cu ft</td><td>59</td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	FF8	Flow	8	cu ft	59	6							
Say Solids 3 mg/L 30 35 2.754 0.713 0.160 21.867 141.7 4.337 21.138													
SS4 Susp. Solids 4 mg/L 39 26 4.571 0.893 1.270 29.510 122.0 3.449 12.689 SS5 Susp. Solids 5 mg/L 21 44 7.212 1.957 1.380 1.613 124.3 3.129 11.289 SS6 Susp. Solids 6 mg/L 27 38 16.415 5.026 0.000 121.076 159.1 3.106 10.278 SS8 Susp. Solids 8 mg/L 40 25 16.021 2.2255 2.710 77.035 89.0 2.435 7.703 SS8 Susp. Solids 8 mg/L 56 9 0.140 0.018 0.005 0.761 19.3 2.04 2.431 8.20 NHA Ammonia 1 mg/L 55 10 0.011 0.015 0.005 0.567 102.4 1.982 4.923 NH4 Ammonia 4 mg/L 53 0.088 <t< td=""><td>i</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	i												
SS5 Susp. Solids 5 mg/L 21 44 7.212 1.957 1.380 41.613 124.3 3.129 11.289 SS6 Susp. Solids 6 mg/L 34 31 5.530 0.741 0.507 15.310 78.1 0.799 -0.591 SS7 Susp. Solids 8 mg/L 240 25 16.021 2.255 2.710 77.035 89.0 2.435 7.703 NHR Ammonia rain mg/L 56 9 0.140 0.018 0.005 0.061 94.3 2.241 8.208 NH1 Ammonia 1 mg/L 56 9 0.114 0.014 0.005 0.567 102.4 1.982 4.923 NH3 Ammonia 2 mg/L 35 30 0.058 0.050 0.567 102.4 1.982 4.923 NH4 Ammonia 3 mg/L 35 30 0.058 0.018 0.05	SS3												
SS6				-									
SS7 Susp. Solids 7 mg/L 27 38 16.415 5.026 0.000 121.076 159.1 3.106 10.278 SS8 Susp. Solids 8 mg/L 40 25 16.021 2.255 2.710 77.035 89.0 2.435 7.703 NHR Ammonia rain mg/L 56 9 0.140 0.018 0.005 0.761 94.3 2.341 8.208 NH1 Ammonia 1 mg/L 55 10 0.111 0.015 0.005 0.567 102.4 1.982 4.923 NH3 Ammonia 3 mg/L 55 10 0.111 0.015 0.005 0.567 102.4 1.982 4.923 NH4 Ammonia 4 mg/L 29 36 0.083 0.013 0.005 0.291 83.5 1.556 2.200 NH6 Ammonia 6 mg/L 39 26 0.049 0.011				-									
SS8 Susp. Solids 8 mg/L 40 25 16.021 2.255 2.710 77.035 89.0 2.435 7.703 NHR Ammonia rain mg/L 56 9 0.140 0.0018 0.005 0.761 94.3 2.341 8.208 NH1 Ammonia 1 mg/L 56 9 0.114 0.0014 0.0005 0.506 94.5 1.602 3.341 8.208 NH2 Ammonia 2 mg/L 55 10 0.111 0.015 0.005 0.567 102.4 1.982 4.923 NH3 Ammonia 4 mg/L 25 13 0.069 0.010 0.005 0.577 18.4 3.719 16.195 NH4 Ammonia 6 mg/L 29 36 0.083 0.013 0.005 0.293 189.0 1.462 1.227 NH5 Ammonia 7 mg/L 33 32 0.0104 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
NHR Ammonia rain mg/L 56 9 0.140 0.018 0.005 0.761 94.3 2.341 8.208 NH1 Ammonia 1 mg/L 56 9 0.114 0.014 0.005 0.566 94.5 1.602 3.340 NH2 Ammonia 2 mg/L 55 10 0.111 0.015 0.005 0.567 102.4 1.982 4.923 NH3 Ammonia 3 mg/L 35 30 0.058 0.018 0.005 0.577 184.4 3.719 16.195 NH4 Ammonia 4 mg/L 52 13 0.069 0.010 0.005 0.291 18.5 1.526 2.200 NH5 Ammonia 5 mg/L 29 36 0.083 0.011 0.005 0.291 83.5 1.550 2.200 NH8 Ammonia 8 mg/L 47 18 0.112 0.001 0.005	1	-		_									
NHI Ammonia 1 mg/L 56 9 0.114 0.014 0.005 0.506 94.5 1.602 3.340 NH2 Ammonia 2 mg/L 55 10 0.111 0.015 0.005 0.567 102.4 1.982 4.923 NH3 Ammonia 3 mg/L 35 30 0.058 0.018 0.005 0.567 102.4 1.982 4.923 NH4 Ammonia 4 mg/L 25 13 0.069 0.010 0.005 0.293 109.0 1.462 1.227 NH5 Ammonia 6 mg/L 39 26 0.049 0.011 0.005 0.345 136.3 3036 10.567 NH7 Ammonia 8 mg/L 33 22 0.104 0.021 0.005 0.475 101.9 1.739 2.575 NOR Nitrate rain mg/L 55 10 0.223 0.005 0.742 </td <td></td>													
NH2 Ammonia 2 mg/L 55 10 0.111 0.015 0.005 0.567 102.4 1.982 4.923 NH3 Ammonia 3 mg/L 35 30 0.058 0.018 0.005 0.577 184.4 3.719 16.195 NH4 Ammonia 4 mg/L 52 13 0.069 0.010 0.005 0.293 189.5 1.462 1.227 NH5 Ammonia 6 mg/L 29 36 0.083 0.013 0.005 0.291 83.5 1.556 2.200 NH6 Ammonia 6 mg/L 33 32 0.104 0.021 0.005 0.482 117.1 1.922 3.266 NH8 Ammonia 8 mg/L 55 10 0.023 0.005 0.475 101.9 1.739 2.575 NOR Nitrate raim mg/L 55 10 0.212 0.023 0.005 0.475	l												
NH3 Ammonia 3 mg/L 35 30 0.058 0.018 0.005 0.577 184.4 3.719 16.195 NH4 Ammonia 4 mg/L 52 13 0.069 0.010 0.005 0.293 109.0 1.462 1.227 NH5 Ammonia 5 mg/L 29 36 0.083 0.013 0.005 0.291 83.5 1.556 2.200 NH6 Ammonia 6 mg/L 39 26 0.049 0.011 0.005 0.345 136.3 3.036 10.567 NH7 Ammonia 8 mg/L 47 18 0.112 0.005 0.482 117.1 1.922 3.266 NH8 Ammonia 8 mg/L 47 18 0.112 0.017 0.005 0.482 117.1 1.922 3.266 NH8 Ammonia 8 mg/L 47 18 0.112 0.005 0.482 1.161 </td <td>1</td> <td></td>	1												
NH4 Ammonia 4 mg/L 52 13 0.069 0.010 0.005 0.293 109.0 1.462 1.227 NH5 Ammonia 5 mg/L 29 36 0.083 0.013 0.005 0.291 83.5 1.556 2.200 NH6 Ammonia 6 mg/L 39 26 0.049 0.011 0.005 0.345 136.3 3.036 10.567 NH7 Ammonia 8 mg/L 47 18 0.112 0.005 0.482 117.1 1.922 3.266 NH8 Ammonia 8 mg/L 55 10 0.235 0.034 0.005 0.475 101.9 1.739 2.575 NOR Nitrate rain mg/L 55 10 0.212 0.023 0.005 0.472 81.9 1.166 0.926 NO2 Nitrate 1 mg/L 25 10 0.212 0.023 0.005 1.520<													
NH5 Ammonia 5 mg/L 29 36 0.083 0.013 0.005 0.291 83.5 1.556 2.200 NH6 Ammonia 6 mg/L 39 26 0.049 0.011 0.005 0.345 136.3 3.036 10.567 NH7 Ammonia 8 mg/L 47 18 0.112 0.005 0.482 117.1 1.922 3.266 NOR Nitrate rain mg/L 55 10 0.235 0.034 0.005 0.475 101.9 1.739 2.575 NOR Nitrate 1 mg/L 55 10 0.235 0.035 0.005 0.742 81.9 1.166 0.926 NO2 Nitrate 1 mg/L 55 10 0.212 0.023 0.005 1.520 106.6 3.298 15.907 NO3 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.520													
NH6 Ammonia 6 mg/L 39 26 0.049 0.011 0.005 0.345 136.3 3.036 10.567 NH7 Ammonia 7 mg/L 33 32 0.104 0.021 0.005 0.482 117.1 1.922 3.266 NH8 Ammonia 8 mg/L 47 18 0.112 0.017 0.005 0.475 101.9 1.739 2.575 NOR Nitrate rain mg/L 55 10 0.235 0.034 0.005 0.742 81.9 1.166 0.926 NO2 Nitrate 1 mg/L 55 10 0.242 0.035 0.005 0.742 81.9 1.166 0.926 NO2 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.510 106.6 3.298 15.907 NO3 Nitrate 4 mg/L 29 36 0.253 0.051 0.005													
NH7 Ammonia 7 mg/L 33 32 0.104 0.021 0.005 0.482 117.1 1.922 3.266 NH8 Ammonia 8 mg/L 47 18 0.112 0.017 0.005 0.475 101.9 1.739 2.575 NOR Nitrate rain mg/L 55 10 0.235 0.034 0.005 1.530 106.2 2.917 12.627 NO1 Nitrate 1 mg/L 55 10 0.242 0.035 0.005 1.550 106.2 2.917 12.627 NO2 Nitrate 2 mg/L 55 10 0.242 0.035 0.005 1.550 106.2 2.917 12.629 NO3 Nitrate 4 mg/L 35 30 0.237 0.044 0.005 1.310 109.4 2.612 8.319 NO4 Nitrate 4 mg/L 31 0.253 0.052 0.005 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				_									
NH8 Ammonia 8 mg/L 47 18 0.112 0.017 0.005 0.475 101.9 1.739 2.575 NOR Nitrate rain mg/L 55 10 0.235 0.034 0.005 1.530 106.2 2.917 12.627 NO1 Nitrate 1 mg/L 55 10 0.212 0.023 0.005 0.742 81.9 1.166 0.926 NO2 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.650 106.6 3.298 15.907 NO3 Nitrate 4 mg/L 35 30 0.237 0.044 0.005 1.520 110.94 2.612 8.319 NO4 Nitrate 4 mg/L 29 36 0.253 0.052 0.005 1.520 110.5 3.550 15.600 NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.													
NOR Nitrate rain mg/L 55 10 0.235 0.034 0.005 1.530 106.2 2.917 12.627 NO1 Nitrate 1 mg/L 55 10 0.212 0.023 0.005 0.742 81.9 1.166 0.926 NO2 Nitrate 2 mg/L 55 10 0.242 0.035 0.005 1.650 106.6 3.298 15.907 NO3 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.310 109.4 2.612 8.319 NO4 Nitrate 4 mg/L 35 30 0.237 0.044 0.005 1.310 109.4 2.612 8.319 NO5 Nitrate 4 mg/L 38 27 0.221 0.005 1.520 110.5 3.550 15.600 NO7 Nitrate 8 mg/L 33 32 0.230 0.005 1.005 1.0													
NO1 Nitrate 1 mg/L 55 10 0.212 0.023 0.005 0.742 81.9 1.166 0.926 NO2 Nitrate 2 mg/L 55 10 0.242 0.035 0.005 1.650 106.6 3.298 15.907 NO3 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.310 109.4 2.612 8.319 NO4 Nitrate 4 mg/L 51 14 0.253 0.031 0.005 1.270 88.2 2.247 7.955 NO5 Nitrate 5 mg/L 29 36 0.253 0.052 0.005 1.520 110.5 3.550 15.600 NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.005 1.094 99.3 2.265 6.270 NO7 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 <td></td>													
NO2 Nitrate 2 mg/L 55 10 0.242 0.035 0.005 1.650 106.6 3.298 15.907 NO3 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.310 109.4 2.612 8.319 NO4 Nitrate 4 mg/L 51 14 0.253 0.031 0.005 1.270 88.2 2.247 7.955 NO5 Nitrate 5 mg/L 29 36 0.253 0.052 0.005 1.520 110.5 3.550 15.600 NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.005 1.094 99.3 2.265 6.270 NO7 Nitrate 7 mg/L 33 32 0.230 0.041 0.005 1.080 103.5 2.051 4.630 NO7 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 <td></td> <td>0.926</td>													0.926
NO3 Nitrate 3 mg/L 35 30 0.237 0.044 0.005 1.310 109.4 2.612 8.319 NO4 Nitrate 4 mg/L 51 14 0.253 0.031 0.005 1.270 88.2 2.247 7.955 NO5 Nitrate 5 mg/L 29 36 0.253 0.052 0.005 1.520 110.5 3.550 15.600 NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.005 1.094 99.3 2.265 6.270 NO7 Nitrate 7 mg/L 33 32 0.230 0.041 0.005 1.080 103.5 2.051 4.630 NO8 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 2.200 131.8 4.118 21.258 TNR Total N 1 mg/L 54 11 0.467 0.056 0.000 <td></td> <td>15.907</td>													15.907
NO4 Nitrate 4 mg/L 51 14 0.253 0.031 0.005 1.270 88.2 2.247 7.955 NO5 Nitrate 5 mg/L 29 36 0.253 0.052 0.005 1.520 110.5 3.550 15.600 NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.005 1.094 99.3 2.265 6.270 NO7 Nitrate 7 mg/L 33 32 0.230 0.041 0.005 1.080 103.5 2.051 4.630 NO8 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 2.200 131.8 4.118 21.258 TNR Total N rain mg/L 54 11 0.467 0.056 0.000 2.200 88.2 2.253 6.946 TN1 Total N 1 mg/L 54 11 0.482 0.048 0.030<											109.4	2.612	8.319
NO5 Nitrate 5 mg/L 29 36 0.253 0.052 0.005 1.520 110.5 3.550 15.600 NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.005 1.094 99.3 2.265 6.270 NO7 Nitrate 7 mg/L 33 32 0.230 0.041 0.005 1.080 103.5 2.051 4.630 NO8 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 2.200 131.8 4.118 21.258 TNR Total N rain mg/L 54 11 0.467 0.056 0.000 2.200 88.2 2.253 6.946 TN1 Total N 1 mg/L 54 11 0.482 0.048 0.030 1.600 73.8 1.147 1.161 TN2 Total N 2 mg/L 54 11 0.511 0.060 0.025<		Nitrate			51	14		0.031	0.005	1.270	88.2	2.247	7.955
NO6 Nitrate 6 mg/L 38 27 0.221 0.036 0.005 1.094 99.3 2.265 6.270 NO7 Nitrate 7 mg/L 33 32 0.230 0.041 0.005 1.080 103.5 2.051 4.630 NO8 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 2.200 131.8 4.118 21.258 TNR Total N rain mg/L 54 11 0.467 0.056 0.000 2.200 88.2 2.253 6.946 TN1 Total N 1 mg/L 54 11 0.482 0.048 0.030 1.600 73.8 1.147 1.161 TN2 Total N 2 mg/L 54 11 0.511 0.060 0.025 2.100 85.7 1.789 3.551 TN3 Total N 3 mg/L 34 31 0.629 0.098 0.070 <td></td> <td>Nitrate</td> <td>5</td> <td></td> <td>29</td> <td>36</td> <td>0.253</td> <td>0.052</td> <td>0.005</td> <td>1.520</td> <td>110.5</td> <td>3.550</td> <td>15.600</td>		Nitrate	5		29	36	0.253	0.052	0.005	1.520	110.5	3.550	15.600
NO8 Nitrate 8 mg/L 47 18 0.264 0.051 0.005 2.200 131.8 4.118 21.258 TNR Total N rain mg/L 54 11 0.467 0.056 0.000 2.200 88.2 2.253 6.946 TN1 Total N 1 mg/L 54 11 0.482 0.048 0.030 1.600 73.8 1.147 1.161 TN2 Total N 2 mg/L 54 11 0.511 0.060 0.025 2.100 85.7 1.789 3.551 TN3 Total N 3 mg/L 34 31 0.629 0.098 0.070 2.500 91.1 1.899 3.291 TN4 Total N 4 mg/L 51 14 0.684 0.066 0.055 2.000 68.7 1.369 1.547 TN5 Total N 5 mg/L 28 37 0.654 0.083 0.060 <td>NO6</td> <td>Nitrate</td> <td>6</td> <td>mg/L</td> <td>38</td> <td>27</td> <td>0.221</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.270</td>	NO6	Nitrate	6	mg/L	38	27	0.221						6.270
TNR Total N rain mg/L 54 11 0.467 0.056 0.000 2.200 88.2 2.253 6.946 TN1 Total N 1 mg/L 54 11 0.482 0.048 0.030 1.600 73.8 1.147 1.161 TN2 Total N 2 mg/L 54 11 0.511 0.060 0.025 2.100 85.7 1.789 3.551 TN3 Total N 3 mg/L 34 31 0.629 0.098 0.070 2.500 91.1 1.899 3.291 TN4 Total N 4 mg/L 51 14 0.684 0.066 0.055 2.000 68.7 1.369 1.547 TN5 Total N 5 mg/L 28 37 0.654 0.083 0.060 1.800 67.0 1.348 1.745 TN6 Total N 6 mg/L 32 33 0.669 0.080 2.400 74.4<	NO7	Nitrate		mg/L									
TN1 Total N 1 mg/L 54 11 0.482 0.048 0.030 1.600 73.8 1.147 1.161 TN2 Total N 2 mg/L 54 11 0.511 0.060 0.025 2.100 85.7 1.789 3.551 TN3 Total N 3 mg/L 34 31 0.629 0.098 0.070 2.500 91.1 1.899 3.291 TN4 Total N 4 mg/L 51 14 0.684 0.066 0.055 2.000 68.7 1.369 1.547 TN5 Total N 5 mg/L 28 37 0.654 0.083 0.060 1.800 67.0 1.348 1.745 TN6 Total N 6 mg/L 37 28 0.639 0.078 0.080 2.400 74.4 2.093 5.359 TN7 Total N 7 mg/L 32 33 0.669 0.095 0.080		Nitrate											
TN2 Total N 2 mg/L 54 11 0.511 0.060 0.025 2.100 85.7 1.789 3.551 TN3 Total N 3 mg/L 34 31 0.629 0.098 0.070 2.500 91.1 1.899 3.291 TN4 Total N 4 mg/L 51 14 0.684 0.066 0.055 2.000 68.7 1.369 1.547 TN5 Total N 5 mg/L 28 37 0.654 0.083 0.060 1.800 67.0 1.348 1.745 TN6 Total N 6 mg/L 37 28 0.639 0.078 0.080 2.400 74.4 2.093 5.359 TN7 Total N 7 mg/L 32 33 0.669 0.095 0.080 2.400 80.1 1.721 2.925 TN8 Total N 8 mg/L 44 21 0.737 0.090 0.110	15												
TN3 Total N 3 mg/L 34 31 0.629 0.098 0.070 2.500 91.1 1.899 3.291 TN4 Total N 4 mg/L 51 14 0.684 0.066 0.055 2.000 68.7 1.369 1.547 TN5 Total N 5 mg/L 28 37 0.654 0.083 0.060 1.800 67.0 1.348 1.745 TN6 Total N 6 mg/L 37 28 0.639 0.078 0.080 2.400 74.4 2.093 5.359 TN7 Total N 7 mg/L 32 33 0.669 0.095 0.080 2.400 74.4 2.093 5.359 TN8 Total N 8 mg/L 44 21 0.737 0.090 0.110 2.500 81.1 1.650 2.251 OPR Ortho-P rain mg/L 56 9 0.019 0.005 0.055	13												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
TN6 Total N 6 mg/L 37 28 0.639 0.078 0.080 2.400 74.4 2.093 5.359 TN7 Total N 7 mg/L 32 33 0.669 0.095 0.080 2.400 80.1 1.721 2.925 TN8 Total N 8 mg/L 44 21 0.737 0.090 0.110 2.500 81.1 1.650 2.251 OPR Ortho-P rain mg/L 56 9 0.019 0.005 0.005 0.260 208.1 5.015 27.348 OP1 Ortho-P 1 mg/L 55 10 0.043 0.012 0.005 0.690 210.3 6.870 49.254 OP2 Ortho-P 2 mg/L 55 10 0.047 0.010 0.005 0.401 153.4 3.725 14.894													
TN7 Total N 7 mg/L 32 33 0.669 0.095 0.080 2.400 80.1 1.721 2.925 TN8 Total N 8 mg/L 44 21 0.737 0.090 0.110 2.500 81.1 1.650 2.251 OPR Ortho-P rain mg/L 56 9 0.019 0.005 0.005 0.260 208.1 5.015 27.348 OP1 Ortho-P 1 mg/L 55 10 0.043 0.012 0.005 0.690 210.3 6.870 49.254 OP2 Ortho-P 2 mg/L 55 10 0.047 0.010 0.005 0.401 153.4 3.725 14.894													
TN8 Total N 8 mg/L 44 21 0.737 0.090 0.110 2.500 81.1 1.650 2.251 OPR Ortho-P rain mg/L 56 9 0.019 0.005 0.005 0.260 208.1 5.015 27.348 OP1 Ortho-P 1 mg/L 55 10 0.043 0.012 0.005 0.690 210.3 6.870 49.254 OP2 Ortho-P 2 mg/L 55 10 0.047 0.010 0.005 0.401 153.4 3.725 14.894													
OPR Ortho-P rain mg/L 56 9 0.019 0.005 0.005 0.260 208.1 5.015 27.348 OP1 Ortho-P 1 mg/L 55 10 0.043 0.012 0.005 0.690 210.3 6.870 49.254 OP2 Ortho-P 2 mg/L 55 10 0.047 0.010 0.005 0.401 153.4 3.725 14.894													
OP1 Ortho-P 1 mg/L 55 10 0.043 0.012 0.005 0.690 210.3 6.870 49.254 OP2 Ortho-P 2 mg/L 55 10 0.047 0.010 0.005 0.401 153.4 3.725 14.894													
OP2 Ortho-P 2 mg/L 55 10 0.047 0.010 0.005 0.401 153.4 3.725 14.894													
1 2 2													
	OP2 OP3	Ortho-P	3	mg/L	35		0.184		0.037	0.603	61.0	1.898	5.005

Table 11. Summary statistics for the hydrology and water quality data used for statistical analysis.

Vari- able	Parameter Identity	Basin	Units	N	N Miss	Mean	Std Error	Min	Max	Coeff of Variation	Skew- ness	Kurtosis
OP4	Ortho-P	4	mg/L	52	13	0.203	0.036	0.036	1.780	127.7	4.837	27.809
OP5	Ortho-P	5	mg/L	29	36	0.076	0.007	0.015	0.207	52.4	1.226	2.930
OP6	Ortho-P	6	mg/L	39	26	0.195	0.028	0.012	0.922	89.9	2.294	7.177
OP7	Ortho-P	7	mg/L	33	32	0.108	0.009	0.034	0.263	49.7	1.157	1.834
OP8	Ortho-P	8	mg/L	46	19	0.192	0.042	0.023	1.900	149.4	4.998	28.994
TPR	Total Phos	rain	mg/L	56	9	0.024	0.003	0.005	0.123	95.9	2.140	6.012
TP1	Total Phos	1	mg/L	55	10	0.081	0.017	0.010	0.972	160.1	6.295	43.425
TP2	Total Phos	2	mg/L	54	11	0.082	0.014	0.008	0.513	121.4	3.036	9.730
TP3	Total Phos	3	mg/L	35	30	0.221	0.021	0.050	0.652	57.1	1.676	3.247
TP4	Total Phos	4	mg/L	52	13	0.253	0.045	0.058	2.190	127.0	4.784	26.729
TP5	Total Phos	5	mg/L	29	36	0.110	0.012	0.023	0.286	58.8	1.355	1.721
TP6	Total Phos	6	mg/L	39	26	0.237	0.035	0.035	1.270	93.0	3.077	12.477
TP7	Total Phos	7	mg/L	33	32	0.157	0.013	0.046	0.394	48.1	1.306	2.689
TP8	Total Phos	8	mg/L	47	18	0.267	0.051	0.040	2.330	130.3	4.811	27.583
CUR	Copper	rain	ug/L	56	9	5.127	0.778	0.150	32.700	113.5	2.477	8.426
CUI	Copper	1	ug/L	55	10	9.745	0.945	0.150	42.600	72.0	2.531	9.063
CU2	Copper	2	ug/L	55	10	9.929	1.103	1.750	42.700	82.4	2.011	4.877
CU3	Copper	3	ug/L	35	30	4.794	0.556	0.900	15.100	68.6	1.733	3.575
CU4	Copper	4	ug/L	51	14	4.892	0.414	0.150	16.100	60.4	1.413	3.594
CU5	Copper	5	ug/L	30	35	4.578	0.725	0.150	18.700	86.7	2.099	5.242
CU6	Copper	6	ug/L	39	26	4.083	0.391	0.150	14.200	59.8	2.010	7.040
CU7	Copper	7	ug/L	33	32	8.505	1.130	0.150	26.700	76.3	1.328	1.455
CU8	Copper	8	ug/L	47	18	12.701	1.582	0.151	46.851	85.4	1.659	2.334
FER	Iron	rain	ug/L	56	9	90.268	10.552	12.500	380.000	87.5	1.989	4.512
FE1	Iron	1	ug/L	55	10	368.545	42.694	60.000	1920.000	85.9	2.706	10.078
FE2	Iron	2	ug/L	55	10	328.929	38.975	50.000	1390.000	87.9	1.817	3.277
FE3	Iron	3	ug/L	35	30	67.000	11.735	12.500	370.000	103.6	2.695	10.037
FE4	Iron	4	ug/L	52	13	85.400	9.487	3.500	280.000	80.1	1.344	1.400
FE5	Iron	5	ug/L	31	34	116.290	21.747	12.500	550.000	104.1	2.396	6.089
FE6	Iron	6	ug/L	39	26	87.731	12.710	3.800	350.000	90.5	1.565	2.654
FE7	Iron	7	ug/L	33	32	242.409	39.742	9.500	980.000	94.2	1.603	2.338
FE8	Iron	8	ug/L	47	18	431.667	60.398	15.200	1800.000	95.9	1.930	3.461
PBR	Lead	rain	ug/L	57	8	1.245	0.114	0.750	5.200	69.3	2.995	10.171
PB1	Lead	1	ug/L	55	10	3.225	0.394	0.750	14.200	90.6	1.982	3.823
PB2	Lead	2	ug/L	55	10	3.433	0.426	0.750	12.300	92.1	1.414	1.027
PB3	Lead	3	ug/L	35	30	1.117	0.109	0.750	3.400	57.5	2.408	5.384
PB4	Lead	4	ug/L	52	13	1.142	0.091	0.743	3.200	57.2	2.074	3.448
PB5	Lead	5	ug/L	30	35	1.086	0.139	0.230	4.600	70.3	3.647	15.950
PB6	Lead	6	ug/L	39	26	1.297	0.126	0.743	4.000	60.5	1.957	3.330
PB7	Lead	7	ug/L	33	32	2.421	0.371	0.750	8.600	88.0	1.463	1.331
PB8	Lead	<u>8</u>	ug/L	47	18 9	3.420	0.423	0.750	13.300	84.7	1.978	4.361
ZNR	Zinc	rain	ug/L	56 54		28.839	4.149	7.500	180.000	107.7	2.941	10.479
ZN1	Zinc	1	ug/L	54 55	11	36.296	3.955	7.500	130.000	80.1	1.661	2.709
ZN2	Zinc Zinc	2	ug/L	55 24	10	35.009	3.573	7.500	130.000	75.7	1.725	3.164
ZN3	Zinc	3	ug/L	34 51	31	18.382	2.055	7.500	60.000	65.2 54.5	2.016	4.448
ZN4 ZN5	Zinc Zinc	4 5	ug/L	51	14 36	20.804 19.397	1.588 2.465	7.500 7.500	70.000 60.000	54.5 68.4	2.284	7.134
ZN5 ZN6	Zinc	5 6	ug/L	29 38	36 27	22.122	4.381	7.500	173.540	122.1	1.870	3.268
ZNO ZN7	Zinc	7	ug/L	38 34	31	30.956	3.532	7.500	173.340	66.5	5.036 1.647	28.234
ZN7 ZN8	Zinc	8	ug/L ug/L	34 46	19	40.064	3.532 4.532	11.806	140.000	76.7	1.676	2.757 2.540
Z.130	ZIIIC	ð	ug/L	40	IJ	40.004	4.332	11.800	140.000	/0./	1.070	4.340

a percentage. Skewness and Kurtosis indicate whether the data are from a normal (bell-shaped distribution). For a normal distribution, the skewness is zero, and also, as calculted in SAS, the kurtosis for a normal distribution is zero (Schlotzhauer and Littell 1997). Since the distribution of the data is important in selecting the correct statistical test and both the skewness and the kurtosis values indicated the data were not from a normal distribution, more information was necessary before doing any hypothesis testing.

The Univariate procedure provides a wealth of data for analyzing the pattern of data including whether it is normally distributed. Some of the measures for normality (Schlotzhauer and Littell 1997) are analyzed as follows: 1) The mean, mode, and median should be nearly equal. For our data the mean and the median were sometimes nearly equal but the mode rarely was. 2) The shape of the graph should be symmetric and smooth instead of skewed. The stem-leaf diagram and the box plot showed our data was usually strongly right skewed 3) Kurtosis should be near zero; instead the large values typical of our data describe a heavy tail. The procedure also has several formal tests for normality and the Shapiro-Wilk or W statistic is appropriate for our data. A W value very close to 0 indicates the data are not a sample from a normal distribution. The results from the W statistic showed that 91 percent of the p-values (Pr<W) were <0.0001, therefore, it was further concluded that nonparametric statistics would have to be used for any hypothesis testing. The largest Pr<W value was 0.026 and was measured for ortho phosphorus in basin 5, but this value is still near zero.

The extreme observation section in the Univariate procedure is a useful tool for locating erroneous values. It gives the 5 maximum and 5 minimum values for each variable. Most of the extreme values in our data set were checked and were either corrected or found to be reasonable when compared to values reported by the laboratory or analyzed with regressions. Most of the highest values occurred in four storm events (5/21/99, 6/13/00, 9/24/00, 11/25/00) which are identified as obs 18, 45, 58, and 59 (see Appendix M-1). These storms all had over an inch of rainfall and at least three occurred after a long dry period. But other storms with equally as much rain and dry periods did not have extreme values.

Differences Between Years - Since most of the data previously discussed in this report have been divided into yearly data, we wanted to test if there were any significant differences between years. Also of interest was the idea that constituent concentrations might increase as the system aged. Both the Duncan Multiple Range test and the Kruskal-Wallis test were run to help determine statistical differences (Appendix M-2). Although there was a general tendency for concentrations to increase during the second year, the majority of constituents revealed no differences between years. None of the hydrology parameters were significantly different and only 13 percent of the 90 water quality samples were measured significantly higher in the second year (p > 0.05 Kruskal-Wallis chi-square). No differences between years were noted in basins 1 and 2, the basins without a planted swale. But some interesting differences were noted in the other basins. Phosphorus is not usually detected in rainfall, but in this case a significant increase occurred in year two. The median concentrations rose from a barely detectable level (0.008 mg/L) in year one to 0.023 mg/L in year two. Total phosphorus was also increased significantly in basins 3, 4, 5 and 6 for year two. All of

these basins have planted swales and were paved in concrete products. It should be noted, phosphorus is a constituent of concrete paving materials. The combination of increased atmospheric input, vegetation and the concrete source may have contributed to this increase. Iron and zinc were significantly higher in the second year in basin 8 (paved in asphalt) and suspended solids were higher in basins 4 and 7. Since there were few differences between years and data analysis is more reliable with a larger data set, all 59 of the storms sampled were combined for testing differences between basins.

Differences Between Basins - The basins exhibited at least one significant difference for all parameters except nitrate (Table 12). Some of the patterns can be explained by basin characteristics. For example, the basins paved in asphalt had significantly higher concentrations of metals and total suspended solids which may be increased by the paving material itself. Higher phosphorus concentrations were measured in basins with planted swales, probably a result of the vegetation and soil particles as well as the increase in atmospheric ortho-phosphorus. Inorganic nitrogen is usually measured at relatively high levels in rainfall and some of these transformations may explain the differences measured in runoff from the various basins. Vegetation in the basins with swales may also explain some differences. To test this theory further, correlations were run to detect any connections.

Table 12. Significant differences between basins for water quality parameters. Only the even numbered basins were used for the analysis. Data from the Duncan Multiple Range Test and significant differences calculated by the Kruskal-Wallis test.

Parameter	Pr>Chi- Square	Asphalt wo/ swale	Asphalt with swale	Concrete with swale	Porous with swale
		F2	F8	F4	F6
Ammonia	0.0004	0.111 a	0.112 a	0.069 b	0.049 b
Nitrate	0.76 ns	0.264 a	0.263 a	0.242 a	0.221 a
Total Nitrogen	0.05	0.511 b	0.737 a	0.684 ab	0.639 ab
Ortho-Phosphorus	< 0.0001	0.047 b	0.192 a	0.203 a	0.195 a
Total Phosphorus	< 0.0001	0.082 b	0.267 a	0.253 a	0.237 a
Total Copper	< 0.0001	12.70 a	9.929 a	4.892 b	4.08 b
Total Iron	< 0.0001	431.67 a	328.93 a	85.40 b	87.73 b
Total Lead	< 0.0001	3.43 a	3.42 a	1.14 b	1.30 b
Total Zinc	< 0.0001	40.62 a	35.01 a	20.80 b	22.12 b
Total Susp. Solids	< 0.0001	16.02 a	11.48 a	4.70 b	5.53 b

Correlations - The small basin size and the short time of concentration contributed to close correlations between the nitrates measured in rainfall and the nitrate measured in runoff from each of the basins. The Spearman method was used to compute correlation coefficients (Table 13). The Spearman coefficient not only makes no assumption of a normal or linear distribution, but it also gives more reliable information if the data possess a distinct curvilinear relationship (Walpole and Myers 1972). This describes our data well. A major pathway for the nitrate and ammonia found in rainfall comes from the transformation of nitrogen oxides. Anthropogenic sources of nitrogen oxide contribute a large amount of nitrogen to the atmosphere. Florida has been listed as one of the largest oxide emitting states based on national rankings of total emissions. In Florida in 1989, from the total amount of nitrogen oxide discharged, vehicular traffic contributed 50 percent, utilities 35 percent and other industrial sources 5 to 10 percent (Rogers 1990).

The results of the correlations show the closest relationship with the asphalt basins without a swale, the next highest correlations were the basins with smaller garden areas (F4 is an exception) and the least relationship in the basins with larger garden areas. This demonstrated the effect of vegetation and also to some extent the porous pavement in transforming the nitrogen found in rainfall.

Table 13. Correlations between nitrates measured in rainfall and nitrates measured in runoff from the basins. Results listed in order of decreasing correlation coefficient. SM=small garden LG=large garden

	Site Description	N	Prob > r	Coefficient
F1	Asphalt without a swale (SM)	51	< 0.001	0.924
F2	Asphalt without a swale (SM)	52	< 0.001	0.908
F6	Porous with swale (SM)	35	< 0.001	0.855
F8	Asphalt with swale (SM)	43	< 0.001	0.821
F3	Concrete with swale (LG)	32	< 0.001	0.799
F7	Asphalt with swale (LG)	30	< 0.001	0.789
F4	Concrete with swale (SM)	47	< 0.001	0.700
F5	Porous with swale (LG)	27	0.004	0.632

This rainfall analysis emphasizes the need to reduce anthropogenic air pollution to help clean up nitrification of receiving waters. Nitrogen oxides are emitted into the atmosphere primarily through the combusion processes used in transportation, fossil fuel energy production and waste incineration. The results also point out the importance of vegetated areas in drainage basin to help utilize and transform nitrogen before it reaches surface waters. In the short term, these small garden

areas may have increased nitrogen and phosphorus, but as the vegetation in the strand and with the processes in the pond these concentrations should be reduced. More studies need to be conducted to test this theory, but for this parking lot, it is unimportant since most of the runoff is retained on site.

Conclusions

The whole basin approach for the parking lot was an excellent design alternative. Changing regulations by making parking spaces 0.62 meters (2 feet) shorter provided land for the swales without reducing the number of parking spaces. It also did not compromise parking since the design has the front end of the car hanging over the swale rather than impermeable paving. Other sensible innovative strategies need to be implemented by incorporating every opportunity in the drainage basin for stormwater treatment. Although the garden areas and the strand occupied land that could have been used for parking spaces, this was offset by the smaller size needed for the pond.

Summary of Results

RAINFALL

• Rainfall was below normal for the region during both years, but a record drought occurred during year two (Table 3).

STORM RUNOFF

- On average, pervious paving with a swale (F6) reduced runoff by over 60% compared to asphalt paving with no swale (F2) (Table 4).
- Pervious paving with a swale (F6) reduced the average amount of runoff by 41% compared with the other basins with swales (F8, F4) (Table 4).
- Basins paved in asphalt (F8) or concrete (F4) and also having a planted swale produced about 38% less runoff than the asphalt basin with no planted swale (F2) (Table 4).
- The larger garden areas in the odd numbered basins with swales reduced runoff by an additional 50% when compared to the even numbered basins with swales (Table 4).
- Pervious paving with swales is most effective for small storms and does not reduce runoff as much during storms with high rainfall intensity and saturated soil conditions (Figure 3 and Appendix E).

Southwest Florida Water Management District: Stormwater Research Program, December 2001

WATER QUALITY - CONCENTRATIONS

- Inorganic nitrogen concentrations are highest in the parking lot and much reduced by the time runoff reaches the strand and pond (Figure 4).
- Ammonia and total suspended solids concentrations are significantly higher in basins paved with asphalt (Table 12).
- Organic nitrogen increases after runoff travels through a planted swale and and reaches the strand and the pond (Figure 4).
- Phosphorus concentrations are significantly higher in the basins with planted swales as well as in the strand and the pond (Figure 4 and Table 12).
- Metals have significantly higher concentrations in the basins paved in asphalt than in the basins paved with concrete products. Copper is an exception in the strand and pond (Figure 4 and Table 12).
- Nitrate and ammonia enter the system directly in rainfall with coefficients of determination (r²) between 0.53 and 0.92 for nitrates. The lower correlations are for vegetated basins and especially for basins with larger garden areas (Figure 5 and Table 13).
- Regression analysis showed metals tend to vary together and also vary with total suspended solids. The relationship is strongest with iron (Figure 6 and Appendix H).
- Only a very few significant differences were detected in concentrations between years, but year two often had slightly higher levels than year one for nutrients (Figure 7 and Appendicies F-4 and M-2)
- Some metals and total suspended solids demonstrated a definite first flush effect in the asphalt basins, while the basins with planted swales exhibit no consistent pattern (Figure 8a-8f and Appendix I).

WATER QUALITY - LOADS

- Since more runoff was discharged from the basins without planted swales (F1, F2), they had much higher loads for all the pollutants except for phosphorus (Figure 9a-9b and Appendix J).
- Year one had better pollutant load reductions than year two and the basins with larger garden areas had the best load reductions, total nitrogen is sometimes an exception (Table 7a-7b and Appendix J).

Southwest Florida Water Management District: Stormwater Research Program, December 2001

- Phosphorus loads were actually increased when compared to basins without a planted swale (Table 7a-7b).
- Pervious pavement with swales and larger garden areas had the best load reduction; 80% to 95% for all pollutants except for phosphorus (Table 7).
- Storm runoff was only discharged from the site once during the year it was evaluated which indicates an almost 100% load efficiency for pollution reduction when the entire treatment train is considered (Table 6).

SEDIMENT SAMPLES

- Most metal pollutants are contained in the upper one inch of sediments and should present no problem as far as contaminating the water table (Figure 10a-10b and Appendix K).
- PAHs were detected in the sediments in all the basins, but concentrations were higher in basins paved with asphalt and in those basins some values approached toxic levels (Table 8, Table 9 and Appendix K).
- Pesticides were detected in the sediments in all the basins, especially DDT and its daughter products (Table 9 and Appendix L-3).
- Most sediment particle sizes were measured in the medium to large size ranges. All sites exhibited a similar patten for particle size with no obvious differences between paving types or the pond and the strand (Table 10 and Appendix L).
- For the basins in the parking lot, percent organic matter in the sediments ranged from a low of 1.6 to a high of 8.4 with an average of 5.8 in 1998 and 5.5 in 2000 (Table 10).

Corresponding Author

For further information, please contact Betty Rushton, Ph.D., Southwest Florida Water Management District, 2379 Broad Street, Brooksville, FL 34609-4150. Phone (352) 796-7211, ext. 4276, Fax: (352) 754-6885, e-mail betty.rushton@swfwmd.state.fl.us.

FILE:D:\FLUMES\7finalPL.wpd TEXT DATE:September 22, 2001 revised DATE: December 13, 2001 : CURRENT DATE: December 19, 2001

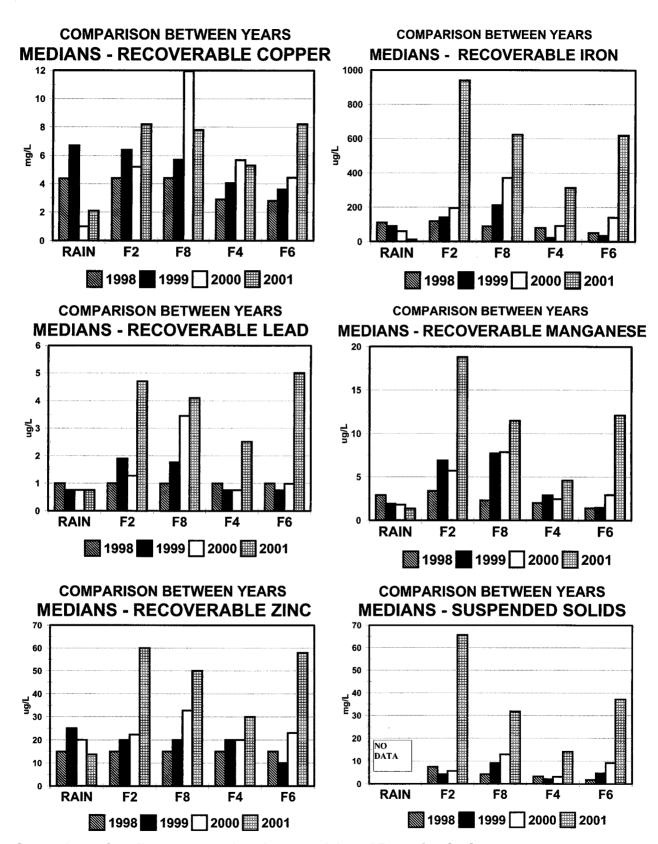
References

- Agency for Toxic Substances and Disease Registry (ATSDR) 2001. <u>Www.atsdr.cdc.gov/ToxProfiles/</u>
- American Society of Civil Engineers (ASCE/WEF). 1992. Design and Construction of Urban Stormwater Management Systems. ASCE Manuals and Reports of Engineering Practice No. 77, 134 East 47th Street, New York, NY 10017 and The Water Environmental Federation (WEF) Manual of Practice FD-20, 601 Wythe Street, Alexandria, VA 22314.
- Dixon, L. K, M. G. Geyl, and S Murray. 1998. Interpretation of Bulk Atmospheric Deposition and Stormwater Quality Data in the Tampa Bay Region. Mote Marine Laboratory Technical Report No. 602. Tampa Bay Estuary Program, Mail Station I-1/NEP, St Petersburg, FL 33701
- Driscoll, E.D., Shelley, P.E., and Strecker, E.W. 1990. Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume IV, Research report data appendix: U.S. Federal Highway Administration Final Report, FHWA-RD-88-009, 143 p.
- Florida Department of Environmental Protection (FDEP) 1996. Comprehensive Quality Assurance Plan, State of Florida, Central Chemistry Laboratory, Tallahassee, FL
- Ferguson, B. K., and P. W. Suckling. 1990. Changing Rainfall-Runoff Relationships in the Urbanizing Peachtree Creek Watershed, Atlanta, Georgia. American Water Resources Association 26(2):313-322.
- Guilizzoni, P. 1991. The Role of Heavy Metals and Toxic Materials in the Physiological Ecology of Submersed Macrophytes. Aquatic Botany, 41:87-109.
- Harper, H. H. 1994. Stormwater Loading Rate Parameters for Central and South Florida. Environmental Research & Design, Inc., 3419 Trentwood Blvd., Suite 102, Orlando, FL 32812.
- Horner, R., C. May, E. Livingston, D. Blaha, M. Scoggins and J. Maxted. 2001. Structural and Non-Structural BMPs For Protecting Streams. Watershed Management Institute, 410 White Oak Drive, Crawfordsville, FL 32327.
- Horner, R., C. May, E. Livingston, and J. Maxted. 1999. Impervious Cover, Aquatic Community Health, and Stormwater BMPs: Is There a Relationship? In Proceedings, 6th Biennial Stormwater Research and Watershed Management Conference, Southwest Florida Water Management District, 2379 Broad Street, Brooksville, FL 34609-4150.

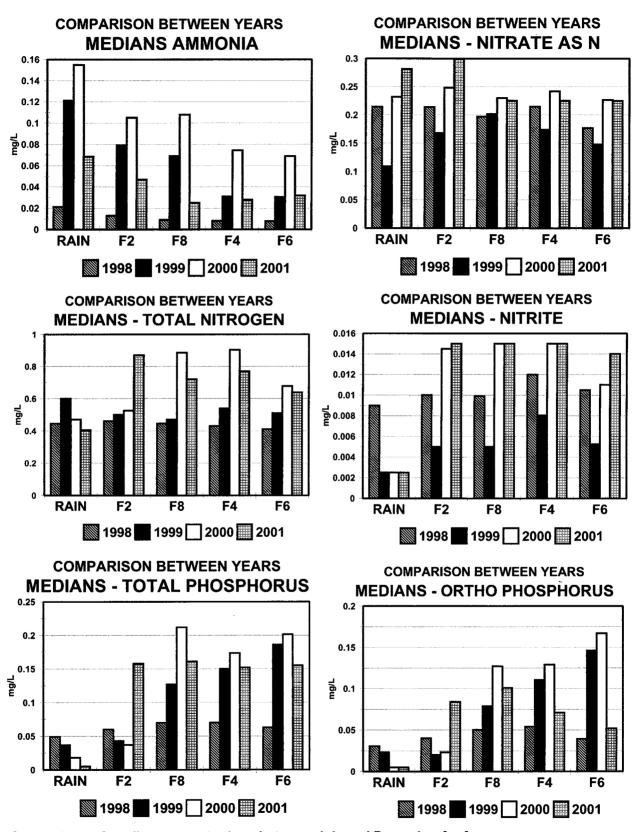
- Livingston, E. H. 1988. Stormwater Regulatory Program in Florida. In Urban Runoff Quality, B. Urbonas and L. A. Roessner (eds). Proceedings of an Engineering Foundation Conference, ASCE, 345 East 47th St. New York, NY 10017-2398.
- Low-Impact Development: Design Manual (LID). 1997. Prince George's County, Maryland, Department of Environmental Resources, Contact: Derek Winogradoff (301) 883-5903.
- Low-Impact Development: Design Manual (LID) 1999. Available on the internet at lowimpactdevelopment.org
- Long, E. R., D.A. Wolfe, R.S. Carr, K.J. Scott, G. B. Thursby, H. L. Windom, R. Lee, F. D. Calder, G. M. Sloane, and T. Seal. 1994. Magnitude and Extent of Sediment Toxicity in Tampa Bay, Florida. NOAA, Technical Memorandum NOS ORCA 78, 1305 East-West Highway, Silver Spring, MD 20910.
- Long, E. R., D. D. MacDonald, S. L. Smith, F. D. Calder. 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environmental Management 19:81-97.
- Pitt, R.E. and Barron, P. 1990. Sources of Urban Runoff Toxicants. *In* 16th Annual Hazardous Waste Research Symposium: Remedial Action, Treatment, and Disposal of Hazardous Waste, U. S. Environmental Protection Agency, Cincinnati, OH.
- Pitt, R. E. 1996. Groundwater Contamination from Stormwater Infiltration. Ann Arbor Press, Inc., Chelsea, Michigan.
- Pritchett, W. L. 1979. Properties and Management of Forest Soils. John Wiley & Sons, New York, NY
- Rogers, T. 1990. Atmospheric Emissions pp31-45. In C. E. Watkins (ed) Proceedings of the Florida Acidic Deposition Conference. Florida Department of Environmental Regulation (now Dept of Environmental Protection), Tallahassee, FL.
- Rushton, B. T. 1993. Urban Stormwater Pollution Measured in Rainfall. *In* 3rd Biennial Stormwater Research Conference, Southwest Florida Water Management District, 2379 Broad Street, Brooksville, FL 34609.
- Rushton, B. T. 1995. 1997. Processes that Affect Stormwater Pollution. *In* 5th Biennial Stormwater Research Conference, 2379 Southwest Florida Water Management District, 2379 Broad Street, Brooksville, FL 34609.
- Sartor, J. D., G. B. Boyd, and F. J. Agardy. 1974. Water Pollution Aspects of Street Surface Contaminants. Journal WPCF, 46(3):458-467.

- Southwest Florida Water Management District: Stormwater Research Program, December 2001
- Schiffer, D. M. 1989. Effects of Three Highway-Runoff Detention Methods on Water Quality of the Surficial Aquifer System in Central Florida. Geological Survey Water Resources Investigations Report 88-4170. U. S. Geological Survey, Tallahassee, Florida.
- Schlotzhauer, S. D. and R. C. Littell. 1997. SAS System for Elementary Statistical Analysis. Sas Institute, Inc. SAS Campus Drive, Cary, NC 27513
- Shaver, E. J. Maxted, G. Curtis, and D. Carter. 1995. Watershed Protection Using an Integrated Approach, Stormwater NPDES Related Monitoring Needs, H. C. Torno (ed), American Society of Civil Engineers, New York, NY.
- Southwest Florida Water Management District (SWFWMD) 1998. Comprehensive Quality Assurance Plan. 2379 Broad Street, Brooksville, FL 34609.
- Steel, G. D. and J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Company, Inc.
- Strynchuk, J., J. Royal, and G. England. 1999. Grass and Leaf Decomposition and Nutrient Release Study Under Wet Conditions. *In* 6th Biennial Stormwater Research & Watershed Management Conference, 2379 Broad Street, Brooksville, FL 34609.
- Takada, H., T. Onda, and N. Ogura. 1990. Determination of Polycyclic Aromatic Hydrocarbons in Urban Street Dust and Their Source Materials by Capillary Gas Chromatography. Environ. Sci. Technol., 24:1179-1186.
- United States Drought Monitor. 2001 www.enso.unl.edu/monitor/monitor.html
- United States Environmental Protection Agency (US EPA) 2001 Persistent Bioaccumlative and Toxic Chemical Program www.epa.gov/opptintr/pbt/
- WilsonMiller (2000). Channelside Redevelopment Cruise Terminal No. 3. Prepared for Tampa Port Authority, 1101 Channelside Drive, Tampa, FL. 33602
- Yasuda, K and M. Takahashi, 1998. The Emission of Polycyclic Aromatic Hydrocarbons from Municipal Solid Waste Incinerators during the Combustion Cycle. Air & Waste Manage. Assoc 48:441-447.

ADDENDUM

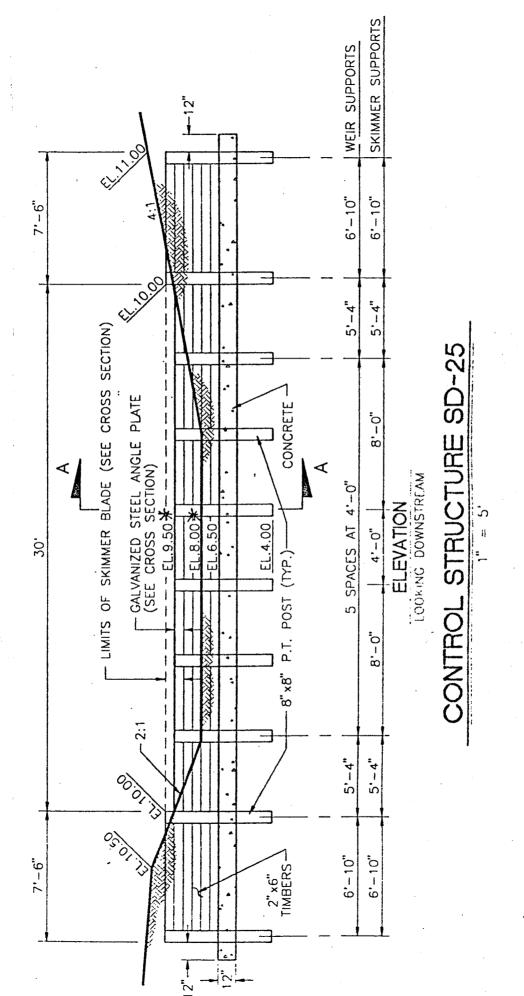

COMPARISON OF FOUR YEARS OF WATER QUALITY DATA COLLECTED IN THE PARKING LOT FROM JULY TO DECEMBER 1998 to 2001

ADDITIONAL DATA COLLECTED FOR THE EVEN NUMBERED SWALES JULY THROUGH DECEMBER - 1998 TO 2001


Data collection continued for the even numbered basins at the Florida Aquarium parking lot after the formal completion of the project. This provides four years of comparison data to try to better understand how well the swales would function with time. For the final year, 2001, much of the parking lot was under construction to make way for cruise ship terminals and a downtown trolley. This construction activity not only impacted the site directly, but also resulted in the parking lot becoming more heavily used. Comparison of stormwater concentrations for the four years not only provides some insight for the parking lot swales over time, but also, the impact of nearby construction activity on runoff concentrations. Year 2001 also represents the concentrations to be expected from a heavily used parking lot. The impacts seen in 2001 affected metal and suspended solids concentrations, but wet deposition is a better predictor for the concentrations for inorganic nitrogen (ammonia and nitrate).

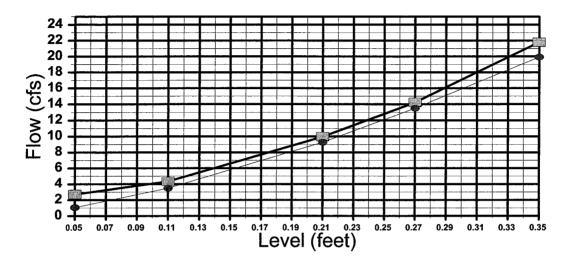
In general, metal and total suspended solids median concentrations were increasing each year, but there was a big increase in 2001 with the construction activity and greater use as a parking lot. To rule out atmospheric deposition, the increase in concentrations was not noted in rainfall. Total phosphorus was also gradually increasing for the first three years except for the basin without a planted swale (F2), but the fourth year, 2001, shows a decrease in concentration. Also the concentrations measured in rainfall were decreasing for phosphorus over time and this probably explains the decrease in F2 until the final year. The inorganic nitrogen in the swales appears to track the nitrogen measured in rainfall and is most probably influenced by that source.

Hydrology and additional measurements for discrete samples were also collected, but the data have not been processed yet.


Comparison of median concentrations between July and December for four years

Comparison of median concentrations between July and December for four years

APPENDIX A

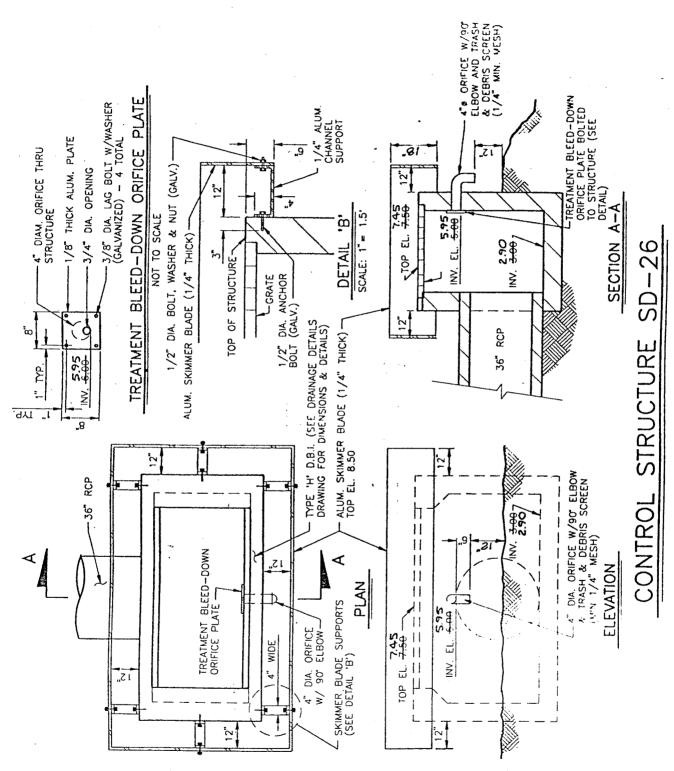

QUALITY ASSURANCE INFORMATION AND DESIGN PARMETERS

Inflow weir into the parking lot pond.

STAGE DISCHARGE CURVE

STRAND INTO PK LOT POND

---- MEASURED


WEIR FORMULA

STAGE DISCHARGE CURVE FOR THE FLORIDA AQUARIUM STRAND

(3.33*((29-(0.2*(H)))*((H^1.5))))=WEIR FORMULA FOR RECTANGULAR WEIR (1.86+(9.156*H)+(135.87*(H^2)))=CURVE FIT FORMULA H=HEAD

	HEAD FT	WEIR FORMULA CFS	CURVE FIT FORMULA CFS	MEASURED CFS	
max	0.50	34.0249	40.4055		
	0.05 0.11 0.21 0.27 0.35	1.0793 3.5205 9.2799 13.5232 19.9478	2.6575 4.5112 9.7746 14.2370 21.7087	2.7200 4.3630 9.9720 14.2360 21.8280	

Since the weir configuration into the pond does not meet many of the requirements for a standard rectangular weir formula, measurements were also made using a velocity meter. A comparison of the two methods is shown in the figure and table. Considering the weir leaks the fit looks pretty good.

Outflow weir structure from the parking lot pond

CALCULATING FLOW FOR THE OUTFLOW WEIR TABLE

PIPE FORMULA

Q=C*a*(@sqrt(2*g*h))
Q=flow cfs
C=0.67 for 3/4" pipe (Brater and King)
a=area of pipe
g=32.2 ft/sec2
h=head

Oriface through structure=4 inch diameter oriface Pipe diameter=3/4 inch diameter opening Top of weir elevation=7.45 FT Invert of Pipe=5.95 FT

Pipe formula= $0.0165*H^0.5$ (calculated from above formula) Weir formula= $(3.33*(((9*(0.7))-(0.2*(H-1.5))*((H-1.5)^1.5))*2)+(3.33*(((4.33*0.7))-(0.2*H))*(H^1.5))*2)$ Simplify= $(2*3.33*(6.3-(0.2*(H-1.5)))*((H-1.5)^1.5))+(2*3.33*(3.031-(0.2*(H-1.5)))*((H-1.5)^1.5))$

HEAD	FLOW	HEAD	FLOW	HEAD	FLOW
feet	cfs	feet	cfs	feet	cfs
0.00	0.0000	1.00	0.0165	2.00	21.5005
0.05	0.0037	1.05	0.0169	2.05	24.7505
0.10	0.0052	1.10	0.0173	2.10	28.1393
0.15	0.0064	1.15	0.0177	2.15	31.6592
0.20	0.0074	1.20	0.0181	2.20	35.3035
0.25	0.0083	1.25	0.0184	2.25	39.0663
0.30	0.0090	1.30	0.0188	2.30	42.9420
0.35	0.0098	1.35	0.0192	2.35	46.9257
0.40	0.0104	1.40	0.0195	2.40	51.0128
0.45	0.0111	1.45	0.0199	2.45	55.1990
0.50	0.0117	1.50	0.0202	2.50	59.4805
0.55	0.0122	1.55	0.6933	2.55	63.8535
0.60	0.0128	1.60	1.9568	2.60	68.3147
0.65	0.0133	1.65	3.5871	2.65	72.8607
0.70	0.0138	1.70	5.5107	2.70	77.4887
0.75	0.0143	1.75	7.6848	2.75	82.1957
0.80	0.0148	1.80	10.0801	2.80	86.9790
0.85	0.0152	1.85	12.6747	2.85	91.8360
0.90	0.0157	1.90	15.4519	2.90	96.7644
0.95	0.0161	1.95	18.3976	2.95	101.7616

METHOD TO MEASURE UNDER DRAIN FLOW

A Thelmar weir was installed to measure the under drain flow into the pond, but since it was easily clogged with debris and did not appear to provide accurate measurements for this small pipe a different method was used to estimate flow using the following formula.

(Change in pond level * area of pond) - (discharge from the pond + rainfall on the pond).

This method also accounted for unmeasured flow coming into the pond from a low spot, the runoff from the banks around the pond and the leaks through the inflow weir.

Appendix A. Duplicate samples for quality assurance. All samples with greater than ten percent differences are shown in bold type. Most of the differences are for samples with low concentrations. BD≕Below laboratory detection limit

August 7, 1998 2 %chg 0.233 1.7 0.011 0.0 0.028 9.7 0.036 7.7 BD BD BD 3.8 BD 150 0.0 0.036 2.9 0.18 25.0 0.19 22 4.0 8.10 BD 0.10 4.3 7.50 4.0 0.12 7.7 19.22 4.0 8.16 BD 0.04 -2.3 BD BD 0.044 -2.3 BD BD 0.044 -2.3 BD BD 0.044 -2.3 BD BD 0.104 -10.6 0.22 33.3 0.015 6.3 0.015 6.3 1.31 22.0 1.31 22.0 1.31 22.0 1.31 22.0 1.31 22.0				H	i																	
Name			⋖	Sile Sugust	r. 7, 1998		•	August	9, 1998		,	SIIE August 9	F5), 1998		σ	SITE eptembe	r 3, 1998		σ	SITE F7 September 3, 199	. F.7 sr 3, 1998	
Mail	CONSTITUENT	UNITS		Ì	- 1	AVG	-	2	%chg	AVG	-	7	%chg	AVG	-	2	%chg	AVG	-	2	%chg	AVG
Main maje Main	AMMONIA	mg/L		0.233	1.7	0.235		0.141	3.4	0.144	0.205	0.209	-2.0	0.207	0.021	0.034	-619	0.028	0.025	0.024	4.0	0.025
Line mg C218 C208 C208 C208 C208 C208 C211 C218 C208 C	NITRITE	mg/L		0.011	0.0	0.011		0.010	0.0	0.010	0.012	0.013	-8.3	0.013	BD	BD	BD	80	8	BD	BD	BD
Line mg 0.66 0.66 0.65 0.65 0.48 0.64 0.64 0.64 0.64 0.65 0.64 0.65 0.64 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0	NITRATE	mg/L		0.218		0.218		0.206	0.0	0.206	0.211	0.211	0.0	0.211	0.102	0.096	5.9	0.099	0.037	0.027	27.0	0.032
	TOTAL-N	mg/L		0.60		09.0		0.65	4.8	0.64	0.62	0.64	-3.2	0.63	0.16	0.18	-12.5	0.17	0.19	0.16	15.8	0.18
Indicates March	ORTHO-P	mg/L		0.028		0.030		0.034	0.0	0.034	0.014	0.015	-7.1	0.015	2	0.012	2	0.012	0.08	0.079	2	0.012
MILLAN May BD BD BD BD BD BD BD	TOTAL-P	mg/L		0.036		0.038		0.05	3.8	0.051	0.029	0.026	10.3	0.028	0.024	0.022	8.3	0.023	0.11	0.109	0.9	0.110
Markes M	CADMIUM	ng/L	G :	<u>B</u>	G 1	BD		8	<u>۾</u>	8	BD	8	8	B	8	BD	BD	BD	8	80	BD	BD
Name Majl	COPPER	ng/L	<u>G</u>	3.8	BD	9		9.	90	80	<u>რ</u>	80	BD	BD	4.5	2.6	42.2	3.6	8.4	6.4	23.8	7.4
SAMESE USAMESE USAME	RON T. 1	ng/L	35 55 56	150 150	0.0	20		8	9.1	105 105	8 8	2 8	12.5	75	110	110	0.0	110	250	220	12.0	235
Name	LEAD	ug/L	2 ° 7	9 c	n o	2 °		BC	3 3 5	3.5	a G	GG C	BD	G C	BD r	G G	G ;	BD	2.4	BD S	BD S	BD
NESSIUM mg/L	ZINC	, n		0. C		0. g		0. A	7.C	. G	7.7 7.0	- E		7.7 C	C.2	4.4 F. G	4. g	ט כ	5.0	5.0	0.0	5.0
Name May	CHLORIDE	mg/L	0.70	0.68	2 6	69.0		0.50	2.0	0.5	0.47	0.73	-55.3	9 9	207	202		200	2 67	2 2	9 6	2 65
Main majl Ma	POTASSIUM	mg/L	0.24	0.18	25.0	0.21					0.84	0.88	4.8	0.86	1.59	1.33	16.4	1.46	0.56	0.64	-14.3	0 60
Mile mg/L 1.46 4.34 4.34 4.42 2.80 2.66 4.3 2.74 2.40 2.50 2.25 2.47 4.20 0.05 0.05 ESIUM mg/L 0.13 0.12 0.13	SODIUM	mg/L	0.25	0.39	-56.0	0.32	0.33	0.36	-9.1	0.35	0.41	0.43	4.9	0.42	1.71	1.17	31.6	1.44	1.76	1.54	12.5	1.65
	SULFATE	mg/L	4.49	4.34	3.3	4.42	2.80	2.68	4.3	2.74	2.40	3.43	42.9	2.92	2.16	2.75	-27.3	2.46	2.37	2.12	10.5	2.25
September 3, 1998 September 3, 1998 September 26, 1968 September 3, 1998 September 3, 1998 September 3, 1998 September 26, 1968 September 26, 1968 September 3, 1998 Septem	CALCIUM	mg/L	7.81	7.50	4.0	99.7	6.25	6.08	2.7	6.17	24.40	25.00	-2.5	24.70	42.20	42.00	0.5	42.10	8.20	7.47	8.9	7.83
Main	MAGNESIUM	mg/L		0.12	7.7	0.13	0.21	0.25	4. 8.	0.22	0.15	0.15	0.0	0.15	0.20	0.14	30.0	0.17	0.37	0.29	21.6	0.33
September 3, 1998 Sept	HARDNESS	mg/L		19.22	0.4	19.63	16.47	16.08	4.6	16.28	61.54	63.04	4.5	62.29	106.00	105.45	0.5	105.73	21.90	19.84	9.4	20.87
September 3, 1998 September 2, 1998 Sept	200	IIIB/L	50.4 CO.4	20.02	0.0	20.4 CO.4	0.4	4.0/	0.02	07.0	4.11	4.39	4.0	4.00	1.34	0.98	48.5	1.40). TO	6.55):)	6.83
NILA mg/L 0.043 0.044 -2.4 -2.4			Se	SITE	F1 r3, 1990		Š	SIT	E F3 er 3, 199	80	Se	SITE ptember	F1 26, 1998	~	•	SITE January	F8 4, 1999		∢	SITE F5 AUGUST 23. 199	F5 23, 1999	
																•						
NIM Mg/L 0.044	CONSTITUENT	UNITS			- 1	AVG	-	2	%chg	AVG	-	2	%chg	AVG	-	2	%chg	AVG	-	2	%chg	AVG
TE mg/L BD B	AMMONIA	mg/L		0.044		0.044		BD	8	B	BD	80	BD	BD	0.045	0.045	0.0	0.045	0.02	0.024	-20.0	0.022
TE mg/L 0.094 0.104 0.126 0.23 0.145 0.086 -2.4 0.086 -2.4 0.086 -2.4 0.086 -2.4 0.086 -2.4 0.086 -2.4 0.086 -2.4 0.085 -2.4 0.085 -3.5 35.2 D-P mg/L 0.016 0.015 0.22 0.02	NITRITE	mg/L		BD		BD		BD	BD	BD	BD	80	BD	BD	BD	B	B	BD	0.04	0.005	87.5	0.023
L-N mg/L 0.33 0.22 33.3 0.28 0.25 0.2 20.0 0.23 0.12 0.09 25.0 0.105 0.15 0.128 0.15 0.128 0.15 0.128 0.15 0.15 0.128 0.15 0.128 0.16 0.128 0.15	NITRATE	mg/L		0.104		0.099		0.126	23.2	0.145	0.084	0.086	-2.4	0.085	0.148	0.153	-3.4	0.151	B	80	BD	BD
O-P mg/L 0.016 0.015 6.3 0.016 0.072 0.072 0.072 BD BD BD BD C128 -1.6 L-P mg/L 0.026 0.033 -26.9 0.036 0.075 0.08 0.015 0.021 -40.0 0.018 0.128 -1.6 ER ug/L BD	TOTAL-N	mg/L		0.22		0.28		0.2	20.0	0.23	0.12	0.09	25.0	0.105	0.54	0.35	35.2	0.445	90.0	0.05	16.7	0.055
Link	ORTHO-P	mg/L		0.015		0.016		0.072	0.0	0.072	GB 5	G 3	g ;	G ;	0.126	0.128	9.1.	0.127	0.042	0.044	4.8	0.043
ER ug/L 6.1 7.9 29.5 7.0 4.7 4.2 10.6 4.5 5.6 6.2 40.7 5.9 12.2 13 6.6 14 490 14 490 14 490 14 490 14 490 14 490 14 490 14 490 14 490 14 490 14 490 14 490 490 490 490 4	CADMIIM	mg/L		0.033		0.030		0.081	ζ.	0.080	0.015	0.021	0.04 0.0	0.018	0.166 7.	0.193	-16.3	0.180	0.062	0.061	9. 0	0.062
ug/L 2.3 2.4 2.2 8.3 2.4 2.5 8.0 4.0 <th>S S S S S S S S S S S S S S S S S S S</th> <th>) </th> <th>9 6</th> <th>0 6</th> <th>20.5</th> <th>) V</th> <th></th> <th>0 4</th> <th>40.0</th> <th>) 4) R</th> <th>ת טמ</th> <th>) c</th> <th>7 07</th> <th>ט ני</th> <th>10 0</th> <th>5 5</th> <th>9 9</th> <th>12 60</th> <th></th> <th>5 .</th> <th>9 0</th> <th>0.130</th>	S S S S S S S S S S S S S S S S S S S) 	9 6	0 6	20.5) V		0 4	40.0) 4) R	ת טמ) c	7 07	ט ני	10 0	5 5	9 9	12 60		5 .	9 0	0.130
Markes ug/L 2.1 2.3 -9.5 2.20 BD	IRON	ug/L	360	340	5.6	320		8	-12.5	85	5.5	290	-163.6	200	410	490	-19.5 5.55	450	- 4	20	-25.0	45.000
BANESE ug/L 7.1 7.4 4.2 7.3 2.4 2.2 8.3 2.3 3.4 5.6 -64.7 4.5 9.9 10.9 -10.1 RIDE with mill light BD bb	LEAD	ng/L	2.1	2.3	-9.5	2.20		BD	80	80	В	8	BD	BD	5.3	6.2	-17.0	5.750	0.75	0.75	0.0	0.750
ug/L BD B	MANGANESE	ng/L	7.1	7.4	4.2	7.3		2.2	8.3	2.3	3.4	5.6	-64.7	4.5	6.6	10.9	-10.1	10	0.5	0.5	0.0	0.500
mg/L 2.53 2.45 3.2 2.49 2.17 2.11 2.8 2.14 0.62 0.61 1.6 0.62 1.55 1.56 1.58 -1.9 mg/L 0.19 0.78 5.3 0.19 1.76 6.9 1.83 0.10 0.09 10.0 0.11 1.08 1.8 mg/L 3.02 1.92 3.64 2.47 2.62 2.36 9.9 2.49 1.47 1.45 1.46 3.52 3.5 0.6 mg/L 5.07 6.19 -3.7 6.08 5.03 4.43 1.47 1.45 0.8 6.45 6.4 0.71 2.6 mg/L 0.16 0.29 0.18 1.15 1.76 1.47 6.72 6.73 0.08 33.3 0.08 0.33 0.09	ZINC	ng/L	BD	BD	BD	BD		BD	BD	BD	BD	8	BD	80	20	20	0.0	20	70	7.5	62.5	13.750
mg/L 0.19 0.18 1.76 6.9 1.83 0.10 0.09 10.0 0.10 1.1 1.08 1.8 mg/L 1.68 1.31 22.0 1.50 1.51 1.41 6.6 1.46 0.38 0.45 -18.4 0.42 0.81 0.78 3.7 mg/L 3.02 1.92 36.4 2.47 2.62 2.36 9.9 2.49 1.47 1.45 1.4 1.46 3.52 3.5 0.6 mg/L 5.97 6.19 -3.7 6.08 5.03 4.43 1.49 4.73 6.45 6.4 0.8 6.71 -2.6 mg/L 0.16 0.29 0.18 5.3 0.18 1.15 1.76 1.67 6.25 1.83 1.76 1.83 0.0 mg/L 1.556 16.28 2.43 1.15 1.76 1.77 2.75 1.75 1.76 1.84 1.25 1.76 1.84 1.25 1.	CHLORIDE	mg/L	2.53	2.45	3.2	2.49		2.1	2.8	2.14	0.62	0.61	1.6	0.62	1.55	1.58	-1.9	1.57	0.48	0.47	2.1	0.475
mg/L 1.68 1.31 22.0 1.50 1.51 1.41 6.6 1.46 0.38 0.45 -18.4 0.42 0.81 0.78 3.7 mg/L 3.02 1.92 36.4 2.47 2.26 2.36 2.36 9.9 2.49 1.47 1.45 1.46 3.52 3.5 0.6 mg/L 5.97 6.19 -2.37 6.06 5.03 4.43 1.49 4.73 6.45 6.4 0.8 6.71 -2.6 mg/L 1.56 16.29 -25.0 0.18 0.19 0.19 0.09 0.06 33.3 0.08 0.33 0.0 mg/L 1.56 16.28 -4.6 15.97 13.34 11.5 17.5 17.6 16.47 6.22 13.35 17.59 18.11 2.2	POTASSIUM	mg/L	0.19	0.18	5.3	0.19		1.76	6.9	1.83	0.10	0.09	10.0	0.10	Ξ,	1.08	1.8	1.09	0.25	0.26	-4.0	0.255
mg/L 5.02 1.92 36.4 2.47 2.56 2.36 3.99 2.49 1.47 1.45 1.46 3.52 3.55 0.6 mg/L 5.97 6.19 -2.53 6.45 6.45 6.45 6.43 6.63 6.71 -2.6 mg/L 1.56 1.67 1.67 1.75<	MOIDOS	mg/L	1.68	1.31	22.0	1.50		1.41	9.9	1.46	0.38	0.45	-18.4	0.42	0.81	0.78	3.7	0.80	0.36	0.43	-19.4	0.395
mg/L 3.97 6.19 -3.7 6.08 5.03 4.43 11.9 4.73 6.45 6.4 0.8 6.54 6.71 -2.6 mg/L 0.16 0.16 0.78 5.3 0.19 0.09 0.06 0.33 0.33 0.0 mg/L 1.556 16.28 -4.6 15.97 13.34 11.8 11.5 12.6 14.7 6.7 6.7 13.54 17.40 18.1 -2.4	SULFAIE	mg/L	3.02	1.92	36.4	2.47		2.36	э Э	2.49	1.47	1.45	4. 6	1.46	3.52	3.5	9.6	3.51	2.5	2.43	2.8	2.465
mile. 15.66 16.28 4.6 15.92 13.34 11.8 11.5 12.6 14.7 6.22 13.35 17.69 18.11 - 2.2	MACHERITA	≡g/L	2.97	9 6	ري و بر	0.00		24.0		2,7	0.45	6.4 4.0	ο.	5.43	6.54	6.7	9.0	6.63	23.3	23.6	د. دن د	23.450
	HARDNESS	ma/1-		16.28	4.0	15.92		2.5	. . .	12.5	16.47	9.09	55.5 50.50	11.35	17.69	2.5 1.55	0.0	17.00	70.7	50 70	0.0	0.210
mg/L 5.49 7.59 -38.3 6.54 0.68 0.54 20.6 0.61 2.25 7.16 -218.2 4.71 14.48 30.15 -108.2	TSS	mg/L	5.49	7.59	-38.3	6.54		0.54	20.6	0.61	2.25	7.16	-218.2	4.71	14.48	30.15	-108.2	22.32	1.38	1.69	22.5	1.535

Appendix A. Duplicate samples for quality assurance. All samples with greater than ten percent differences are shown in bold type. Most of the differences are for samples with low concentrations. BD=Below laboratory detection limit.

			SITE F4	F4			SITE F6	<u>-6</u>			SITEFS	F8			SILE	E.6	-		SITEEN	
		-	JUNE 13,1999	3,1999			JUNE 13,1999	,1999		•	JUNE 13, 1999	, 1999		₹ 1	AUGUST 14, 1999	4, 1999		A	AUGUST 23, 1999	3, 1999
CONSTITUENT	UNITS	Ψ-	7	%chg	AVG	-	7	%chg	AVG	-	7	%chg	AVG	- -	dup. to check this		AVG	-	8	%chg
			l																1	
AMMONIA	mg/L	0.047	0.020	57.4	0.034	0.023	0.011	27.5	0.017	0.900	0.092	8.68 8.68	0.496	0.025	0.024	0.4	0.025	G (B 6	G :
NITRATE	mg/L	0.013	0.013	0.0 6.00	0.013	0.013	0.013	5.0.0 5.0.0	0.0	0.013	0.013	0.0	0.013	0.378	0.392	رن د د	0.385	2 6	3 6	2 6
TOTAL	9 4	0.740	2 2	9 0	0 775	0.130	0.000	2 5	000	1 600	1 700	9 0	1 650	0.00	0.0	ο α Ο Α	0.0	5 5	5 5	5
OBTHO-P	1/6 H	0.740	0.010	0.0	0.72	0.040	0.359	9 6	0360	0.318	0340	9 6	2000	0.0.0	0.470	0.0	0.430	0.135	1.0	4 c
TOTAL-P	mo/L	0.325	0.331	- - 8	0.328	0.423	0.423	0.0	0.423	0.379	0.372	, -	0.376	0.0	0.141	5.6	0.143	0.141	0.120	9 0
MIIMO	,	2 2	2	2	2	2	2	2	2	25.0	2 6	2	2 6	; ;			2 6			
COPPER	, E	8 8	8 8	8 8	3 6	8 8	8 8	8 8	6	200	5 8 8	ָם גלי ס	10.0	ე დ ე	7 0	25.0	3 6	2.7	2.6	2.0.2 4.7.4
RON	1/011	6	9	-20.0	22	20	8	40.0	40	350	320	9	335.0	12.5	12.5	0	12.5	12.5	12.5	
LEAD	ug/L	8	BD	80	80	8	8	BD	B	2.5	2.6	4.0	2.6	BD	8	BD	BD	BD	B	BD
MANGANESE	ng/L	5.2	5.2	0.0	5.2	2.0	2.2	-10.0	2.1	10.1	9.6	3.0	10.0	80	BB	BD	BD	80	BD	8
ZINC	ng/L	BD	BD	BD	BD	BD	BD	BD	BD	40	40	0.0	40.0	80	80	BD	BD	7.5	7.5	0.0
CHLORIDE	mg/L	2.09	2.10	-0.5	2.10	2.05	2.05	0.0	2.05	1.76	1.75	9.0	1.76	0.73	0.71	2.7	0.72	0.71	0.75	-5.6
POTASSIUM	mg/L	3.18	3.18	0.0	3.18	5.04	5.06	-0.4	5.05	1.34	1.36	-1.5	1.35	1.02	0.86	15.7	0.94	1.7	1.33	-20.9
SODIUM	mg/L	1.11	1.12	-0.9	1.12	0.93	0.93	0.0	0.93	0.86	0.85	1.2	0.86	9.0	0.55	8.3	0.58	0.52	0.56	-7.7
SULFATE	mg/L	6.33	6.37	-0.6	6.35	6.03	5.97	1.0	6.00	6.03	6.04	-0.2	6.04	5.74	2.67	1.2	5.71	3.35	3.24	3.3
CALCIUM	mg/L	8.31	8.39	-1.0	8.35	9.76	9.72	0.4	9.74	10.50	10.50	0.0	10.50	12.9	13.2	-2.3	13.05	12.8	12.6	1.6
MAGNESIUM	mg/L	0.60	0.62	-3.3	0.61	0.56	0.56	0.0	0.56	0.75	0.75	0.0	0.75	0.48	0.49	-2.1	0.49	0.76	0.79	-3.9
HARDNESS	mg/L	23.22	23.50	-1.2	23.36	26.68	26.58	0.4	26.63	29.31	29.31	0.0	29.31	34.18	34.97	-2.3	34.58	35.09	34.71	7.
TSS	mg/L	3.56	3.05	Ť	3.31	2.97	3.20	-7.7	3.09	NA	6.75	ΑN	3.38	9.03	5.6	71.2	5.82	1.08	1.16	-7.4
			SITE	. F3			SITE	F6			SITE	F7			SITE	F6				
		⋖	August 11, 2000	11, 2000		Š	September 7, 200	7, 2000		Se	September 7, 200	۲, 2000		Se	September 25, 2000	25, 2000	_			
CONSTITUENT	STINI	•	~	%cha	AVG	-	2	%cha	AVG	,	^	%cha	AVG	-	^	%cha	AVG			
		-		6100/						-		S		-			2			
AMMONIA	mg/L	0.044	0.041	6.8	0.043		0.081	-80.0	0.063	0.117	0.081	30.8	0.099	0.236	0.243	-3.0	0.240			
NITRITE	mg/L	900.0	0.007	-16.7	0.007		0.012	29.4	0.015	0.010	0.013	-30.0	0.012	0.036	0.034	5.6	0.035			
NITRATE	mg/L	0.151	0.154	-2.0	0.153		0.225	6.0-	0.224	0.268	0.174	35.1	0.221	1.094	1.756	-60.5	1.425			
TOTAL-N	mg/L	0.63	0.85	-34.9	0.740		0.70	7.9	0.730	0.61	0.79	-29.5	0.700	7.50	2.40	68.0	4.950			
ORTHO-P	mg/L	0.152	0.154	-1.3	0.153		0.149	0.7	0.150	0.103	0.091	11.7	0.097	0.242	0.092	62.0	0.167			
TOTAL-P	mg/L	0.172	0.174	-1.2	0.173		0.208	6.3	0.215	0.153	0.183	-19.6	0.168	0.311	0.197	36.7	0.254			
CADMIUM	ng/L	80	8	8	8		80	80	8	80	8	8	80	B	BD	BD	80			
COPPER	ng/L	3.5	3.3	2.7	3.4		4.	-32.3	3.6	9.9	8.3	-25.8	7.5	14.2	21.7	-52.8	18.0			
RON	ng/L	8	2	12.5	75.0		170	4.7	145.0	220	260	-18.2	240.0	300	610	-103.3	455.0			
LEAD	ng/L	0.75	0.75	0.0	0.750		0.75	0.0	0.750	6	2.5	-15.8	2.050	بن 1	6.4	-106.5	4.8			
MANGANESE	ng/L	2.8	8. 1	0.0	1.800		2.9	-20.8	2.650	6.4	8,9	-6.2	6.600	4.7	11.8	-151.1	8.3			
ZINC	ng/L	7.5	7.5	0.0	7.500		2	0.0	20.0	8	40	-33.3	35.0	40	00	-20.0	20.0			
CHLORIDE	mg/L	1.79	1.79	0.0	1.790	2.17	2.16	0.5	2.165	2.06	2.06	0.0	2.060	3.59	3.44	4.2	3.5			
POTASSIUM	mg/L	1.32	1.32	0.0	1.320		5.09	0.0	2.090	0.76	0.76	0.0	0.760	2.12	1.67	21.2	1.9			
SODIUM	mg/L	0.07	0.08	-14.3	0.075		0.50	2.0	0.505	0.37	0.37	0.0	0.370	1.85	1.60	13.5	1.7			
SULFATE	mg/L	1.99	2.01	1.0	2.000		2.86	0.0	2.860	2.43	2.43	0.0	2.430	7.52	96.9	7.4	7.2			
CALCIUM	mg/L	5.77	5.63	2.4	5.700		13.30	5.	13.400	9.50	9.58	-0.8	9.540	na	na	па	na			
MAGNESIUM	mg/L	80	BD	<u>유</u>	8		0.34	-3.0	0.335	0.22	0.22	0.0	0.220	na	na	na	na			
HARDNESS	mg/L	14.41	14.06	2.4	14.23		34.61	. .3	34.84	24.63	24.83	9.0	24.73	na		Ba	В			
TSS	mg/L	1.70	1.56	8.4	1.63	- 11	6.73	15.4	7.35	12.46	12.62	-1.3	12.54	12.22	- 11	-278.8	29.2			

APPENDIX B RAINFALL CHARACTERISTICS

Appendix B-1 Rainfall intensity, inter-event dry period, and storm duration calculated f individual storm events > than 0.4 cm (0.157 inches)

YEAR ONE

START DATE	END DATE	YEAR	DAY Julian	START TIME hhmm	STOP TIME hhmm	TOTAL RAIN (in)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (in/hr)	AVG. INT, (in/hr)
07/31/98	07/31/98	1998	212	1345	1500	0.68	118.50	1.50	0.66	0.45
08/05/98	08/05/98	1998	217	1900	2000	0.56	123.75	1.25	0.51	0.41
08/06/98	08/06/98	1998	218	1845	1945	0.67	22.50	1.25	0.66	0.53
08/07/98	08/07/98	1998	219	1600	2115	1.30	20.00	5.50	0.30	0.05
08/08/98	08/08/98	1998	220	1800	1845	0.43	20.50	1.00	0.43	0.43
08/09/98	08/09/98	1998	221	1645	1830	2.43	21.75	1.50	1.47	0.98
08/16/98	08/16/98	1998	228	1930	2015	0.25	167.00	1.25	0.25	0.20
08/19/98	08/19/98	1998	231	1530	1600	0.31	64.00	0.75	0.31	0.41
08/20/98	08/20/98	1998	232	1245	1400	0.67	20.50	1.50	0.59	0.39
08/31/98	08/31/98	1998	243	1545	1630	0.54	265.50	1.00	0.54	0.54
09/01/98	09/01/98	1998	244	1815	1915	0.48	25.50	1.25	0.46	0.37
09/03/98	09/03/98	1998	246	445	1130	1.97	33.25	7.25	1.09	0.15
09/04/98	09/04/98	1998	247	445	700	0.28	17.00	1.50	0.27	0.18
09/04/98	09/04/98	1998	247	1945	2045	0.55	12.50	1.25	0.54	0.43
09/06/98	09/06/98	1998	249	1900	2130	1.21	46.00	2.75	1.05	0.38
09/07/98	09/07/98	1998	250	1500	1915	0.64	17.25	4.50	0.33	0.07
09/17/98	09/17/98	1998	260	915	945	0.49	229.75	1.00	0.49	0.49
09/18/98	09/18/98	1998	261	1545	2030	0.58	28.75	5.75	0.22	0.04
09/19/98	09/19/98	1998	262	1215	1500	0.53	13.75	3.00	0.26	0.09
09/24/98	09/24/98	1998	267	1315	1415	0.17	118.00	1.25	0.16	0.13
09/25/98	09/25/98	1998	268	1045	1230	0.15	20.25	1.25	0.15	0.12
09/25/98	09/26/98	1998	269	1630	45	1.36	3.75	8.50	0.24	0.03
11/04/98	11/05/98	1998	309	1015	630	1.20	921.25	20.50	0.20	0.01
11/18/98	11/18/98	1998	322	2315	2400	0.43	328.50	1.00	0.43	0.43
12/13/98	12/13/98	1998	347	1230	1500	0.37	588.25	2.75	0.29	0.11
12/29/98	12/29/98	1998	363	1330	1415	0.27	382.25	1.00	0.27	0.27
01/02/99	01/03/99	1999	3	2300	100	1.22	104.50	2.25	1.06	0.47
01/09/99	01/09/99	1999	9	1745	2000	0.46	160.50	2.50	0.42	0.17
01/23/99	01/24/99	1999	24	2015	115	2.54	336.00	5.25	1.29	0.25
02/02/99	02/02/99	1999	33	1100	1245	0.47	225.50	2.00	0.13	0.07
02/28/99	02/28/99	1999	59	1345	1415	0.36	624.75	0.75	0.36	0.48
03/14/99	03/14/99	1999	73	1215	1515	0.80	333.75	3.25	0.44	0.14
04/17/99	04/17/99	1999	107	830	1330	0.50	785.00	2.25	0.28	0.12
05/11/99	05/11/99	1999	131	1600	1630	0.17	578.25	0.75	0.17	0.23
05/14/99	05/14/99	1999	134	1615	1700	0.27	71.50	1.00	0.27	0.27
05/18/99	05/18/99	1999	138	1715	1745	0.17	96.00	0.75	0.17	0.23
05/21/99	05/21/99	1999	141	1500	1700	1.34	69.00	2.25	1.23	0.55
05/30/99	05/30/99	1999	150	1615	1730	0.39	215.00	1.50	0.38	0.25
06/05/99	06/05/99	1999	156	1430	1515	0.44	140.75	1.00	0.44	0.44
06/09/99	06/09/99	1999	160	1545	1715	0.81	96.25	1.75	0.69	0.39
06/13/99	06/13/99		164	1815	2030	1.20	96.75	1.25	1.20	0.96
06/15/99	06/15/99		166	1645	1800	0.43	44.00	1.50	0.22	0.15
06/16/99	06/16/99	1999	167	1215	2300	1.64	18.00	4.75	1.09	0.23
06/17/99	06/17/99		168	1145	1700	0.75	12.50	5.50	0.43	0.08
06/18/99	06/18/99		169	445	515	0.18	11.50	0.75	0.18	0.24
06/18/99	06/18/99		169	1630	1730	1.40	11.00	1.25	1.17	0.94
06/19/99	06/19/99		170	1845	2115	0.22	25.00	1.25	0.23	0.18
06/23/99	06/23/99		174	1430	1500	0.48	89.00	0.75	0.48	0.64
06/25/99	06/25/99		176	1245	1315	0.31	45.50	0.75	0.31	0.41

Aquarium Rain Intensity dk.wb3

Appendix B-1 Rainfall intensity, inter-event dry period, and storm duration calculated f individual storm events > than 0.4 cm (0.157 inches)

YEAR ONE

START DATE	END DATE	YEAR	DAY Julian	START TIME hhmm	STOP TIME hhmm	TOTAL RAIN (in)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (in/hr)	AVG. INT, (in/hr)
07/01/99	07/01/99	1999	182	1445	2045	1.52	145.25	6.25	0.60	0.10
07/03/99	07/03/99	1999	184	1500	1515	0.32	42.25	0.25	0.32	1.28
07/07/99	07/07/99	1999	188	2100	2215	0.81	101.50	1.50	0.36	0.24
07/09/99	07/09/99	1999	190	1430	1545	1.17	40.00	1.50	0.11	0.07
07/12/99	07/12/99	1999	193	1215	1245	0.36	68.25	0.75	0.36	0.48
07/13/99	07/13/99	1999	194	1430	2115	0.52	25.50	7.00	0.42	0.06
07/14/99	07/14/99	1999	195	1430	2045	0.69	17.00	6.50	0.33	0.05
07/15/99	07/15/99	1999	196	1645	1900	0.30	19.75	2.50	0.21	0.08
07/20/99	07/20/99	1999	201	1715	1800	0.88	118.00	1.00	0.88	0.88
07/26/99	07/26/99	1999	207	545	600	0.22	131.50	0.50	0.22	0.44
07/30/99	07/30/99	1999	211	745	815	0.47	97.50	0.75	0.47	0.63

YEAR ONE

START END DATE DATE	YEAR DAY Julian	START TIME hhmm	STOP TIME hhmm	TOTAL RAIN (in)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (in/hr)	AVG. INT, (in/hr)
Summary Data	Number of S	itorms 60)	Total Ra	iin	42.33	inches	
Average Median Maximum Minimum Std.Dev. C.V.				0.71 0.51 2.54 0.15 0.53 0.75	143.78 70.25 921.25 3.75 194.36 1.35	2.58 1.50 20.50 0.25 3.05 1.18	0.48 0.37 1.47 0.11 0.33 0.69	0.33 0.25 1.28 0.01 0.27 0.81

Appendix B-2 Rainfall intensity, inter-event dry period, and storm duration calculated for individual storm events > than 0.4 cm (0.157 inches)

YEAR TWO

START DATE	END DATE	YEAR	DAY	START TIME	STOP TIME	TOTAL RAIN	INTER- EVENT	DURA- TION	MAX. INT,	AVG. INT,
100			Julian	hhmm	hhmm	(in)	(hrs)	(hrs)	(in/hr)	(in/hr)
08/06/99	08/06/99	1999	218	730	1215	1.13	167.00	2.50	0.88	0.45
08/10/99	08/10/99	1999	222	1100	1130	0.25	94.50	0.75	0.25	0.33
08/11/99	08/11/99	1999	223	2115	2230	0.29	33.75	1.25	0.28	0.23
08/12/99	08/12/99	1999	224	730	1230	0.70	8.75	5.25	0.41	0.13
08/13/99	08/13/99	1999	225	2245	2315	0.38	34.00	0.75	0.38	0.51
08/14/99	08/15/99	1999	227	2400	100	1.23	24.50	1.25	0.51	0.98
08/17/99	08/17/99	1999	229	1445	1515	0.27	61.50	0.75	0.27	0.36
08/19/99	08/19/99	1999	231	1645	1745	0.90	49.25	1.25	0.84	0.72
08/21/99	08/21/99	1999	233	15	330	0.45	30.25	3.50	0.28	0.13
08/22/99	08/22/99	1999	234	1745	2200	2.91	38.00	3.75	0.63	0.78
09/06/99	09/06/99	1999	249	630	1430	0.34	342.75	8.25	0.12	0.04
09/07/99	09/07/99	1999	250	800	830	0.17	17.25	0.75	0.17	0.23
09/11/99	09/11/99	1999	254	1800	2000	0.84	105.25	2.25	0.69	0.37
09/18/99	09/18/99	1999	261	1845	1945	0.43	166.50	1.25	0.39	0.34
09/19/99	09/19/99	1999	262	2100	2330	0.85	25.00	2.75	0.21	0.31
09/20/99	09/20/99	1999	263	1530	1815	0.26	15.75	2.50	0.16	0.10
09/25/99	09/25/99	1999	268	1445	1600	1.37	116.25	1.50	1.30	0.91
10/03/99	10/03/99	1999	276	1430	1800	1.21	190.25	2.25	0.44	0.54
10/03/99	10/05/99	1999	278	1930	515	0.82	24.25	12.75	0.21	0.04
10/04/99	10/03/99	1999	284	2045	2100	0.25	146.25	0.50	0.25	0.50
10/11/99	10/11/99	1999	293	2045	2230	0.25	215.50	2.00	0.25	0.08
11/01/99	11/02/99	1999	306	1645	215	1.63	293.00	9.75	0.74	0.00
11/01/99	11/02/99	1999	328	1845	1900	0.19	544.25	0.50	0.19	0.17
12/13/99	12/14/99	1999	348	2315	200	0.13	460.00	3.00	0.13	0.08
12/13/99	12/14/99	1999	352	1830	615	0.43	88.25	12.00	0.12	0.04
12/17/99	12/18/99	1999	352	1245	1700	0.40	6.25	4.50	0.09	0.07
01/06/00	01/07/00	2000	2230	330	0.01	0.79	461.5	5	0.64	0.16
01/00/00	01/07/00	2000	1700	1830	0.01	0.73	85.5	1.5	0.29	0.10
01/10/00	01/10/00	2000	30	1145	0.02	0.42	318	11.25	0.13	0.06
01/24/00	01/24/00	2000	945	1845	0.01	0.62	166	6.5	0.13	0.10
02/14/00	02/14/00	2000	45	2030	2030	0.02	334.00	3.75	0.20	0.16
03/27/00	03/27/00	2000	87	1515	1630	0.22	1002.50	1.50	0.03	0.00
06/07/00	06/07/00	2000	159	1145	1415	0.32	1723.00	2.75	0.10	0.16
06/07/00	06/07/00	2000	165	1800	1945	1.29	147.50	2.00	1.27	0.10
06/17/00	06/17/00	2000	169	1845	2330	0.20	94.75	5.00	0.17	0.04
06/17/00	06/17/00	2000	171	2045	2100	0.20	45.00	0.50	0.17	0.74
06/19/00	06/21/00	2000	173	2045	15	0.24	23.50	3.75	0.37	0.06
06/22/00	06/21/00	2000	173	1445	1515	0.24	38.25	0.75	0.17	0.52
		2000	175	2015	2345	0.39	28.75	3.75	0.33	0.06
06/23/00	06/23/00	2000	175	1645	1700	0.22	17.00	0.25	0.13	0.84
06/24/00	06/24/00				1645	0.21	44.50	3.25	0.21	0.19
06/26/00	06/26/00	2000	178	1345	1215	0.81	63.75	3.75	0.57	0.19
06/29/00	06/29/00	2000	181	845		0.71	40.75	6.5	0.02	0.13
07/01/00	07/01/00	2000	183	515	1130	1.95	79.25	2.75	1.91	0.12
07/04/00	07/04/00	2000	186	1900	2130	0.26	41.5	0.75	0.26	0.71
07/06/00		2000	188	1515	1545	0.26	41.5	0.75	0.20	0.33
misses dat		2000	405	404E	40 <i>4E</i>	0.34	20	1.25	0.32	0.27
07/13/00	07/13/00	2000	195	1245	1345		na 45.25		1.55	0.27
07/15/00	07/15/00	2000	197	745	1530	1.98 0.36	45.25 142.5	8 0.75	0.36	0.25
07/21/00	07/21/00	2000	203	1415	1445		142.5 48	0.75 1.25	0.30	0.46
07/23/00	07/23/00	2000	205	1500	1600	0.46	48 17.25	6.25	0.31	0.37
07/24/00	07/24/00	2000	206	930	1530	0.67		2.5	0.19	0.11
07/26/00	07/26/00	2000	208	1930	2145	1.24	51.75	2.5	0.14	0.50

07/31/00	07/31/00	2000	213	1645	1730	1.99	114.75	1	1.99	1.99
07/31/00	07/31/00	2000	213	2200	2245	0.7	4.25	1	0.7	0.70

YE	AR	TV	VO
----	----	----	----

START END DATE DATE	YEAR	DAY Julian	START TIME hhmm	STOP TIME hhmm	TOTAL RAIN (in)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (in/hr)	AVG. INT, (in/hr)
Summary Data	r	Number of storms 49				Total rain 33.98 inches			
Average					0.69	163.02	3.30	0.45	0.36
Median Maximum					0.44 2.91	62.63 1723.00	2.50 12.75	0.28 1.99	0.25 1.99
Minimum Std.Dev.			e*		0.16 0.57	0.00 278.01	0.25 3.04	0.09 0.43	0.04 0.34
C.V.					0.83	1.71	0.92	0.97	0.95

c.v.=standard deviation/mean

Appendix B-3 Rainfall intensity, inter-event dry period, and storm duration calculated for individual storm events > than 0.4 cm (0.157 inches)

YEAR THREE (FOUR MONTHS)

									-4580x4	
START DATE	END DATE	YEAR	DAY Julian	START TIME hhmm	STOP TIME hhmm	TOTAL RAIN (in)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (in/hr)	AVG. INT, (in/hr)
08/09/00	08/09/00	2000	222	1515	1845	0.16	216.25	3.75	0.02	0.04
08/12/00	08/12/00	2000	225	215	715	1.07	55.25	5.25	1.03	0.20
08/12/00	08/12/00	2000	225	1030	1545	1.17	3.25	5.25	0.57	0.22
08/13/00	08/13/00	2000	226	430	530	0.16	12.5	1.25	0.15	0.13
08/14/00	08/14/00	2000	227	1100	1130	0.18	29.5	0.5	0.18	0.36
08/15/00	08/15/00	2000	228	1200	1215	0.18	12.25	0.5	0.18	0.36
08/22/00	08/22/00	2000	235	1400	1515	0.10	169.5	1.5	0.52	0.35
08/26/00	08/26/00	2000	239	1645	2115	0.49	97.25	4.75	0.14	0.10
08/29/00	08/29/00	2000	242	1045	1230	1.18	61.25	2	0.75	0.59
09/01/00	09/01/00	2000	245	400	500	0.23	39.25	1.25	0.12	0.18
09/07/00	09/07/00	2000	251	1900	2245	1.96	157.75	4	1.32	0.49
09/17/00	09/17/00	2000	261	1300	1515	2.04	218.75	18.5	0.73	0.11
09/19/00	09/19/00	2000	263	1900	2000	0.91	51.5	1.25	0.73	0.73
09/24/00	09/24/00	2000	268	1400	1630	1.16	113.75	2.75	1.12	0.73
11/10/00	11/10/00	2000	315	545	730	0.16	1117	2.73	0.09	0.42
	11/10/00	2000	330	2030	2115	0.10	372.75	1	0.03	0.08
11/25/00							12	3.5	0.93	0.93
11/26/00	11/26/00	2000	331	930	1245	0.36	12	3.5	0.10	0.10

YEAR THREE (FOUR MONTHS)

START EN DATE DA		DAY Julian	START TIME hhmm	STOP TIME hhmm	TOTAL RAIN (in)	INTER- EVENT (hrs)	DURA- TION (hrs)	MAX. INT, (in/hr)	AVG. INT, (in/hr)
Summary Data		Number of storms 17			Total rain 12.87				
Average					0.76	161.16	3.47	0.52	0.32
Median					0.53	61.25	2.00	0.52	0.22
Maximum					2.04	1117.00	18.50	1.32	0.93
Minimum					0.16	3.25	0.50	0.02	0.04
Std.Dev.					0.60	257.60	4.07	0.41	0.24
C.V.					0.79	1.60	1.17	0.79	0.76

APPENDIX C

RUNOFF COEFFICIENTS FOR BASIN IN THE PARKING LOT

Appendix C-1. Runoff coefficients for eight basins in the Florida Aquarium Parking Lot Calculated for 33 rain events occurring between August 1, 1998 to August 1, 1999.

YEAR ONE

	RAIN	MOFFIALL	VO/SWALE	ASPRALI	W/SWALE	CONCRETE	W/SWALE	PUKUUS I	N/SWALE
DATE	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
	INCHES	cu feet		cu feet	cu feet	cu feet	cu feet	cu feet	cu feet
08/05/98	0.57	0.73	0.78	0.16	0.44	0.13	0.41	0.05	0.15
08/06/98	0.68	0.52	0.48	0.14	0.29	0.19	0.36	0.08	0.17
08/07/98	1.30	0.52	0.50	0.18	0.32	0.26	0.45	0.13	0.28
08/09/98	2.47	0.84	0.66	0.45	0.58	0.64	0.66	0.51	0.59
08/20/98	0.68	0.84	0.79	0.33	0.71	0.45	0.75	0.12	0.41
09/03/97	1.97	0.83	0.67	0.33	0.48	0.45	0.57	0.27	0.40
09/17/98	0.49	0.60	0.53	0.08	0.23	0.04	0.17	0.01	0.07
09/18/98	0.66	0.43	0.40	0.02	0.12	0.03	0.20	0.00	0.04
09/19/98	0.75	0.40	0.39	0.05	0.16	80.0	0.24	0.00	0.07
09/20/98	1.85	0.66	0.61	0.21	0.39	0.31	0.58	0.08	0.34
09/26/98	1.64	0.62	0.61	0.18	0.35	0.25	0.46	0.06	0.27
11/05/98	1.20	0.35	0.35	0.01	0.04	0.00	0.03	0.00	0.00
12/13/98	0.37	0.39	0.36	0.06	0.11	0.00	0.01	0.00	0.00
01/03/99	1.23	0.76	0.56	0.30	0.46	0.18	0.38	0.18	0.24
01/23/99	2.60	0.63	0.53	0.35	0.43	0.38	0.43	0.21	0.32
03/14/99	0.82	0.62	0.41	0.07	0.22	0.03	0.14	0.01	0.03
04/17/99	0.54	0.35	0.40	0.02	0.06	0.00	0.00	0.00	0.00
05/11/99	0.17	0.49	0.36	0.02	0.04	0.00	0.00	0.00	0.00
05/14/99	0.28	0.44	0.34	0.03	0.11	0.01	0.01	0.00	0.00
05/21/99	1.36	0.56	0.47	0.14	0.34	0.14	0.25	0.02	0.14
05/30/99	0.39	0.69	0.64	0.05	0.29	0.02	0.06	0.00	0.01
06/05/99	0.44	0.30	0.26	0.04	0.10	0.02	0.02	0.00	0.00
06/09/99	0.81	0.57	0.53	0.11	0.31	0.09	0.22	0.01	0.08
06/12/99	0.12	0.53	0.33	0.05	0.07	0.00	0.00	0.00	0.00
06/13/99	1.32	0.73	0.64	0.29	0.53	0.37	0.51	0.19	0.36
06/16/99	1.68	0.79	0.60	0.33	0.57	0.53	0.56	0.26	0.44
06/17/99	0.77	0.64	0.51	0.15	0.38	0.29	0.37	0.07	0.21
06/18/99	1.40	0.97	0.86	0.45	0.78	0.66	0.67	0.39	0.53
07/01/99	1.53	0.47	0.40	0.13	0.28	0.20	0.26	0.05	0.15
07/07/99	0.81	0.47	0.42	0.07	0.26	0.08	0.19	0.01	0.07
07/09/99	1.17	0.59	0.41	0.18	0.36	0.35	0.33	0.12	0.23
07/14/99	1.58	0.43	0.36	0.03	0.20	0.04	0.13	0.00	0.02
07/20/99	0.88	0.43	0.40	0.06	0.23	0.06	0.17	0.01	0.05
TOTALS									
STATISTI	34.53								
Average	1.05	0.58	0.50	0.15	0.31	0.19	0.29	0.09	0.17
Median	0.82	0.57	0.30	0.13	0.29	0.13	0.25	0.02	0.14
maximum		0.97	0.46	0.15	0.23	0.13	0.75	0.51	0.59
Stddev	0.62	0.37	0.00	0.43	0.19	0.19	0.22	0.12	0.17
C.V.	0.52	0.10	0.17	0.13	0.60	1.01	0.76	1.44	0.98

Appendix C-2. coefficients for eight basins in the Florida Aquarium Parking Lot Calculated for 33 rain events occurring between August 1, 1999 to August 1, 2000.

YEAR TWO

SAMPLE	RAIN	ASPHALT V	VO/SWALE	ASPHALT	W/SWALE	CONCRETE	W/SWALE	POROUS W/SWALE		
DATE	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6	
	INCHES	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	
08/06/99	1.29	0.49	0.43	0.15	0.31	0.17	0.26	0.06	0.15	
08/12/99	0.70	0.59	0.45	0.13	0.35	0.14	0.30	0.02	0.12	
08/15/99	1.23	0.67	0.46	0.29	0.47	0.44	0.42	0.16	0.33	
08/19/99	0.90	0.76	0.64	0.23	0.56	0.37	0.48	0.11	0.31	
08/22/99	2.95	0.78	0.67	0.35	0.74	0.65	0.72	0.45	0.72	
09/11/99	0.84	0.47	0.44	0.07	0.24	0.03	0.17	0.07	0.17	
09/18/99	0.85	0.27	0.24	0.02	0.10	0.00	0.02	0.00	0.00	
09/25/99	1.37	0.38	0.46	0.31	0.39	0.30	0.36	0.12	0.25	
10/03/99	1.22	0.56	0.48	0.19	0.34	0.16	0.31	0.04	0.17	
10/04/99	0.98	0.28	0.21	0.01	0.12	0.02	0.15	0.00	0.00	
11/01/99	1.63	0.60	0.46	0.18	0.37	0.16	0.30	0.03	0.13	
12/17/99	0.75	0.27	0.16	0.00	0.02	0.00	0.01	0.00	0.00	
01/06/00	0.79	0.22	0.43	0.09	0.31	0.05	0.21	0.01	0.05	
01/24/00	0.68	0.36	0.28	0.00	0.10	0.00	0.09	0.00	0.00	
01/31/00	0.70	0.41	0.35	0.02	0.18	0.00	0.13	0.00	0.00	
06/13/00	1.29	0.64	0.60	0.05	0.16	0.05	0.28	0.04	0.13	
06/22/00	0.39	0.36	0.26	0.01	0.05	0.00	0.02	0.01	0.00	
06/***/00	1.39	0.16	0.23	0.01	0.09	0.00	0.08	0.01	0.00	
06/29/00	0.71	0.57	0.51	0.07	0.26	0.06	0.24	0.04	0.07	
07/01/00	0.81	0.58	0.47	0.04	0.21	0.03	0.22	0.02	0.03	
07/04/00	1.95	0.73	0.66	0.35	0.59	0.55	0.59	0.35	0.37	
07/08/00	1.07	0.66	0.58	0.10	0.39	0.13	0.40	0.10	0.18	
07/15/00	1.98	0.72	0.65	0.36	0.53	0.46	0.47	0.26	0.31	
07/26/00	1.24	0.38	0.25	0.07	0.15	0.02	0.15	0.01	0.03	
07/31/00	2.69	0.72	0.51	0.53	0.34	0.57	0.44	0.56	0.34	
TOTALS	inches			*						
	30.4									
STATISTI										
Average	1.22	0.51	0.44	0.14	0.30	0.17	0.27	0.10	0.15	
Median	1.07	0.56	0.46	0.09	0.31	0.06	0.26	0.04	0.13	
maximum	2.95	0.78	0.67	0.53	0.74	0.65	0.72	0.56	0.72	
Stddev	0.61	0.18	0.15	0.15	0.18	0.20	0.18	0.15	0.17	
C.V.	0.50	0.36	0.34	1.00	0.63	1.18	0.66	1.49	1.09	

*** June 27 and 28, 2000

7/8/00 F7 & F8 and 7/15/00 F1 & F2 substituted comparable storm for missing data

APPENDIX D

RUNOFF AMOUNTS FOR BASINS IN THE PARKING LOT

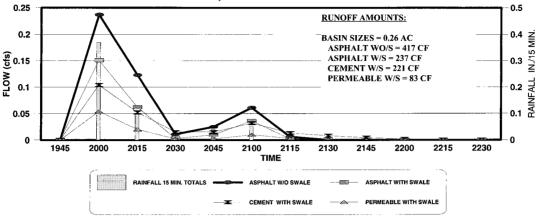
Appendix D-1. Runoff amounts (cubic feet) for eight basins in the Florida Aquarium Parking Lot Calculated for 33 rain events occurring between August 1, 1998 to August 1, 1999.

Υ	EΑ	R	O	N	Ε

SAMPLE	RAIN	ASPHALT V	VO/SWALE	ASPHALT	W/SWALE	CONCRETE	W/SWALE	POROUS \	N/SWALE
DATE	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
	INCHES	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet
08/05/98	0.57	391	417	75	238	61	221	25	83
08/06/98	0.68	331	310	80	189	110	228	44	112
08/07/98	1.30	638	610	191	396	281	554	141	338
08/09/98	2.47	1955	1535	934	1351	1324	1545	1059	1366
08/20/98	0.68	539	509	189	458	254	481	66	260
09/03/97	1.97	1539	1239	538	890	744	1064	442	742
09/17/98	0.49	276	246	33	107	17	77	3	32
09/18/98	0.66	266	248	9	74	16	127	0	23
09/19/98	0.75	281	274	30	112	51	171	0	51
09/20/98	1.85	1161	1064	320	673	474	1012	119	595
09/26/98 11/05/98	1.64 1.20	959 395	949 400	250 10	540 40	337	711	79	419
12/13/98	0.37	137	125	20	39	0 1	34 3	0	0
01/03/99	1.23	877	649	306	532	181	436	185	276
01/03/99	2.60	1552	1299	754	1049	833	1047	454	788
03/14/99	0.82	476	320	48	168	20	106	4	20
04/17/99	0.54	179	204	8	33	0	1	Ó	0
05/11/99	0.17	78	57	3	6	0	0	0	0
05/14/99	0.28	117	90	8	29	2	2	0	0
05/21/99	1.36	718	598	164	440	164	321	19	183
05/30/99	0.39	254	236	18	106	8	23	0	3
06/05/99	0.44	125	108	15	40	7	9	1	2
06/09/99	0.81	439	401	72	238	63	172	6	64
06/12/99	0.12	60	37	5	8	0	0	0	0
06/13/99	1.32	911	802	314	659	405	640	207	449
06/16/99 06/17/99	1.68 0.77	1256 468	957 374	457 95	903 278	748 185	887 268	359 44	694
06/17/99	1.40	1286	1134	529	1030	777	200 887	460	154 696
07/01/99	1.53	684	581	160	405	250	377	63	218
07/07/99	0.81	358	321	49	195	56	145	5	53
07/09/99	1.17	657	450	180	398	344	369	113	258
07/14/99	1.58	635	540	45	297	48	192	4	28
07/20/99	0.88	357	331	47	190	47	138	4	44
TOTALS	inches	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet
TOTALO	34.53	20,356	17,416	5,955	12,110	7,808	12,247	3,906	7,950
STATISTI									
Average	1.05	617	528	180	367	237	371	118	241
Median	0.82	468	401	75	238	63	221	19	83
maximum	2.60	1955	1535	934	1351	1324	1545	1059	1366
Stddev	0.62	472	386	227	346	315	391	216	315
C.V.	0.59	0.76	0.72	1.26	0.94	1.33	1.05	1.83	1.31
BASIN SIZ	ZE.								
acres		0.26	0.26	0.24	0.26	0.23	0.26	0.23	0.26
YEARLY F	RUNOFF FO	OR SAMPL	ES TAKE	N					
(ft3/ac)		78,914	67,733	24,812	46,577	33,948	47,102	16,982	30,578
	RUNOFF IF		RMS > 0.40	CM (0.15	IN) HAD F	RUNOFF AI	ND HAD BI	EEN SAMF	PLED
•	RE RAIN IN	•	70 025	20 279	54 061	40.050	55 F01	20 030	36.092
(ft3/ac)	RUNOFF IF	93,119 NORMAL	79,925	29,278 YEAR AN	54,961 ND ALL ST	40,059	55,581	20,039 ==32% MO	36,082 RF RAIN
(ft3/ac)	CONTOUR IF	104,167	89,408	32,752	61,482	44,812	62,175	22,417	40,362
				02,102	01,102	,	02,110	, , , , ,	.0,002

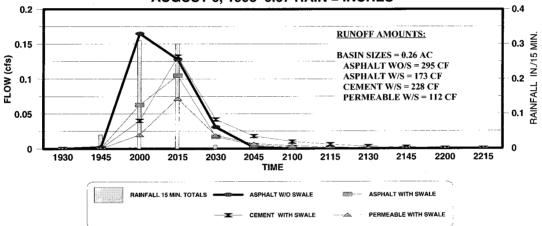
Appendix D-2. Runoff amounts (cubic feet) for eight basins in the Florida Aquarium Parking Lot Calculated for 33 rain events occurring between Aug. 1, 1999 to Aug 1, 2000

YEAR TWO

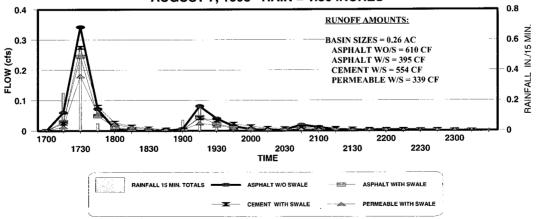

SAMPLE	SAMPLE RAIN ASPHALT WO/SWALE		ASPHALT	W/SWALE	CONCRETE	W/SWALE	POROUS	N/SWALE	
DATE	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
	INCHES	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet
08/06/99	1.29	601	529	168	383	180	311	62	185
08/12/99	0.70	392	299	68	233	80	199	12	77
08/15/99	1.23	778	538	313	542	456	488	160	387
08/19/99	0.90	644	547	178	474	276	406	81	262
08/22/99	2.95	2183	1872	897	2053	1611	2006	1119	2015
09/11/99	0.84	370	345	50	192	49	138	19	23
09/18/99	0.40	220	190	12	77	0	16	0	0
09/25/99	1.37	489	595	367	509	340	468	136	319
10/03/99	1.22	641	551	206	395	161	355	45	191
10/04/99	0.98	263	197	11	115	16	137	0	0
11/01/99	1.63	922	713	255	574	215	457	47	197
12/17/99	0.75	192	115	0	15	0	5	0	0
01/06/00	0.79	162	321	62	229	31	154	7	38
01/24/00	0.68	230	180	0	64	0	60	0	0
01/31/00	0.70	270	233	11	122	0	89	0	0
06/13/00 06/22/00	1.29 0.39	784 131	734 97	57	191	55	344	43	160
06/***/00	1.39	210	306	2 10	20 121	0 2	6 102	2 6	0 2
06/29/00	0.71	385	344	41	177	37	158	24	45
07/01/00 07/04/00	0.81 1.95	441 1348	363 1222	29	160	17	170	14	25
07/04/00	1.93	665	590	600 95	1087 398	892 115	1093 404	574	680
07/15/00	1.98	1348	1222	624	992	753	870	90 429	182 585
07/26/00	1.24	446	293	76	172	23	177	9	35
07/31/00	2.69	1836	1286	1251	1289	1269	1125	999	856
				.20.	1200	,200	1120	000	000
TOTALS	inches	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet	cu feet
	30.4	15951	13682	5383	10584	6578	9738	3878	6264
STATISTIC	CS								
Average	1.22	638	547	212	408	262	390	127	255
Median	1.07	446	363	62	192	55	199	43	138
maximum	2.95	2183	1872	1251	2053	1611	2006	1119	2015
Stddev	0.61	519	424	311	474	419	447	246	424
C.V.	0.50	0.81	0.78	1.47	1.16	1.60	1.15	1.93	1.66
BASIN SIZ	ZE	0.00	0.00	0.04	0.00	0.00	0.00	0.00	
acres	NINOTE E	0.26	0.26	0.24	0.26	0.23	0.26	0.23	0.26
	RUNOFF FO				20.225	20.470	27 454	42.020	04 505
(ft3/ac)	RUNOFF IF	61,350	52,623 PMS > 0.40	22,079 CM (0.45	39,235	28,470	37,454	13,830 EEN SAME	24,535
	RE RAIN IN		WI - 0.40	. CIVI (U. 13	III) LIAD R	CHOFF AI	ום מאוו שו	LLIN SAIVIF	LED
(ft3/ac)	10-4114 (14	73,620	63,148	26,495	47,082	34,163	44,945	16,597	29,442
	RUNOFF IF								
(ft3/ac)		85,890	73,672	30,911	54,928	39,857	52,435	19,363	34,348
, ,			,	,	,	,	,	,	,

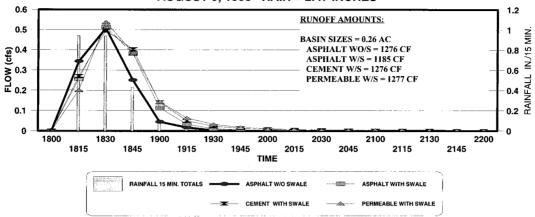
^{***} June 27 and 28, 2000

APPENDIX E

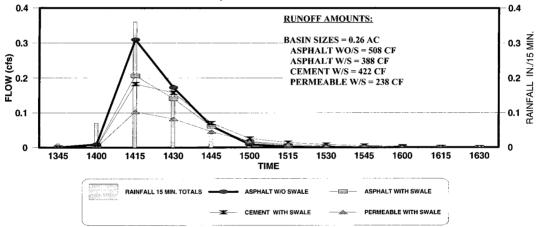

HYDROGRAPHS FOR EVEN NUMBERED BASINS IN THE PARKING LOT

AUGUST 5, 1998 RAIN = 0.56 INCHES

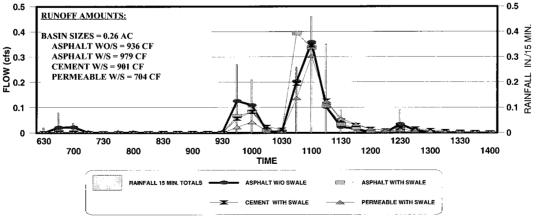

COMPARISON OF PAVING TYPES



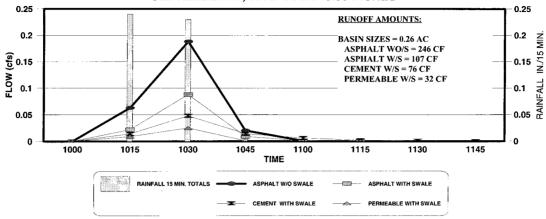
COMPARISON OF PAVING TYPES



AUGUST 9, 1998 RAIN = 2.47 INCHES

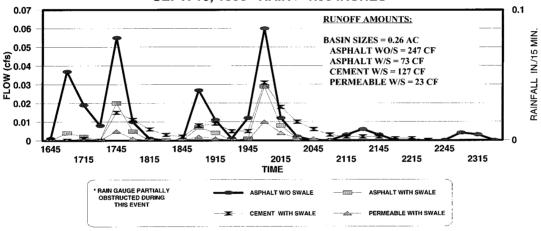

COMPARISON OF PAVING TYPES

AUGUST 20, 1998 RAIN = 0.68 INCHES

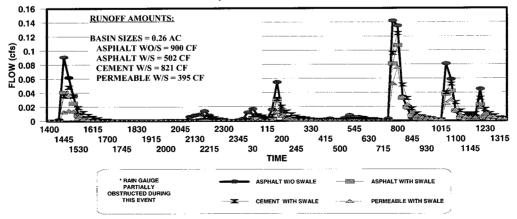


COMPARISON OF PAVING TYPES

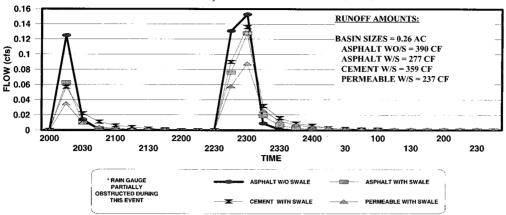
SEPT 3, 1998 RAIN = 1.97 INCHES



SEPTEMBER 17, 1998 RAIN= 0.68 INCHES

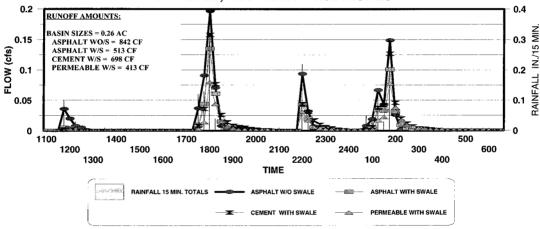

COMPARISON OF PAVING TYPES

SEPT. 18, 1998 RAIN > 1.96 INCHES*

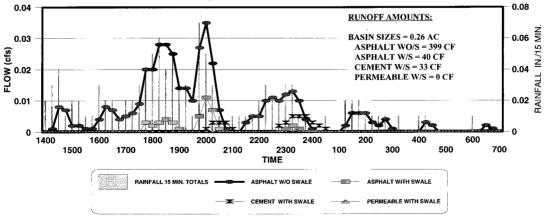


COMPARISON OF PAVING TYPES

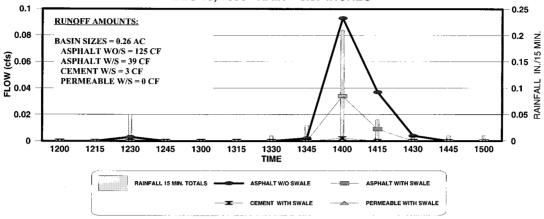
SEPT 19, 1998 RAIN > 1.19 INCHES*



SEPT 20, 1998 RAIN >1.85 INCHES*

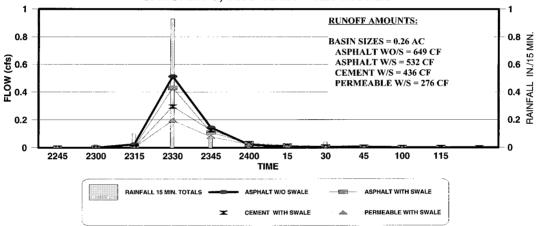

COMPARISON OF PAVING TYPES

SEP 26-27,1998 RAIN = 1.52 INCHES



COMPARISON OF PAVING TYPES

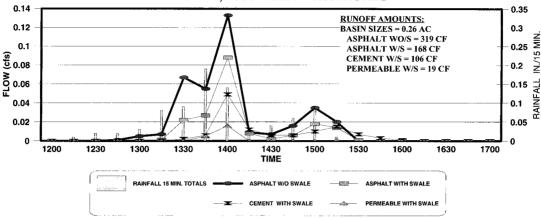
NOV. 5, 1998 RAIN = 1.20 INCHES



DEC 13, 1998 RAIN = 0.37 INCHES

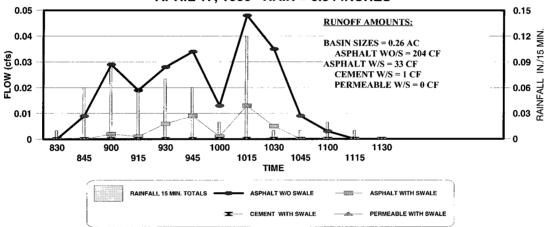
COMPARISON OF PAVING TYPES

JANUARY 3, 1999 RAIN = 1.23 INCHES

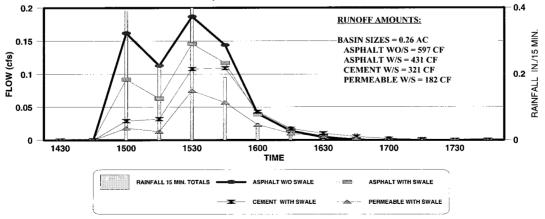


COMPARISON OF PAVING TYPES

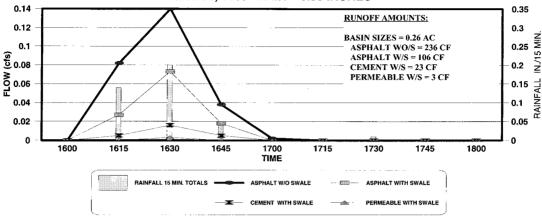
JANUARY 23, 1999 RAIN = 2.60 INCHES



MARCH 14, 1999 RAIN = 0.80 INCHES

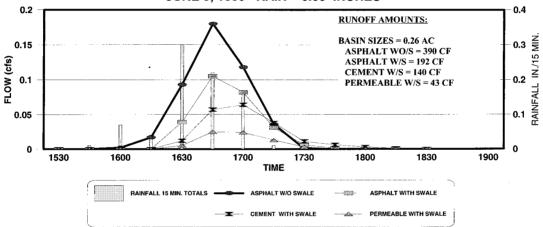

COMPARISON OF PAVING TYPES

APRIL 17, 1999 RAIN = 0.54 INCHES

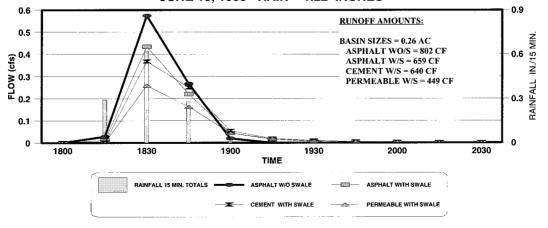


COMPARISON OF PAVING TYPES

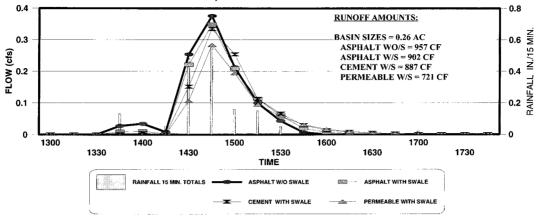
MAY 21, 1999 RAIN = 1.36 INCHES



MAY 30, 1999 RAIN = 0.39 INCHES

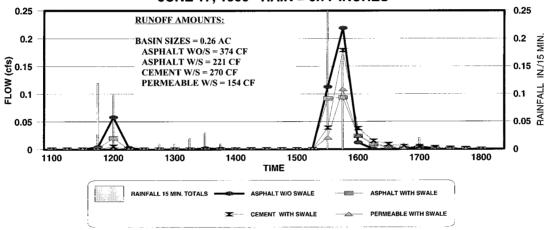

COMPARISON OF PAVING TYPES

JUNE 9, 1999 RAIN = 0.68 INCHES

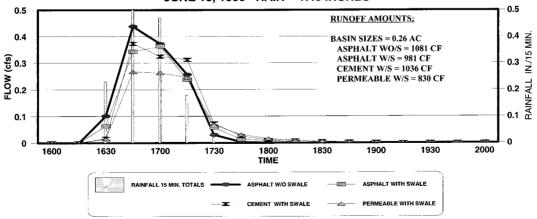


COMPARISON OF PAVING TYPES

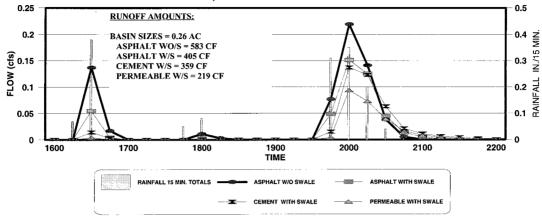
JUNE 13, 1999 RAIN = 1.22 INCHES



JUNE 16, 1999 RAIN = 1.68 INCHES

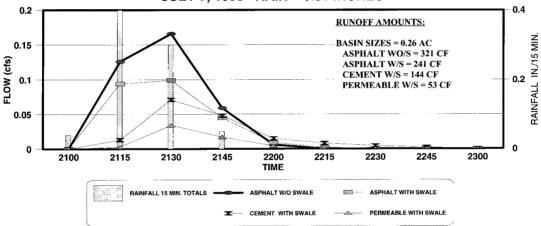

COMPARISON OF PAVING TYPES

JUNE 17, 1999 RAIN = 0.77 INCHES

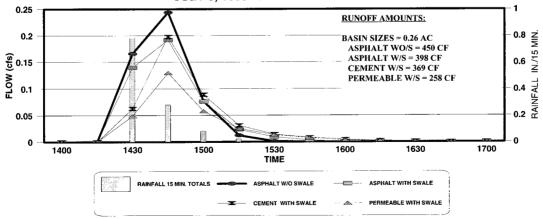


COMPARISON OF PAVING TYPES

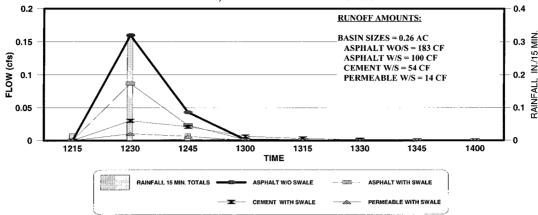
JUNE 18, 1999 RAIN = 1.40 INCHES



JULY 1, 1999 RAIN = 1.52 INCHES

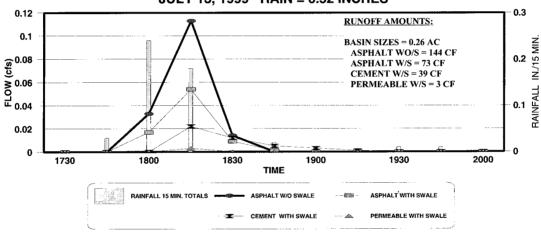

COMPARISON OF PAVING TYPES

JULY 7, 1999 RAIN = 0.81 INCHES

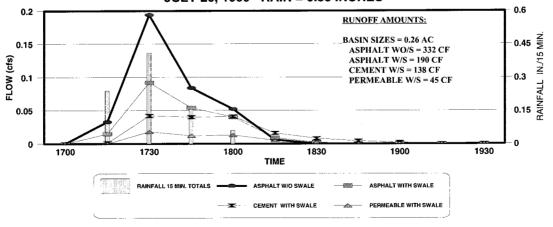


COMPARISON OF PAVING TYPES

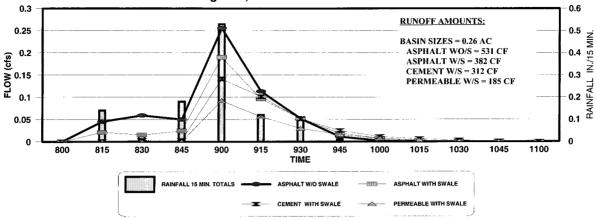
JULY 9, 1999 RAIN = 1.17 INCHES



JULY 12, 1999 RAIN = 0.36 INCHES

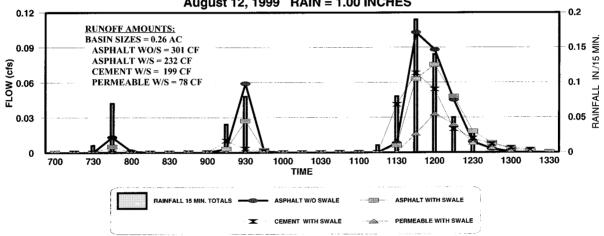

COMPARISON OF PAVING TYPES

JULY 13, 1999 RAIN = 0.52 INCHES

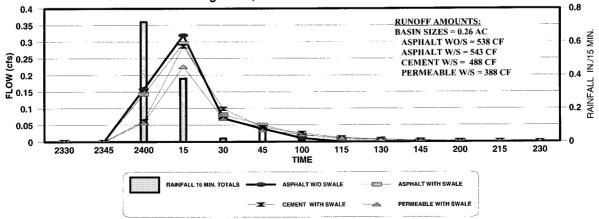


COMPARISON OF PAVING TYPES

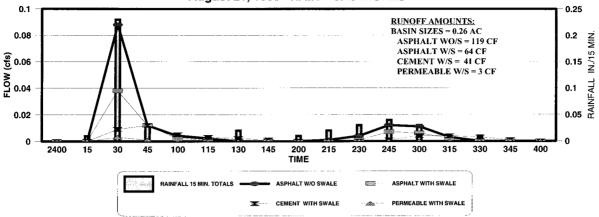
JULY 20, 1999 RAIN = 0.88 INCHES



August 6, 1999 RAIN = 1.13 INCHES

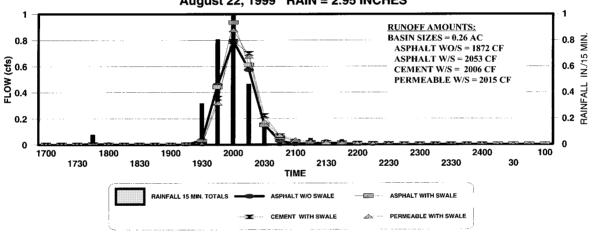

COMPARISON OF PAVING TYPES

August 12, 1999 RAIN = 1.00 INCHES

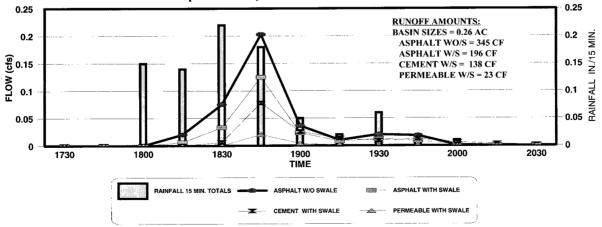


COMPARISON OF PAVING TYPES

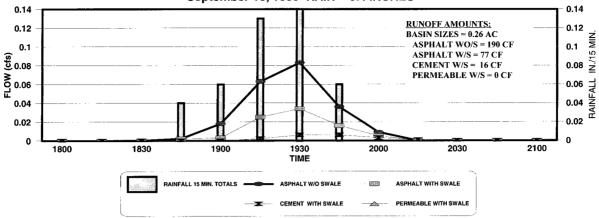
August 15, 1999 RAIN = 1.24 INCHES



August 21, 1999 RAIN = 0.45 INCHES

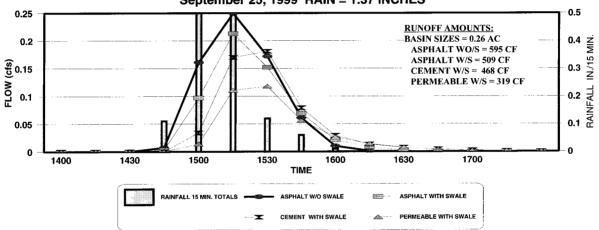

COMPARISON OF PAVING TYPES

August 22, 1999 RAIN = 2.95 INCHES

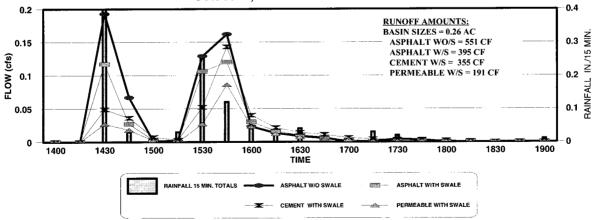


COMPARISON OF PAVING TYPES

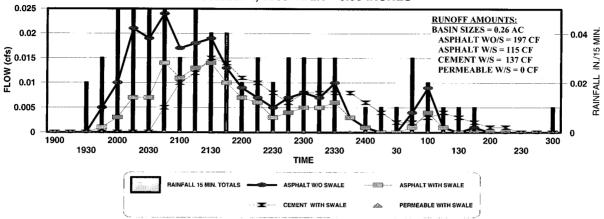
September 11, 1999 RAIN = 0.84 INCHES



September 18, 1999 RAIN = 0.4 INCHES

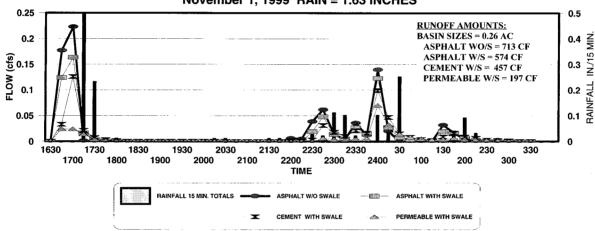

COMPARISON OF PAVING TYPES

September 25, 1999 RAIN = 1.37 INCHES

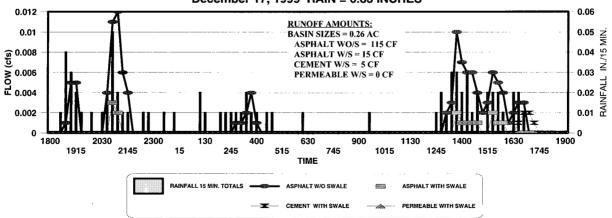


COMPARISON OF PAVING TYPES

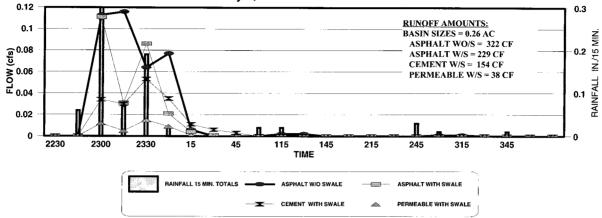
October 3, 1999 RAIN = 1.22 INCHES



October 4, 1999 RAIN = 0.98 INCHES

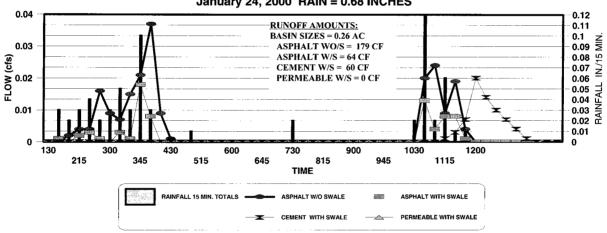

COMPARISON OF PAVING TYPES

November 1, 1999 RAIN = 1.63 INCHES

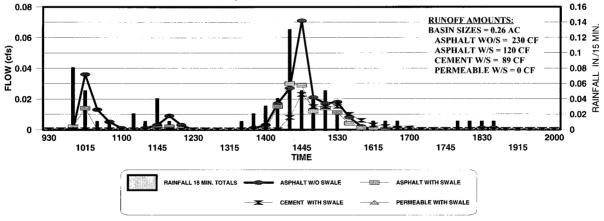


COMPARISON OF PAVING TYPES

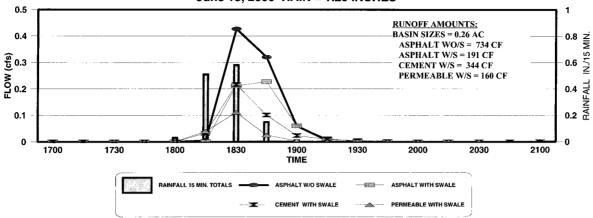
December 17, 1999 RAIN = 0.83 INCHES



January 6, 2000 RAIN = 0.79 INCHES

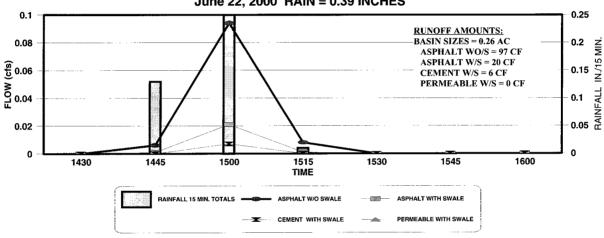

COMPARISON OF PAVING TYPES

January 24, 2000 RAIN = 0.68 INCHES

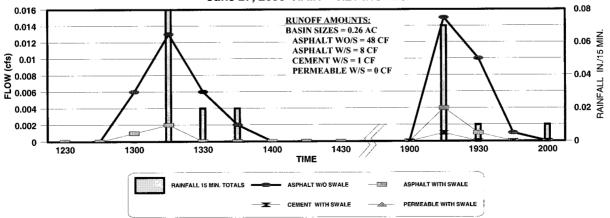


COMPARISON OF PAVING TYPES

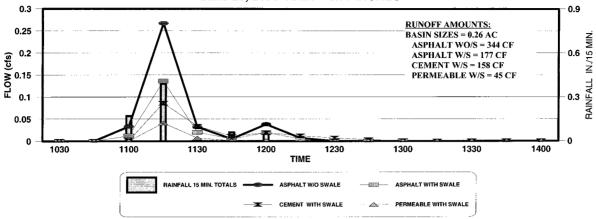
January 31, 2000 RAIN = 0.70 INCHES



June 13, 2000 RAIN = 1.29 INCHES

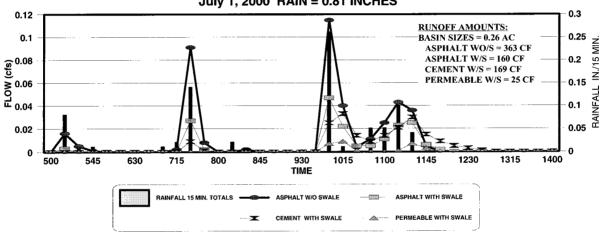

COMPARISON OF PAVING TYPES

June 22, 2000 RAIN = 0.39 INCHES

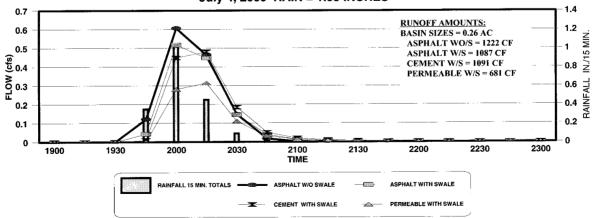


COMPARISON OF PAVING TYPES

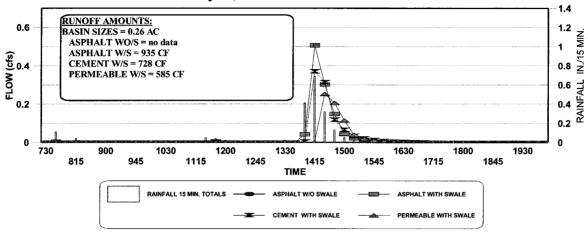
June 27, 2000 RAIN = 0.21 INCHES



June 29, 2000 RAIN = 0.71 INCHES

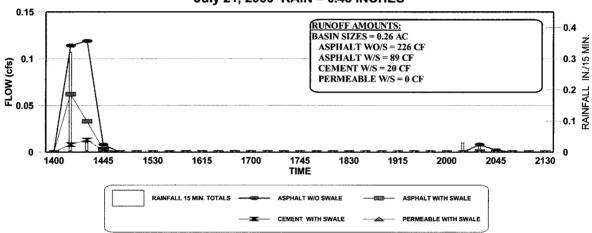

COMPARISON OF PAVING TYPES

July 1, 2000 RAIN = 0.81 INCHES

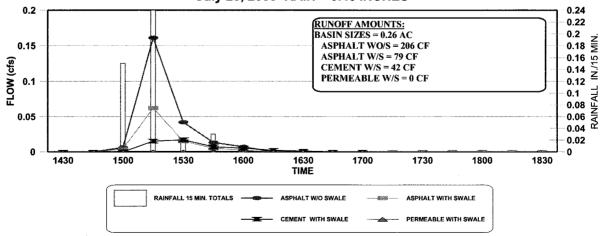


COMPARISON OF PAVING TYPES

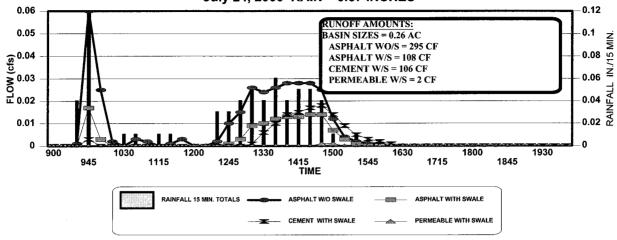
July 4, 2000 RAIN = 1.95 INCHES



July 15, 2000 RAIN = 1.98 INCHES

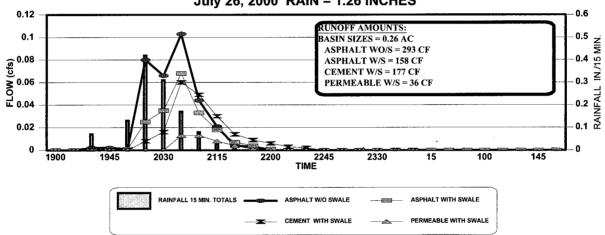

COMPARISON OF PAVING TYPES

July 21, 2000 RAIN = 0.43 INCHES

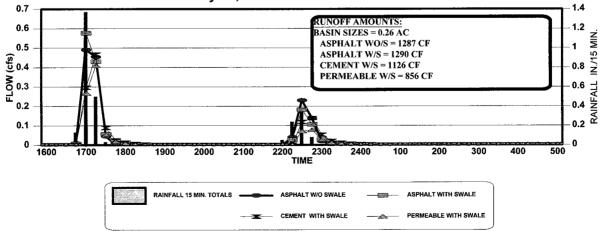


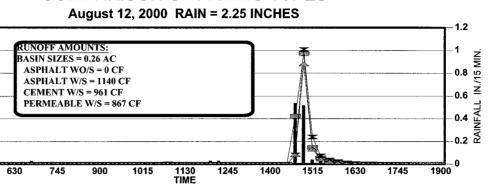
COMPARISON OF PAVING TYPES

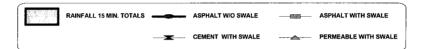
July 23, 2000 RAIN = 0.46 INCHES



July 24, 2000 RAIN = 0.67 INCHES

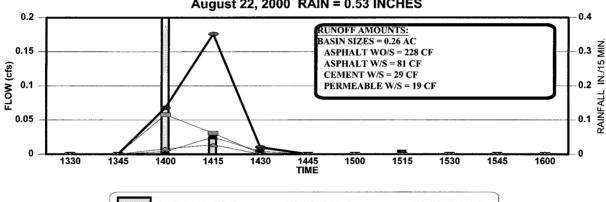

COMPARISON OF PAVING TYPES


July 26, 2000 RAIN = 1.26 INCHES

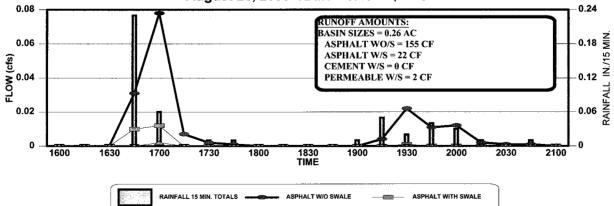


COMPARISON OF PAVING TYPES

July 31, 2000 RAIN = 2.69 INCHES



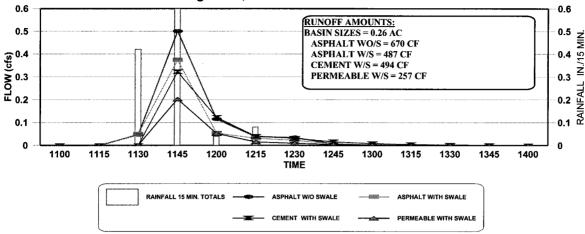
COMPARISON OF PAVING TYPES



COMPARISON OF PAVING TYPES

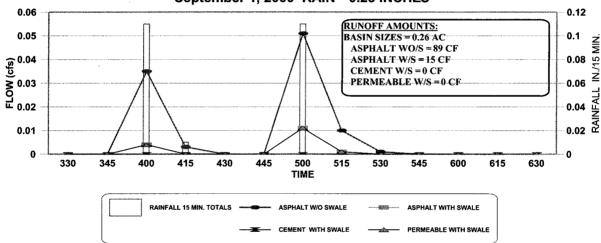
0.6

0.5

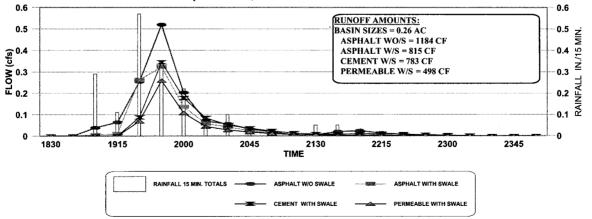

FLOW (cfs) 0.0 0.0 2.0

0

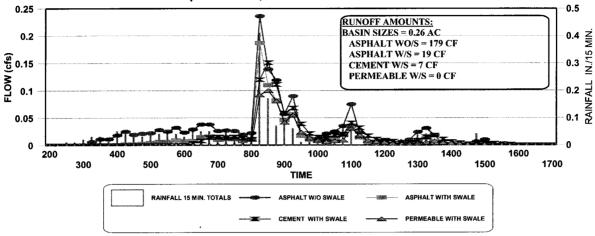
400


515

August 29, 2000 RAIN = 1.18 INCHES

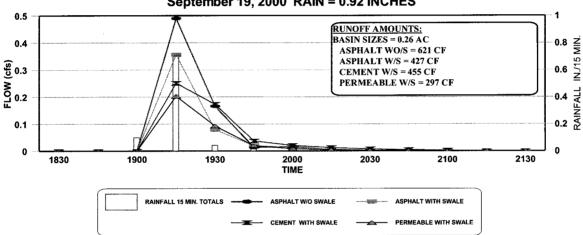

COMPARISON OF PAVING TYPES

September 1, 2000 RAIN = 0.23 INCHES

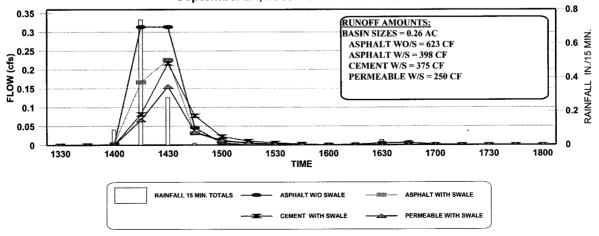


COMPARISON OF PAVING TYPES

September 7, 2000 RAIN = 1.97 INCHES



September 17, 2000 RAIN = 2.05 INCHES

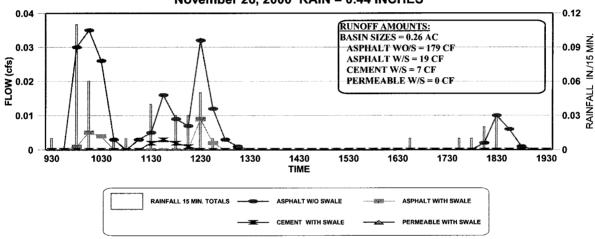

COMPARISON OF PAVING TYPES

September 19, 2000 RAIN = 0.92 INCHES



COMPARISON OF PAVING TYPES

September 24, 2000 RAIN = 1.17 INCHES



November 25, 2000 RAIN = 0.93 INCHES

COMPARISON OF PAVING TYPES

November 26, 2000 RAIN = 0.44 INCHES

APPENDIX F WATER QUALITY DATA SUMMARIES

Appendix F-1. Summary statistics for the water quality data collected for the parking lot low impact stormwater system at the Florida aquarium

						l				l		
NUTRIENT D		1	WO/SWALE		W/SWALE		E W/SWALE		W/SWALE		TREATMEN	
	RAIN	F1	F2	F7	F8	F3	F4	F5	F6	STRAND	DRAIN UNDER	POND
	MG/L											
AMMONIA - N												
No.Obs.	59	59	57	35	50	37	54	30	41	31	14	15
Average	0.140	0.113	0.110	0.099	0.111	0.056	0.068	0.082	0.049	0.041	0.044	0.047
Median	0.110	0.078	0.079	0.055	0.079	0.023	0.039	0.054	0.023	0.025	0.027	0.018
St.Dev.	0.130	0.107	0.112	0.119	0.112	0.105	0.075	0.069	0.066	0.040	0.043	0.065
C.V.	0.931	0.946	1.016	1.201	1.009	1.859	1.101	0.834	1.349	0.995	0.964	1.389
Maximum	0.761	0.506	0.567	0.482	0.475	0.577	0.293	0.291	0.345	0.156	0.137	0.221
Minimum	0.005	0.003	0.005	0.003	0.005	0.003	0.005	0.005	0.005	0.003	0.005	0.005
NITRATE - N												
No.Obs.	59	59	58	36	51	37	54	30	40	15	14	29
Average	0.259	0.247	0.270	0.266	0.293	0.230	0.290	0.250	0.221	0.100	0.065	0.062
Median	0.162	0.163	0.198	0.166	0.207	0.145	0.216	0.177	0.166	0.045	0.024	0.037
St.Dev.	0.319	0.271	0.323	0.353	0.399	0.254	0.368	0.275	0.214	0.133	0.069	0.070
C.V.	1.232 1.830	1.098 1.770	1.194 1.790	1.328 1.830	1.362 2.200	1.108 1.310	1.267 2.430	1.101 1.520	0.970 1.094	1.341 0.426	1.060 0.207	1.125 0.215
Maximum Minimum	0.005	0.005	0.005	0.005	2.200 0.005	0.005	0.005	0.005	0.005	0.426	0.207	0.215
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.003	0.005	0.003
NITRITE - N	60		50	24	50	27	55	20	40	45	44	20
No.Obs.	60 0.008	57 0.012	58 0.023	34 0.008	50 0.024	37 0.008	55 0.026	29 0.011	40 0.015	15 0.010	14 0.007	30 0.012
Average Median	0.008	0.012	0.023	0.006	0.024	0.005	0.026	0.011	0.015	0.010	0.007	0.012
St.Dev.	0.003	0.007	0.009	0.005	0.009	0.005	0.012	0.016	0.010	0.003	0.005	0.003
C.V.	4.063	2.378	3.480	0.695	3.356	0.686	2.312	0.579	2.183	1.624	0.887	1.979
Maximum	0.270	0.226	0.591	0.025	0.540	0.027	0.357	0.028	0.212	0.066	0.022	0.129
Minimum	0.003	0.003	0.002	0.002	0.003	0.002	0.003	0.003	0.002	0.003	0.003	0.002
TOTAL NITROGE	N											
No.Obs.	58	58	57	35	48	36	54	29	39	15	13	28
Average	0.499	0.549	0.555	0.714	0.782	0.617	0.725	0.679	0.667	0.536	0.534	0.670
Median	0.380	0.440	0.410	0.540	0.577	0.445	0.590	0.620	0.584	0.550	0.500	0.635
St.Dev.	0.466	0.475	0.511	0.602	0.620	0.561	0.533	0.452	0.493	0.305	0.416	0.366
C.V.	0.934	0.866	0.921	0.843	0.793	0.910	0.736	0.666	0.739	0.569	0.779	0.546
Maximum	2.300	2.700	2.600	2.500	2.500	2.500	2.700	1.800	2.400	1.200	1.800	1.700
Minimum	0.000	0.030	0.025	0.080	0.110	0.070	0.055	0.060	0.080	0.080	0.120	0.080
ORTHO-PHOSPI												
No.Obs.	60	59	58	36	50	37	55	30	40	15	14	30
Average	0.019	0.046	0.049	0.112	0.188	0.179	0.198	0.075	0.193	0.205	0.292	0.152
Median	0.005	0.030	0.025	0.105	0.126	0.155	0.125	0.066	0.159	0.140	0.213	0.112
St.Dev.	0.039	0.090	0.072	0.061	0.276	0.111	0.253	0.040	0.174	0.145	0.190	0.127
C.V.	2.001	1.960	1.474	0.548	1.465	0.617	1.275	0.540	0.904	0.708	0.653	0.832
Maximum	0.260	0.690	0.401 0.003	0.301 0.034	1.900	0.603 0.037	1.780	0.207 0.015	0.922 0.012	0.516 0.055	0.836 0.138	0.427 0.005
Minimum	0.005	0.005	บ.บบจ	0.034	0.023	0.037	0.036	0.015	0.012	0.000	V. 130	0.005
TOTAL PHOSPH										4-		•
No.Obs.	59	58	56	35	50	37	54	30	41	15	14	31
Average	0.024	0.084	0.084	0.156	0.263	0.216	0.248	0.109	0.232	0.255	0.338	0.309
Median	0.018	0.053	0.049	0.154	0.180	0.191	0.159	0.091	0.179	0.169	0.233	0.233
St.Dev.	0.022	0.130	0.101	0.074	0.339	0.126	0.317	0.065	0.217	0.178	0.215	0.289
C.V.	0.948	1.540	1.202	0.476	1.288	0.582	1.276	0.601	0.934	0.699	0.638	0.937
Maximum	0.123	0.972	0.513	0.394 0.046	2.330	0.652 0.050	2.190 0.058	0.286 0.023	1.270 0.035	0.664 0.070	0.936 0.159	1.430 0.053
Minimum	0.005	0.010	0.008	U.U40	0.040	V.V3U	0.000	0.023	0.033	0.070	V. 138	0.000

Appendix F-2. Summary statistics for the water quality data collected for the parking lot low impact stormwater system at the Florida aquarium. Abbreviation:na=not applicable

		1		ı		İ				1	~	
METAL DA	TA	ASPHALT	NO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	REST OF	TREATMEN	IT TRAIN
METAL DA	RAIN	F1	F2	F7	F8	F3	F4	F5	F6	STRAND	UNDER	POND
											DRAIN	
TOTAL SUSPEN	DED SO											
No.Obs.	na	50	50	29	42	32	41	22	36	14	13	30
Average	na	10.69	11.55	16.32	15.80	2.69	4.50	7.21	5.46	3.18	2.92	18.64
Median	na	7.69	7.83	7.05	10.98	1.77	2.86	4.42	3.81	2.66	1.62	5.55
St.Dev.	na	8.50	11.54	25.30	13.95	3.78	5.45	8.80	4.26	2.14	3.55	45.88
C.V.	na	0.79	1.00	1.55	0.88	1.41	1.21	1.22	0.78	0.67	1.22	2.46
Maximum	na	42.47	60.62	121.08	77.04	21.87	29.51	41.61	15.31	7.12	13.50	253.58
Minimum	na	1.92	1.09	0.00	2.71	0.16	1.27	1.38	0.51	0.73	0.26	1.07
TOTAL COPPE	R (ug/L)											
No.Obs.	60	59	58	36	51	37	55	31	41	15	14	30
Average	5.23	10.47	10.37	9.37	13.60	4.72	4.94	4.58	4.09	12.08	9.54	9.79
Median	3.50	8.60	7.35	6.75	9.20	3.60	4.40	3.30	3.60	10.50	7.45	4.65
St.Dev.	5.74	7.75	8.58	7.92	12.12	3.21	3.04	3.92	2.40	7.00	4.94	19.02
C.V.	1.10	0.74	0.83	0.85	0.89	0.68	0.62	0.86	0.59	0.58	0.52	1.94
Maximum	32.70	42.60	42.70	38.00	55.50	15.10	16.10	18.70	14.20	31.30	20.30	106.00
Minimum	0.15	0.15	1.75	0.15	0.15	0.90	0.15	0.15	0.15	3.80	4.70	0.15
William	0.15	0.13	1.73	0.15	0.13	0.90	0.13	0.13	0.13	3.00	4.70	0.13
TOTAL IRON (ug	n/I \	l										
No.Obs.	60	59	58	36	51	37	55	32	41	15	14	30
Average	92.1	408.3	356.0	281.9	461.7	67.2	91.9	119.8	88.5	59.7	94.6	603.3
Median	80.0	290.0	215.0	185.0	290.0	50.0	73.0	80.0	60.0	50.0	80.0	155.0
	77.9	352.4	327.2	295.4	463.9	67.5	73.0 81.1	121.7	78.5	34.8	64.6	1998.8
St.Dev.		P.	0.92	1				1.02	0.89	0.58	0.68	3.31
C.V.	0.85	0.86		1.05	1.00	1.01	0.88			1		11100
Maximum	380.0	1920.0	1390.0	1430.0	2120.0	370.0	430.0	550.0	350.0	140.0	240.0	
Minimum	12.5	60.0	50.0	9.5	15.2	12.5	3.5	12.5	3.8	15.0	15.0	50.0
TOTAL LEAD (u	n/L \											
No.Obs.	9, _ , 61	59	58	36	51	37	55	31	41	15	13	29
1	1.23	3.50	3.61	2.72	3.59	1.09	1.16	1.06	1.26	0.71	1.03	1.50
Average	1	i .								1		
Median	1.00	2.20	2.25	1.55	2.50	1.00	1.00	0.75	1.00	0.75	0.75	0.75
St.Dev.	0.84	3.16	3.40	3.02	3.06	0.64	0.67	0.76	0.78	0.14	0.74	1.77
C.V.	0.68	0.90	0.94	1.11	0.85	0.59	0.58	0.71	0.62	0.20	0.72	1.18
Maximum	5.20	14.20	14.20	15.60	13.30	3.40	3.20	4.60	4.00	0.75	3.30	9.90
Minimum	0.75	0.75	0.75	0.50	0.75	0.40	0.74	0.23	0.50	0.19	0.75	0.75
TOTAL	IEOE (<u> </u>										
TOTAL MANGAM			E0	20	E4	27	EF	24	44	45	42	31
No.Obs.	60	59	58	36	51	37	55	31	41	15	13	
Average	2.14	9.77	10.47	7.18	12.92	2.23	5.04	2.97	2.32	9.42	22.24	16.69
Median	1.90	7.40	7.25	5.75	7.85	1.80	2.80	2.30	1.80	7.70	19.60	10.70
St.Dev.	1.63	7.32	9.09	5.69	11.61	2.15	8.94	3.01	1.57	6.50	21.08	15.27
C.V.	0.76	0.75	0.87	0.79	0.90	0.97	1.77	1.01	0.68	0.69	0.95	0.91
Maximum	10.40	35.60	37.90	27.90	58.40	10.00	61.20	13.80	7.20	29.60	69.60	57.80
Minimum	0.30	2.70	0.50	1.50	2.36	0.05	0.07	0.50	0.50	3.50	0.50	3.40
	(2)	<u> </u>										
TOTAL ZINC (ug		l 50	F^					20	40	4-	40	20
No.Obs.	60	58	58	37	50	36	54	30	40	15	13	30
Average	30.71	41.21	37.64	33.04	42.91	17.85	20.83	19.58	21.89	16.83	8.46	19.33
Median	17.50	30.00	30.00	30.00	30.00	15.00	20.00	15.00	15.00	20.00	7.50	11.25
St.Dev.	35.24	35.92	31.19	22.78	34.48	11.85	11.56	13.02	26.33	11.78	3.47	20.04
C.V.	1.15	0.87	0.83	0.69	0.80	0.66	0.55	0.66	1.20	0.70	0.41	1.04
Maximum	180.00	160.00	160.00	100.00	150.00	60.00	70.00	60.00	173.54	50.00	20.00	80.00
Minimum	7.50	7.50	7.50	7.50	11.81	7.50	4.00	7.50	7.50	7.50	7.50	0.00
	l	L										

Appendix F-3. Summary statistics for the water quality data collected for the parking lot low impact stormwater system at the Florida aquarium

MAJOR ION	DATA	ASPHALT	NO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	REST	F TREATMEN	T TRAIN
	RAIN	F1	F2	F7	F8	F3	F4	F5	F6	TRAN	UNDER	PONE
	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	DRAIN MG/L	MG/L
HARDNESS												
No.Obs.	58	59	55	32	47	36	53	28	39	13	13	29
Average	4.176	25.935	26.344	24.164	29.120	19.832	31.707	46.625	31.445	28.313	48.256	129.55
Median	2.258	27.200	25.716	23.259	28.750	19.295	28.494	43.190	31.780	30.220	50.160	114.51
St.Dev.	10.086	8.441	7.024	7.117	9.001	6.859	12.907	26.002	8.954	10.061	23.748	85.666
C.V.	2.415	0.325	0.267	0.295	0.309	0.346	0.407	0.558	0.285	0.355	0.492	0.661
Maximum	75.080	46.550	47.720	42.008	54.820	37.210	80.640	105.730	47.790	44.732	106.100	432.56
Minimum	0.000	0.112	14.430	0.117	0.157	0.083	3.080	0.105	0.927	0.161	0.036	0.066
CHLORIDES	†											
No.Obs.	59	59	56	33	47	37	54	30	40	14	14	31
Average	1.277	1.213	1.203	1.610	1.787	1.495	1.962	1.384	1.619	2.085	3.414	27.636
Median	1.110	0.850	0.860	1.380	1.522	1.310	1.769	1.400	1.545	1.995	2.490	14.200
St.Dev.	0.734	0.795	0.767	0.914	1.267	0.893	1.164	0.676	0.901	0.829	2.956	55.29
C.V.	0.575	0.656	0.638	0.568	0.709	0.597	0.593	0.489	0.557	0.397	0.866	2.001
Maximum	3.200	3.550	2.940	4.140	6.330	4.530	6.700	3.070	4.550	3.250	13.200	314.00
Minimum	0.200	0.200	0.200	0.510	0.130	0.390	0.610	0.480	0.468	0.600	1.460	1.110
POTASSIUM	 											
No.Obs.	59	59	56	32	47	37	54	30	40	14	14	30
Average	0.174	0.273	0.281	0.888	1.053	2.616	2.579	1.509	2.829	2.496	3.749	6.639
Median	0.080	0.260	0.165	0.625	0.660	1.890	2.000	1.495	2.080	1.275	2.915	5.665
St.Dev.	0.238	0.212	0.310	0.874	1.371	1.701	1.892	0.614	2.143	2.642	2.823	6.375
C.V.	1.370	0.776	1.103	0.984	1.302	0.650	0.733	0.407	0.758	1.058	0.753	0.960
Maximum	1.500	1.180	1.560	4.230	7.820	8.870	11.000	3.070	11.200	10.200	10.300	24.10
Minimum	0.020	0.020	0.020	0.025	0.020	1.020	0.470	0.250	0.260	0.350	1.120	0.025
SODIUM												
No.Obs.	59	59	56	33	46	37	54	30	40	14	14	31
Average	0.732	0.695	0.716	0.659	0.874	0.825	1.184	0.801	0.943	0.908	2.837	25.359
Median	0.410	0.410	0.400	0.460	0.562	0.700	1.022	0.740	0.705	1.015	1.625	8.650
St.Dev.	2.060	1.658	1.861	0.432	1.196	0.420	0.613	0.424	1.094	0.416	4.993	42.984
C.V.	2.813	2.388	2.598	0.655	1.369	0.509	0.518	0.529	1.161	0.458	1.760	1.695
Maximum	16.100	13.000	14.200	1.650	8.140	2.090	2.930	1.650	7.200	1.410	20.000	174.00
Minimum	0.030	0.170	0.130	0.030	0.156	0.070	0.189	0.030	0.100	0.110	0.120	0.760
CALCIUM	 											
No.Obs.	58	59	55	32	47	36	53	28	39	13	13	30
Average	1.421	10.431	10.285	9.351	11.064	7.574	11.827	18.945	12.160	10.787	18.138	46.513
Median	0.800	10.600	10.200	9.015	10.885	7.190	10.657	18.400	12.430	10.600	17.500	40.30
St.Dev.	3.517	2.832	2.722	2.113	3.445	2.159	4.700	9.814	3.400	2.036	6.579	26.65
C.V.	2.475	0.271	0.265	0.226	0.311	0.285	0.397	0.518	0.280	0.189	0.363	0.573
Maximum	25.800	17.800	18.500	15.900	20.800	13.700	25.700	42.100	18.300	16.100	38.000	148.00
Minimum	0.000	5.260	5.650	6.170	0.030	3.360	0.830	6.350	0.190	8.160	10.500	14.00
SULFATE												
No.Obs.	57	57	54	32	46	36	52	28	38	14	14	29
Average	2.417	3.330	3.509	3.534	3.828	3.560	4.515	3.464	3.815	4.476	9.104	47.55
Median	2.200	3.050	3.121	3.115	3.345	3.185	4.360	3.055	3.620	4.195	4.845	20.60
St.Dev.	1.366	1.866	2.116	1.720	1.886	1.758	1.784	1.279	1.763	1.361	14.617	65.73
C.V.	0.565	0.560	0.603	0.487	0.493	0.494	0.395	0.369	0.462	0.304	1.605	1.382
Maximum	5.930	9.010	11.900	9.370	9.260	9.650	10.500	7.110	10.100	7.050	59.400	338.00
Minimum	0.440	0.510	0.390	1.560	0.005	1.020	0.360	1.690	0.005	2.390	2.460	4.370
MAGNESIUM	+											
No.Obs.	57	58	54	32	46	36	52	28	39	13	13	29
Average	0.162	0.175	0.654	0.382	0.426	0.355	0.537	0.193	0.377	0.934	1.506	4.870
Median	0.080	0.175	0.054	0.390	0.400	0.340	0.459	0.200	0.410	1.030	1.490	2.76
St.Dev.	0.345	0.133	2.557	0.152	0.216	0.178	0.530	0.103	0.191	0.526	0.871	5.562
C.V.	2.127	0.728	3.912	0.132	0.507	0.501	0.988	0.535	0.507	0.563	0.578	1.142
Maximum	2.590	0.720	15.700	0.720	0.950	0.740	4.000	0.450	0.860	2.090	3.030	20.20
Minimum	0.000	0.000	0.000	0.000	0.020	0.000	0.005	0.000	0.000	0.020	0.120	0.000
	1	1				I				1		

Appendix F-4. Comparison of median concentrations betw een years. The number of samples taken is also included. Basins with swales and/or larger garden areas had less runoff and few er samples taken when compared to basins without swales. Once the berm was repaired samples were also collected in the strand, under drain pipe and pond. (bd=below detection limit, na=not available)

			ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	REST OF	TREATME	NT TRAIN
CONST	TUENT	RAIN	F1	F2	F7	F8	F3	F4	F5	F6	STRAND		POND
												DRAIN	****
		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
													-
	A - N (mg/L	•	0.070	0.063	0.034	0.049	0.015	0.018	0.049	0.016	na	na	0.027
median	year one	0.088	0.070	0.003	0.034	0.049	0.013	0.018	0.049	0.010	0.012	0.017	0.027
median	year two	0.111 30	31	30	17	22	18	25	12	20	0.012	1	13
count	year one	23	24	22	13	23	14	23	13	16	10	9	13
count NITRATE	year two	25	24		13		17	20	13	.10	<u> </u>		- 10
median	year one	0.142	0.142	0.205	0.109	0.191	0.108	0.211	0.111	0.125	na	na	0.025
median	year two	0.182	0.188	0.191	0.223	0.221	0.254	0.217	0.249	0.214	0.045	0.025	0.046
count	year one	30	32	31	18	23	18	26	12	20	0	1	11
count	year two	29	27	27	18	28	19	28	18	20	15	13	18
	ITROGEN (
median	year one	0.38	0.41	0.37	0.40	0.48	0.31	0.54	0.47	0.48	na	na	0.66
median	year two	0.36	0.44	0.41	0.52	0.56	0.53	0.65	0.58	0.62	0.34	0.37	0.45
count	year one	30	32	31	18	23	18	26	12	20	0	1	11
count	year two	22	22	21	12	20	13	22	12	14	10	8	12
ORTHO-F	PHOSPHOR	RUS (mg/	L)										
median	year one	0.005	0.033	0.027	0.097	0.134	0.135	0.122	0.049	0.097	na	na	0.099
median	year two	0.005	0.026	0.024	0.111	0.108	0.182	0.151	0.069	0.181	0.167	0.249	0.150
count	year one	31	32	31	18	23	18	26	12	20	0	1	12
count	year two	23	23	22	13	22	14	23	13	15	10	9	13
TOTAL P	HOSPHOR	US (mg/L)										
median	year one	0.012	0.054	0.057	0.114	0.161	0.168	0.149	0.068	0.120	na	na	0.286
median	year two	0.023	0.052	0.044	0.156	0.174	0.215	0.198	0.093	0.245	0.193	0.357	0.238
count	year one	30	31	30	17	22	18	25	12	20	0	1	12
count	year two	23	23	21	13	23	14	23	13	16	10	9	14
TOTAL C	OPPER (ug	g/L)											
median	year one	3.6	9.0	7.0	5.7	7.6	3.4	3.5	2.7	3.5	na	na	7.4
median	year two	4.1	8.1	8.3	6.8	9.2	4.1	5.3	3.3	3.5	10.1	7.7	4.8
count	year one	31	32	31	18	23	18	26	12	20	0	1	12
count	year two	23	23	22	13	23	14	23	14	16	10	9	13
}	RON (ug/L)			050	405	0.40		70	70	40			000
median	year one	90	335	250	135	240	55	72	78	48	na	na	200
median	year two	60	270	210	180	323	45	70	70	70	50	80	150
count	year one	31	32	31	18	23	18	26	12	20	0	1	12
count	year two	23	23	22	13	23	14	23	15	16	10	9	13
	EAD (ug/L)		270	2.70	hal	2.60	hal	hd	b d	bd		no	1.00
median	year one	bd 0.75	2.70	2.70 2.25	bd 1.5	2.60 2.1	bd bd	bd bd	bd bd	bd bd	na 0.75	na 0.75	1.00 0.75
median	year two	0.75 32	2.00 32	2.25 31	1.5 18	2.1	18	26	12	20	0.75	0.75	11
count	year one	32 23	23	22	13	23 23	14	23	14	16	10	9	13
COUNT	year two				13		' ''	2.9	17	10	 ' '		
median	vear one	2.0	8.0	8.1	4.4	6.4	1.5	3.1	2.3	1.6	na	na	15.8
median	year two	1.8	6.5	7.0	5.6	7.9	2.0	2.8	2.0	1.7	9.4	19.6	7.8
count	year one	31	32	31	18	23	18	26	12	20	0	0	13
count	year two	23	23	22	13	23	14	23	14	16	10	9	13
	INC (ug/L)		<u>-</u> -		l <u>~</u>	 _	- ' ' -						
median	year one	bd	30.0	30.0	30.0	20.0	bd	bd	bd	bd	na	na	15.0
median	year two	20.0	20.0	30.0	20.0	31.2	7.5	20.0	7.5	10.0	7.5	7.5	7.5
count	year one	32	32	31	19	23	18	26	12	20	0	1	13
count	year two	22	22	22	13	22	13	22	13	15	10	8	12
	USPENDE		·		· · ·						l		·
median	year one	na	7.69	8.73	5.31	9.35	1.74	3.59	2.45	2.30	na	na	10.79
median	year two	na	6.70	6.86	9.79	11.71	1.47	2.23	3.31	4.53	2.99	1.70	5.80
count	year two	na	28	27	14	18	17	20	9	19	0	1	12
	, ou. one								1		ı		
count	year two	na	19	18	10	19	10	15	8	12	10	9	13

APPENDIX G ALL THE WATER QUALITY DATA

APPENDIX G - 1a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

YE	AR ONE	•											
1	998-99		ASPHALT	WO/SWALE	CONCRETI	W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
	IN.	WIG/L	WIGIL	WIG/L	W/G/L	IVIG/L	WG/L	IWIG/L	WG/L	WIG/L	WG/L	WIG/L	WIG/L
08/05/98	0.57	0.005	0.048	0.035	na	0.005	na	na	na	na	na	na	na
08/06/98	0.68	0.005	0.005	0.005	0.005	0.005	na	0.005	na	0.005	0.109	na	na
08/07/98	1.30	0.218	0.235	0.220	0.005	0.037	0.110	0.010	0.111	0.195	na	na	na
08/09/98	2.47	0.296	0.265	0.204	0.098	0.079	0.207	0.074	0.144	na	na	na	na
08/20/98	0.68	0.079	0.062	0.044	0.028	0.013	na	0.005	0.032	0.005	na	na	na
09/03/98	1.97	0.051	0.044	0.013	0.005	0.008	0.028	0.017	0.025	0.028	0.005	na	na
09/***/98	1.85	0.208	0.003	0.067	0.003	0.006	0.052	0.006	0.003	0.025	0.003	na	na
09/17/98	0.49	0.024	0.040	0.005	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.017	0.013	0.005	na	0.005	na	na	na	na	0.005	na	na
09/19/98	0.75	0.005	0.005	0.008	0.005	0.005	na	0.005	0.005	na	0.005	na	na
09/20/98	1.85	0.064	0.074	0.060	0.005	0.005	0.087	0.012	0.014	0.046	na	na	na
09/26/98	1.64	na	0.005	0.005	0.005	0.005	na	0.005	0.005	0.005	na	na	na
11/05/98	1.20	0.005	0.033	0.021	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.077	0.005	na	na	na	na	na	0.005	na	na	na	na
01/03/99	1.23	0.050	0.025	0.033	0.005	0.050	0.033	0.005	0.048	0.045	na	na	na
01/23/99	2.60	0.032	0.016	0.021	0.011	0.034	0.039	0.015	0.018	0.031	0.019	na	na
02/28/99	0.36	0.106	0.175	0.100	na	na .	na	na	na	0.142	0.005	na	na
03/14/99	0.80	0.128	0.119	0.163	na	0.293	na	na	na	0.351	0.074	na	na
04/17/99	0.54	0.127	0.216	0.223	na	na	na	na	na	na	na	na	na
05/21/99	1.34	0.496	0.506	0.567	0.202	0.237	na	0.163	0.482	0.475	na	na	na
05/30/99	0.39	0.357	0.467	0.462	na	na	na	na	na	0.320	na		na
06/09/99	0.81	0.040	0.005	0.016	na	0.005	na	0.011	na	0.019	na	na	
06/13/99	1.22	0.183	0.103	0.010	0.024	0.047	0.128	0.011	0.100	0.019		na	na
06/16/99	1.68	0.103	0.103	0.069	0.024	0.030	0.120	0.023		0.052	na 0.148	na	na
06/17/99	0.77	0.102	0.070	0.050	0.027	0.030		0.017	0.055			na	na
06/18/99			0.039				na 0.045		na 0.034	0.152	na	na	na
	1.60	0.113		0.094	0.023	0.025	0.045	0.035	0.034	0.026	na	na	na
07/01/99	1.53	0.223	0.178	0.110	0.045	0.005	0.033	0.038	0.078	0.091	0.073	na	na
07/07/99	0.81	0.149	0.187	0.180	na	0.019	na	na	na	0.137	na	na • • • • •	na
07/09/99	1.17	0.067	0.073	0.045	0.025	0.033	0.056	0.018	0.054	0.037	0.027	0.027	na
07/13/99	1.58	0.080	0.177	0.128	na	0.011	na	na	na	0.078	0.052	na	na
07/20/99	0.88	0.184	0.200	0.079	na	0.018	na	0.096	na	na	0.039	na	na
RAIN TOTAL	35.79												
	3												
No.Obs.		30	31	30	18	25	12	20	17	22	13	na	na
Average		0.120	0.112	0.107	0.030	0.042	0.071	0.029	0.071	0.107	0.043	na	na
Median		0.088	0.070	0.063	0.015	0.018	0.049	0.016	0.034	0.049	0.027	na	na
St.Dev.		0.114	0.127	0.131	0.049	0.071	0.054	0.040	0.114	0.126	0.046	na	na
C.V.		0.950	1.132	1.225	1.623	1.697	0.750	1.364	1.592	1.176	1.063	na	na
l aximum		0.496	0.506	0.567	0.202	0.293	0.207	0.163	0.482	0.475	0.148	na	na
Minimum		0.005	0.003	0.005	0.003	0.005	0.028	0.005	0.003	0.005	0.003	na	na

9/***/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 1b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	TWO plus 4 999-00	mo				= 14//O14/41 =	2020110			14//514/41 #	DEST 05	TDF 4 T44F4	T TD 4111
DATE	RAIN	RAIN	F1	F2	F3	F4	F5	W/SWALE F6	F7	W/SWALE F8	STRAND	UNDER	POND
	AMOUNT IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	DRAIN MG/L	MG/L
08/06/99	1.29	0.005	0.005	0.005	0.016	0.005	0.005	0.005	0.005	0.005	0.005	0.012	0.005
08/12/99	0.70	0.164	0.142	0.079	0.005	0.029	na	0.017	na	0.069	na	na	na
08/14/99	1.23	0.310	0.145	0.116	0.017	0.061	0.092	0.025	0.105	0.083	0.021	0.017	0.023
08/19/99	0.90	na	0.045	0.030	0.018	0.048	0.017	0.021	0.056	0.018	0.024	0.113	0.016
08/22/99	2.95	0.110	0.078	0.062	0.005	0.018	0.020	0.040	0.005	0.023	0.005	na	0.014
09/11/99	0.84	0.212	0.301	0.195	na	0.064	na	na	na	0.245	na	na	0.025
09/18/99	0.85	0.121	0.005	0.005	0.005	0.039	na	0.021	0.005	0.005	0.005	0.005	0.011
09/25/99	1.37	0.047	0.056	0.036	0.005	0.028	0.020	0.038	0.051	0.068	0.005	0.005	0.005
10/03/99	1.22	0.184	0.094	0.131	0.019	0.035	0.043	0.036	0.070	0.068	0.018	0.017	0.025
10/04/99	0.98	0.013	0.021	0.013	na	0.059	na	na	na	0.107	0.005	0.137	0.156
11/01/99	1.63	0.052	0.014	na	0.032	0.185	0.051	0.047	na	0.069	na	0.084	0.063
12/17/99	0.75	0.036	0.032	0.066	na	na	na	na	na	na	na	na	na
01/06/00	0.79	0.178	0.200	0.239	na	0.175	na	na	na	0.163	na	na	na
01/24/00	0.68	0.099	0.075	0.084	na	0.205	na	na	na	0.080	na	na	na
01/31/00	0.70	0.087	0.080	0.062	na	0.223	na	na	na	0.112	na	na	na
06/13/00	1.29	0.293	0.240	0.279	0.577	0.260	na	0.345	0.412	0.410	na	na	na
06/22/00	0.39	0.174	0.178	0.243	na	na	na	na	na	0.207	na	na	na
06/***/00	1.39	0.095	0.143	0.135	na	0.127	0.291	na	na	na	na	na	na
06/29/00	0.71	0.046	0.085	0.066	na	0.145	0.058	0.022	na	0.065	na	na	na
07/01/00	0.81	0.111	0.179	0.116	na	0.072	na	na	0.288	0.102	na	na	na
07/04/00	1.95	0.151	0.179	0.097	0.091	0.103	0.107	0.095	0.114	0.112	na	na	na
07/08/00	1.07	0.320	0.232	0.208	0.093	0.077	0.093	0.062	0.143	0.176	0.061	na	0.011
07/15/00	1.98	0.103	na	na	0.029	0.094	0.045	0.061	0.043	0.050	na	na	0.005
07/26/00	1.24	na	0.130	na	na	0.039	na	0.072	na	0.108	na	na	na
07/31/00	2.69	0.222	0.047	0.105	0.058	0.060	0.084	0.047	0.081	0.109	0.086	0.047	0.057
08/12/00	2.41	0.054	0.074	na	0.044	0.051	0.052	0.079	0.050	0.093	0.017	0.026	0.049
08/29/00	1.20	0.267	0.226	0.126	0.026	0.017	0.108	0.005	0.164	0.026	0.005	0.012	0.070
09/07/00	1.96	0.155	0.112	0.074	0.083	0.106	0.105	0.066	0.117	0.125	0.161	0.036	0.066
09/17/00	2.05	0.157	na	0.079	na	0.082	na	0.085	na	0.067	0.06	na	0.050
09/24/00	1.16	0.761	na	0.358	0.188	0.212	0.242	0.236	0.384	0.410	0.221	0.081	0.045
11/26/00	0.93	0.121	0.045	0.053	0.238	0.005	0.178	na	0.167	na	na	na	na
TOTAL													
RAIN	40.11												
No.Obs.		29	28	27	19	29	18	21	18	28	15	13	18
Average		0.160	0.113	0.113	0.082	0.090	0.090	0.068	0.126	0.113	0.047	0.046	0.039
Median		0.121	0.090	0.084	0.029	0.064	0.071	0.047	0.093	0.088	0.018	0.026	0.025
St.Dev.		0.144	0.080	0.088	0.136	0.072	0.078	0.080	0.121	0.101	0.065	0.044	0.037
C.V.		0.898	0.709	0.776	1.665	0.792	0.868	1.182	0.968	0.892	1.389	0.967	0.959
/laximum		0.761	0.301	0.358	0.577	0.260	0.291	0.345	0.412	0.410	0.221	0.137	0.156
Minimum		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005

6/***/00 Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX G - 2a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ON	=											
	1998-99		ASPHALT			W/SWALE		W/SWALE		W/SWALE		TREATMEN	-
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
08/05/98	0.57	0.162	0.262	0.264	l na	0.337	na	na	na	na	na	na	na
08/06/98	0.68	0.374	0.343	0.334	0.284	0.372	na	0.298	na	0.311	na	na	0.111
08/07/98	1.30	0.235	0.218	0.214	0.215	0.231	0.249	0.203	0.161	0.191	na	na	na
08/09/98	2.47	0.256	0.235	0.241	0.202	0.227	0.211	0.215	0.206	na	na	na	na
08/20/98	0.68	0.190	0.142	0.136	0.137	0.161	na	0.115	0.134	0.125	na	na	na
09/03/98	1.97	0.039	0.099	0.152	0.145	0.051	0.099	0.043	0.032	0.026	l na	na	0.192
09/***/98	1.85	0.303	0.059	0.278	0.042	0.220	0.186	0.152	0.052	0.176	na	na	na
09/17/98	0.49	0.057	0.093	0.215	na	na	na	na	na	na	l na	na	na
09/17/98	0.49	0.037	0.039	0.040	na	0.005	na	na	na	na	na	na	0.005
09/19/98	0.75	0.017	0.039	0.040	0.005	0.011	na	0.005	0.011	na	na	na	0.005
			l						0.038	0.062	1		
09/20/98	1.85	0.081	0.074	0.080	0.034	0.045	0.048	0.049			na	na	na
09/26/98	1.64	na	0.085	0.031	0.010	0.005	na	0.005	0.005	0.005	na	na	na
11/05/98	1.20	0.005	0.093	0.068	na	na	na						
12/13/98	0.37	0.105	0.163	na	na	na	na	na	0.056	na	na	na	na
01/03/99	1.23	0.045	0.056	0.051	0.135	0.202	0.103	0.134	0.219	0.151	na	na	na
01/23/99	2.60	0.034	0.044	0.046	0.082	0.099	0.119	0.090	0.090	0.064	na	na	0.076
02/28/99	0.36	0.121	0.403	0.324	na	na	na	na	na	0.335	na	na	0.008
03/14/99	0.80	0.069	0.128	0.123	na	0.325	na	na	na	0.230	na	na	0.089
04/17/99	0.54	0.316	0.403	0.376	na	na	na						
05/21/99	1.34	0.502	0.532	0.529	0.641	0.237	na	0.585	0.710	0.718	na	na	na
05/30/99	0.39	0.331	0.449	0.467	na	na	na	na	na	0.354	na	na	na
06/09/99	0.81	0.270	0.226	0.214	na	0.278	na	0.212	na	0.227	na	na	na
06/13/99	1.22	0.118	0.122	0.097	0.107	0.123	0.065	0.159	0.111	0.214	na	na	na
06/16/99	1.68	0.111	0.099	0.101	0.101	0.081	0.118	0.059	0.080	0.052	na	na	0.210
06/17/99	0.77	0.068	0.059	0.059	0.044	0.350	na	0.038	na	0.039	na	na	na
06/18/99	1.60	0.111	0.142	0.155	0.099	0.076	0.045	0.107	0.107	0.071	na	na	na
07/01/99	1.53	0.292	0.172	0.205	0.055	0.176	0.005	0.139	0.183	0.202	na	na	0.025
07/07/99	0.81	0.365	0.372	0.400	na	0.342	na	na	na	0.363	na	na	na
			i		ł	0.126	0.150	0.101	0.113	0.106	na	0.012	na
07/09/99	1.17	na	0.125	0.101	0.109								
07/13/99	1.58	0.620	0.572	0.571	na	0.381	na	na	na	0.259	na	na	0.005
07/20/99	0.88	0.763	0.742	0.740	na	0.683	na	0.672	na	na	na	na	0.005
RAIN						i							
TOTAL	35.79				1		4		4-				- 4 4
No.Obs.		29	31	30	18	25	12	20	17	22	0	1	11
Average		0.207	0.215	0.221	0.141	0.206	0.117	0.169	0.136	0.195	na	na	0.066
Median		0.121	0.142	0.180	0.108	0.202	0.111	0.125	0.107	0.183	na	na	0.02
St.Dev.		0.188	0.181	0.180	0.145	0.157	0.073	0.175	0.162	0.161	na	na	0.07
C.V.		0.909	0.842	0.816	1.022	0.764	0.622	1.035	1.191	0.825	na	na	1.16
/laximum		0.763	0.742	0.740	0.641	0.683	0.249	0.672	0.710	0.718	na	na	0.76
Vinimum		0.005	0.016	0.017	0.005	0.005	0.005	0.005	0.005	0.005	na	na	0.00

9/**/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 2b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	E AS N (ATORY	DETEC	TION L	MIT=0.0)1 MG/L	& 1/2 N	IDL USE	D FOR	CALCS)	
	rwo plus												
	1999-00		ASPHALT \	NO/SWALE	CONCRETE	W/SWALE_	POROUS	W/\$WALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	0.063	0.055	0.060	0.132	0.159	0.168	0.086	0.081	0.100	0.045	0.025	0.062
08/12/99	0.70	0.304	0.312	0.311	0.138	0.172	na	0.136	na	0.290	na	na	na
08/14/99	1.23	0.552	0.410	0.385	0.334	0.430	0.514	0.378	0.435	0.414	0.25	0.145	0.144
08/19/99	0.90	na	0.308	0.371	0.296	0.298	0.314	0.282	0.298	0.317	0.005	0.005	0.108
08/22/99	2.95	0.005	0.005	0.005	0.005	0.005	0.040	0.027	0.005	0.005	0.005	na	0.005
09/11/99	0.84	0.069	0.062	0.052	na	0.099	na	na	na	0.005	na	na	0.005
09/18/99	0.85	0.084	0.051	0.044	0.084	0.077	na	0.156	0.085	0.080	0.005	0.019	0.005
09/25/99	1.37	0.132	0.175	0.168	0.149	0.177	0.157	0.173	0.171	0.343	0.005	0.005	0.056
10/03/99	1.22	0.086	0.068	0.079	0.057	0.105	0.129	0.036	0.101	0.077	0.005	0.005	0.010 0.059
10/04/99	0.98	0.080 0.073	0.078 0.087	0.078 n/a	na naaa	0.030 0.222	na 0.204	na 0.209	na na	0.039 0.238	0.005 na	0.022 0.137	0.059
11/01/99	1.63				0.144							na	na
12/17/99 01/06/00	0.75 0.79	0.087 0.259	0.043 0.220	0.054 0.244	na na	na 0.441	na na	na na	na na	na 0.257	na na	na	na
01/00/00	0.79	0.239	0.220	0.092	na	0.331	na	na	na	0.091	na	na	na
01/31/00	0.70	0.074	0.095	0.066	na	0.196	na	na	na	0.172	na	na	na
06/13/00	1.29	0.386	0.487	0.481	0.826	0.782	na	0.659	0.754	0.998	na	na	na
06/22/00	0.39	0.535	0.669	0.612	na	na	na	na	na	0.575	na	na	na
06/***/00	1.39	0.351	0.341	0.338	na	0.457	0.327	na	na	na	na	na	na
06/29/00	0.71	0.186	0.218	0.191	na	0.281	0.164	0.274	na	0.190	na	na	na
07/01/00	0.81	0.161	0.188	0.182	na	na	na	na	0.215	0.130	na	na	na
07/04/00	1.95	0.328	na	0.353	0.254	0.336	0.238	0.219	0.230	0.344	na	na	na
07/08/00	1.07	0.535	0.425	0.418	0.402	0.397	0.460	0.422	0.401	0.462	0.328	na	0.204
07/15/00	1.98	0.310	na	na	0.197	0.191	0.259	0.227	0.190	0.212	na	na	0.005
07/26/00	1.24	na	0.014	na	na	0.021	na	na	na	0.016	na	na	na
07/31/00	2.69	0.199	0.261	0.216	0.274	0.242	0.230	0.191	0.193	0.230	0.073	0.109	0.037
08/12/00	2.41	0.107	0.670	na	0.157	0.131	0.152	0.285	0.113	0.207	0.099	0.132	0.069
08/29/00	1.20	0.232	0.362	0.346	0.346	0.381	0.381	0.281	0.317	0.454	0.005	0.005	0.0025
09/07/00	1.96	0.418	0.251	0.248	0.291	0.212	0.327	0.198	0.268	0.270	0.14	0.207	0.055
09/17/00	2.05	0.061	na	0.067	na	0.129	na	0.109	na	0.119	0.097	na	0.0025
09/24/00	1.16	1.530	na	1.650	1.310	1.270	1.520	1.094	1.080	2.200	0.426	0.077	0.0290
11/26/00	0.93	0.084	0.142	0.156	0.560	0.531	0.508	na	0.502	na	na	na	na
TOTAL													
RAIN	40.11											.,,	
No.Obs.		29	27	27	19	28	18	20	18	28	15	13	18
Average		0.258	0.226	0.269	0.313	0.289	0.338	0.272	0.302	0.316	0.100	0.069	0.060
Median		0.182	0.188	0.191	0.254	0.217	0.249	0.214	0.223	0.221	0.045	0.025	0.046
St.Dev.		0.291	0.187	0.317	0.308	0.260	0.324	0.241	0.265	0.424	0.133	0.070	0.067
C.V.		1.131	0.825	1.179	0.981	0.897	0.956	0.884	0.877	1.344	1.341	1.013	1.129
Maximum		1.530	0.670	1.650	1.310	1.270	1.520	1.094	1.080	2.200	0.426	0.207	0.215
Minimum		0.005	0.005	0.005	0.005	0.005	0.040	0.027	0.005	0.005	0.005	0.005	0.003

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX G - 3a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE	:			:								
	998-99			WO/SWALE		W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	iN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	0.005	0.005	0.011	na	0.022	na	na	na	na	na	na	na
08/06/98	0.68	0.005	0.010	0.010	0.016	0.017	na	0.015	na	0.010	na	na	0.022
08/07/98	1.30	0.005	0.011	0.013	0.015	0.018	0.015	0.016	0.023	0.010	na	na	na
08/09/98	2.47	0.005	0.010	0.011	0.010	0.013	0.013	0.012	0.010	na	na	na	na
08/20/98	0.68	0.005	0.005	0.005	0.005	0.005	na	0.005	0.005	0.005	na	na	na
09/03/98	1.97	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	na	na	0.005
09/***/98	1.85	0.003	0.005	0.009	0.002	0.009	0.005	0.009	0.002	0.010	na	na	0.002
09/17/98	0.49	0.005	0.005	0.005	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.005	0.005	0.005	na	0.005	na	na	na	na	na	na	0.005
09/19/98	0.75	0.005	0.005	0.005	0.005	0.005	na	0.005	0.005	na	na	na	0.005
09/20/98	1.85	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	na	na	na
09/26/98	1.64	na	0.005	0.005	0.005	0.005	na	0.005	0.005	0.005	na	na	na
11/05/98	1.20	0.005	0.014	0.005	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.005	0.005	na	na	na	na	na	0.005	na	na	na	na
01/03/99	1.23	0.005	0.005	0.005	0.005	0.005	0.011	0.01	0.005	0.005	na	na	na
01/23/99	2.60	0.005	0.005	0.005	0.005	0.012	0.012	0.013	0.005	0.005	na	na	0.005
02/28/99	0.36	0.005	0.015	0.015	na	na	na	na	na	0.013	na	na	0.005
03/14/99	0.80	0.005	0.01	0.012	na	0.024	na	na	na	0.013	na	na	0.021
04/17/99	0.54	0.005	0.022	0.024	na	na	na	na	na	na	na	na	na
05/21/99	1.34	0.005	0.013	0.013	0.019	0.023	na	0.021	0.015	0.017	na	na	na
05/30/99	0.39	0.005	0.015	0.014	na	na	na	na	na	0.011	na	na	na
06/09/99	0.81	0.270	0.226	0.214	na	0.278	na	0.212	na	0.227	na	na	na
06/13/99	1.22	0.005	0.011	0.01	0.005	0.013	0.012	0.013	0.005	0.013	na	na	na
06/16/99	1.68	0.005	0.005	0.005	0.005	0.005	0.005	0.008	0.005	0.005	na	na	0.129
06/17/99	0.77	0.005	0.005	0.005	0.005	0.005	na	0.005	na	0.005	na	na	na
06/18/99	1.60	0.005	0.005	0.005	0.005	0.005	na	0.005	na	0.005	na	na	na
07/01/99	1.53	0.005	0.005	0.005	0.008	0.007	0.020	0.012	0.013	0.008	na	na	0.025
07/07/99	0.81	0.005	0.007	0.009	na	0.018	na	na	na	0.01	na	na	na
07/09/99	1.17	0.005	0.007	0.005	0.011	0.013	0.01	0.013	0.006	0.006	na	0.02	0.016
07/13/99	1.58	0.005	0.014	0.016	na	0.022	na	na	na	0.005	na	na	0.012
07/20/99	0.88	0.006	0.019	0.022	na	0.035	na	0.021	na	na	na	na	0.005
RAIN	0.00	0.000	0.010	U.ULL	114	0.000		0.021	- Hu	114	110		0.000
TOTAL	35.79												
No.Obs.		30	31	30	18	25	11	20	16	22	0	1	13
Average		0.014	0.016	0.016	0.008	0.023	0.010	0.020	0.007	0.018	na	na	0.020
Median		0.005	0.005	0.007	0.005	0.012	0.011	0.011	0.005	0.007	na	na	0.005
St.Dev.		0.048	0.039	0.038	0.005	0.054	0.005	0.045	0.005	0.047	na	na	0.034
C.V.		3.507	2.519	2.371	0.624	2.342	0.479	2.214	0.718	2.588	na	na	1.707
Maximum		0.270	0.226	0.214	0.019	0.278	0.020	0.212	0.023	0.227	na	na	0.129
Minimum		0.003	0.005	0.005	0.002	0.005	0.005	0.005	0.002	0.005	na	na	0.002

9/***/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 3b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 1999-00	4 mo	ASPHALT!	WO/SWALE	CONCRETE	W/SWALF	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER	POND
	AMOUNT IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	DRAIN MG/L	MG/L
08/06/99	1.29	0.0025	0.0025	0.0025	0.0025	0.0025	0.009	0.0025	0.0025	0.0025	0.0025	0.022	na
08/12/99	0.70	0.0025	0.0025	0.0025	0.0025	0.0025	na	0.0025	na	0.0025	na	na	na
08/14/99	1.23	0.0025	0.01	0.008	0.009	0.01	0.009	0.01	0.007	0.009	0.008	0.009	0.014
08/19/99	0.90	na	0.008	0.009	0.012	0.012	0.013	0.012	0.008	0.008	0.0025	0.005	0.011
08/22/99	2.95	0.0025	0.0025	0.0025	0.0025	0.008	0.0025	0.002	0.0025	0.014	0.0025	na	0.0025
09/11/99	0.84	0.0025	0.012	0.016	na	0.022	na	na	na	0.016	na	na	0.0025
09/18/99	0.85	0.0025	0.0025	0.0025	0.0025	0.0025	na	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
09/25/99	1.37	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
10/03/99	1.22	0.0025	0.0025	0.0025	0.0025	0.0025	0.008	0.0025	0.0025	0.0025	0.0025	0.005	0.0025
10/04/99	0.98	0.0025	0.0025	0.0025	na	0.0025	na	an	na	0.0025	0.0025	0.006	0.0025
11/01/99	1.63	0.0025	0.0025	na	0.005	0.008	0.005	0.008	na	0.005	na	0.0025	0.005
12/17/99	0.75	0.0025	0.0025	0.0025	na	na	na	na	na	na	na	na	na
01/06/00		0.0025	*0.018	*0.016	na	0.024	na	na	na	0.015	na	na	na
01/24/00		0.0025	0.010	0.010	na	0.006	na	na	na	0.003	na	na	na
01/31/00		0.0025	0.010	0.009	na	0.140	na	na	na	0.010	na	na	na
06/13/00	1.29	0.0025	0.012	0.015	0.019	0.015	na	0.015	0.014	0.019	na	na	na
06/22/00	0.39	0.0025	0.008	0.0025	na	na	na	na	na	na	na	na	na
06/23-27/0		0.0025	0.012	0.014	na	0.023	0.028	na	na	na	na	na	na
06/29/00	0.71	0.005	0.009	0.008	na	0.014	0.012	0.016	na	0.007	na	na	na
07/01/00	0.81	0.0025	0.007	0.011	na	0.012	na	na	na	0.012	na	na	na
07/04/00	1.95	0.009	na	0.016	0.01	0.014	0.008	0.010	0.009	0.015	na	na	na
07/08/00		0.0025	0.007	0.009	0.010	0.012	0.014	0.009	0.009	0.008	0.012	na	0.0025
07/15/00	1.98	0.0025	na	na	0.010	0.016	0.009	0.011	0.008	0.010	na	na	0.007
07/26/00	1.24	na	na	0.591	na	0.357	na	na	na	0.54	na	na	na
07/31/00	2.69	0.0025	0.013	0.015	0.014	0.018	0.014	0.014	0.012	0.020	0.013	0.006	0.011
08/12/00	2.41	0.0025	0.012	na	0.006	0.005	0.0025	0.0025	0.0025	0.005	0.007	0.005	0.005
08/29/00	1.20	0.0025	0.012	0.014	0.011	0.017	0.011	0.0020	0.011	0.016	0.006	0.005	0.0025
09/07/00		0.0025	0.014	0.015	0.014	0.018	0.013	0.014	0.010	0.017	0.018	0.005	0.010
09/17/00	2.05	0.0025	na	0.003	na	0.006	na	0.003	na	0.005	0.0025	na	0.0025
09/24/00	1.16	0.0020	na	0.039	0.027	0.031	0.026	0.036	0.025	0.027	0.066	0.0025	0.007
11/26/00	0.93	0.006	0.009	0.010	0.009	0.014	0.010	na	0.009	na	na	na	na
RAIN	0.93	0.000	0.003	0.010	0.003	0.01-4	0.010	11a	0.003	iia	Ha	Πα	110
TOTAL	40.11												
No.Obs.		29	25	27	19	29	18	20	17	27	15	13	17
Average		0.003	0.008	0.031	0.009	0.028	0.011	0.009	0.008	0.029	0.010	0.006	0.005
Median		0.003	0.008	0.009	0.009	0.012	0.010	0.010	0.008	0.009	0.003	0.005	0.003
St.Dev.		0.002	0.004	0.112	0.007	0.068	0.007	0.008	0.006	0.102	0.016	0.005	0.004
C.V.		0.496	0.560	3.631	0.726	2.413	0.638	0.852	0.721	3.470	1.624	0.859	0.710
Maximum		0.009	0.014	0.591	0.027	0.357	0.028	0.036	0.025	0.540	0.066	0.022	0.014
Minimum		0.003									,		

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

Nitrite result subtracted from Nitrate was not determined within sample hold time.

^{* 1/6/00} Nitrite sample analysis performed beyond hold time.

APPENDIX G - 4a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

YE	AR ONE	:									§		
1	998-99		ASPHALT \	NO/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
08/05/98	0.57	0.17	0.54	0.65	na	0.73	na	na	na	na	na	na	na
08/06/98	0.68	0.38	0.40	0.39	0.43	0.56	na	0.43	na	0.46	na	na	0.57
08/07/98	1.30	0.57	0.60	0.71	0.53	0.60	0.66	0.64	0.650	0.72	na	na	na
08/09/98	2.47	0.82	0.45	0.50	0.35	0.36	0.63	0.33	0.64	na	na	na	na
08/20/98	0.68	0.32	0.25	0.22	0.38	0.36	na	0.39	0.40	0.300	na	na	na
09/03/98	1.97	0.12	0.28	0.19	0.23	0.15	0.17	0.19	0.18	0.11	na	na	na
09/***/98	1.85	0.73	0.41	0.46	0.19	0.62	0.60	0.65	0.30	0.60	na	na	0.66
09/17/98	0.49	0.10	0.15	0.22	na	na	na						
09/18/98	0.66	0.04	0.09	0.04	na	0.38	na	na	na	na	na	na	0.32
09/19/98	0.75	0.40	0.03	0.03	0.07	0.06	na	0.08	0.08	na	na	na	0.27
09/20/98	1.85	0.25	0.15	0.21	0.12	0.08	0.15	0.13	0.09	0.19	na	na	na
09/26/98	1.64	na	0.11	0.08	0.07	0.09	na	0.17	0.23	0.15	na	na	na
11/05/98	1.20	0.10	0.32	0.24	na	na	na						
12/13/98	0.37	0.32	0.59	na	na	na	na	na	0.84	na	na	na	na
01/03/99	1.23	0.15	0.15	0.17	0.42	0.63	0.52	0.52	0.74	0.45	na	na	na
01/23/99	2.60	0.11	0.07	0.10	0.24	0.39	0.41	0.46	0.35	0.16	na	na	0.46
02/28/99	0.36	0.29	1.30	0.96	na	na	na	na	na	1.30	na	na	0.72
03/14/99	0.80	0.29	0.59	0.57	na	1.30	na	na	na	1.30	na	na	1.20
04/17/99	0.54	0.50	1.40	1.60	na	na	na						
05/21/99	1.34	0.98	1.20	1.30	1.40	1.70	na	1.60	1.80	1.70	na	na	na
05/30/99	0.39	0.72	0.96	0.93	na	na	na	na	na	0.82	na	na	na
06/09/99	0.81	0.40	0.23	0.35	na	0.53	na	0.60	na	0.46	na	na	na
06/13/99	1.22	0.38	0.51	0.57	0.72	0.74	0.72	0.84	0.91	1.60	na	na	na
06/16/99	1.68	0.40	0.10	0.155	0.30	0.429	0.40	0.584	0.33	0.364	na	na	0.70
06/17/99	0.77	0.40	0.10	0.16	0.35	0.423	na	0.34	na	0.51	na	na	na
06/18/99	1.60	0.23	0.23	0.30	0.23	0.36	0.33	0.50	0.39	0.32	na	na	na
07/01/99	1.53	0.60	0.51	0.37	0.46	0.58	0.65	0.64	0.57	0.48	na	na	0.72
07/07/99	0.81	0.00	0.76	0.70	na	0.65	na	na	na	0.65	na	na	na
07/09/99	1.17	na	0.41	0.73	0.28	0.36	0.23	0.35	0.26	0.26	na	0.38	na
07/03/33	1.58	0.80	0.82	0.25	na	0.54	na	na	na	0.74	na	na	1.00
07/13/99	0.88	0.96	0.95	0.73	na	1.00	na	0.99	na	na	na	na	0.64
RAIN	0.00	0.30	0.55	0.33	i iia	1.00	TIG.	0.00	i iiu	- IIG	110	110	0.01
TOTAL	35.79												
No.Obs.		29	31	30	18	25	12	20	17	22	o	1	11
Average		0.425	0.473	0.466	0.375	0.545	0.456	0.522	0.515	0.620	na	na	0.660
Median		0.380	0.410	0.333	0.305	0.530	0.465	0.480	0.390	0.470	na	na	0.660
St.Dev.		0.286	0.377	0.385	0.303	0.368	0.203	0.344	0.416	0.463	na	na	0.271
C.V.		0.674	0.796	0.827	0.809	0.675	0.445	0.659	0.807	0.747	na	na	0.410
Maximum		0.980	1.400	1.600	1.400	1.700	0.720	1.600	1.800	1.700	na	na	1.200
Minimum		0.040	0.030	0.025	0.070	0.055	0.150	0.080	0.080	0.110	na	na	0.270

9/***/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 4b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

MG/L	YEAR IV	VO plus	4 mo											
AMOUNT NG/L										1				
08/12/99		MOUNT				ĺ							UNDER DRAIN MG/L	POND MG/L
08/12/99 0.70 0.52 0.50 0.52 0.53 0.52 na 0.41 na 0.49 na na na 08/14/99 1.23 0.87 0.59 0.53 0.5 0.65 0.51 0.44 0.5 0.31 0.2 0.87 0.87 0.87 0.59 0.53 0.5 0.65 0.51 0.44 0.5 0.31 0.2 0.88 0.10 0.8/14/99 0.90 na 0.35 0.41 0.32 0.43 0.37 0.33 0.35 0.42 0.08 0.1 0.8/14/99 0.95 0.16 0.21 0.19 0.19 0.11 0.06 0.08 0.26 0.30 0.27 na 09/11/99 0.85 0.35 0.12 0.23 0.89 0.72 na 0.95 0.53 0.39 1.2 1.2 0.9(25/99 1.37 0.82 0.8 0.52 0.63 0.79 0.49 0.63 0.58 0.8 0.24 0.3 0.37 0.00/04/99 0.98 0.08 0.15 0.14 na 0.29 na na na na 0.66 10 0.00 0.00 0.00 0.00 0.00 0.00 0														
08/14/99	8/06/99	1.29	0.08	0.59	0.50	0.47	0.73	0.53	0.53	0.54	0.47	0.61	0.78	0.08
08/19/99	8/12/99	0.70	0.52	0.50	0.52	0.53	0.52	na	0.41	na	0.49	na	na	na
08/22/99	8/14/99	1.23	0.87	0.57	0.59	0.53	0.5	0.65	0.51	0.44	0.5	0.31	0.2	0.63
09/11/99	8/19/99	0.90	na	0.35	0.41	0.32	0.43	0.37	0.33	0.35	0.42	0.08	0.12	0.58
09/18/99	8/22/99	2.95	0.16	0.21	0.19	0.19	0.11	0.06	0.08	0.26	0.30	0.27	na	0.20
09/18/99	9/11/99	0.84	0.74	0.60	0.56	na	0.66	na	na	na	0.66	1	na	0.4
09/25/99 1.37 0.82 0.8 0.52 0.63 0.79 0.49 0.63 0.58 0.8 0.24 0.3 10/03/99 1.22 0.37 0.21 0.22 0.25 0.32 0.28 0.41 0.28 0.2 0.3 0.3 0.3 0.3 11/0/04/99 0.98 0.08 0.15 0.14 na 0.29 na na na na 0.23 0.55 0.5 11/0/1/99 1.63										I .			1.8	0.73
10/03/99				i .						1		i	0.31	0.34
10/04/99				1		i				1		i .	0.36	0.41
11/01/99				i .						ł		1		0.44
12/17/99 0.75 0.15 0.27 na				*	*		*	*	*	*	*		*	*
01/06/00			0.15	0.27	na	na	na	na	na	na	na	na	na	na
01/24/00				l								1		na
01/31/00]			1		t .		na
06/13/00				ľ								Į.		na
06/22/00 0.39 0.53 0.92 1.10 na				1			ı			ì		1		na
06/23-27/0														
06/29/00												ł		na
07/01/00				1										na
07/04/00 1.95 0.30 na 0.53 0.36 0.66 0.62 0.60 0.34 0.55 na na 07/08/00 1.07 1.90 1.60 1.80 1.90 2.00 1.80 1.00 1.20 2.30 0.36 na 07/15/00 1.98 0.69 na na 0.69 0.97 0.72 0.74 0.50 0.71 na na 07/26/00 1.24 na 0.89 na na 1.60 na na na na 08/12/00 2.41 0.42 1.40 na 0.63 0.93 1.40 1.70 0.80 0.89 0.72 0.53 08/29/00 1.20 0.47 0.80 0.77 0.94 0.88 1.30 0.65 1.00 1.30 0.81 0.55 09/17/00 1.96 0.56 0.60 0.59 0.64 0.74 0.86 0.61 0.61 1.00 <td< td=""><td></td><td></td><td></td><td>ľ</td><td></td><td></td><td>!</td><td></td><td></td><td></td><td></td><td>i .</td><td></td><td>na</td></td<>				ľ			!					i .		na
07/08/00 1.07 1.90 1.60 1.80 1.90 2.00 1.80 1.00 1.20 2.30 0.36 na 07/15/00 1.98 0.69 na na 0.69 0.97 0.72 0.74 0.50 0.71 na na 07/26/00 1.24 na 0.89 na na 1.60 na na na 1.50 na na 07/31/00 2.69 0.52 0.44 0.39 0.60 0.63 0.64 0.68 0.71 0.86 0.56 0.30 08/12/00 2.41 0.42 1.40 na 0.63 0.93 1.40 1.70 0.80 0.89 0.72 0.53 08/29/00 1.20 0.47 0.80 0.77 0.94 0.88 1.30 0.65 1.00 1.30 0.81 0.55 09/17/00 1.96 0.56 0.60 0.59 0.64 0.74 0.86 0.61														na
07/15/00 1.98 0.69 na na 0.69 0.97 0.72 0.74 0.50 0.71 na na 07/26/00 1.24 na 0.89 na na 1.60 na na na 1.50 na na 07/31/00 2.69 0.52 0.44 0.39 0.60 0.63 0.64 0.68 0.71 0.86 0.56 0.3 08/12/00 2.41 0.42 1.40 na 0.63 0.93 1.40 1.70 0.80 0.89 0.72 0.5 08/29/00 1.20 0.47 0.80 0.77 0.94 0.88 1.30 0.65 1.00 1.30 0.81 0.51 09/07/00 1.96 0.56 0.60 0.59 0.64 0.74 0.86 0.61 0.61 1.00 0.63 0.51 09/17/00 2.05 0.17 na 0.30 na 0.46 na 0.46 n												I		na
07/26/00 1.24 na 0.89 na na 1.60 na na na 1.50 na na 07/31/00 2.69 0.52 0.44 0.39 0.60 0.63 0.64 0.68 0.71 0.86 0.56 0.33 08/12/00 2.41 0.42 1.40 na 0.63 0.93 1.40 1.70 0.80 0.89 0.72 0.55 08/29/00 1.20 0.47 0.80 0.77 0.94 0.88 1.30 0.65 1.00 1.30 0.81 0.51 09/07/00 1.96 0.56 0.60 0.59 0.64 0.74 0.86 0.61 0.61 1.00 0.63 0.51 09/17/00 2.05 0.17 na 0.30 na 0.46 na 0.46 na 0.58 0.40 na 09/24/00 1.16 2.20 na 2.10 2.00 1.90 1.80 2.40 <				1			,					Į		0.45
07/31/00				1			I					I		1.40
08/12/00 2.41 0.42 1.40 na 0.63 0.93 1.40 1.70 0.80 0.89 0.72 0.51 08/29/00 1.20 0.47 0.80 0.77 0.94 0.88 1.30 0.65 1.00 1.30 0.81 0.51 09/07/00 1.96 0.56 0.60 0.59 0.64 0.74 0.86 0.61 0.61 1.00 0.63 0.51 09/17/00 2.05 0.17 na 0.30 na 0.46 na 0.46 na 0.58 0.40 na 09/24/00 1.16 2.20 na 2.10 2.00 1.90 1.80 2.40 1.80 2.50 1.00 0.51 11/26/00 0.93 0.34 0.43 0.47 1.40 1.30 1.20 na 1.40 na na No.Obs. 28 26 26 18 28 17 19 17 25 15 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>na</td>							I			1		1		na
08/29/00													0.38	0.75
09/07/00 1.96 0.56 0.60 0.59 0.64 0.74 0.86 0.61 0.61 1.00 0.63 0.5 09/17/00 2.05 0.17 na 0.30 na 0.46 na 0.46 na 0.58 0.40 na 09/24/00 1.16 2.20 na 2.10 2.00 1.90 1.80 2.40 1.80 2.50 1.00 0.5 11/26/00 0.93 0.34 0.43 0.47 1.40 1.30 1.20 na 1.40 na				1	0								0.53	1.10
09/17/00 2.05 0.17 na 0.30 na 0.46 na 0.46 na 0.58 0.40 na 09/24/00 1.16 2.20 na 2.10 2.00 1.90 1.80 2.40 1.80 2.50 1.00 0.55 11/26/00 0.93 0.34 0.43 0.47 1.40 1.30 1.20 na 1.40 na												1	0.56	1.70
09/24/00 1.16 2.20 na 2.10 2.00 1.90 1.80 2.40 1.80 2.50 1.00 0.51 11/26/00 0.93 0.34 0.43 0.47 1.40 1.30 1.20 na 1.40 na na na na RAIN TOTAL 40.11	9/07/00	1.96	0.56	0.60	0.59	0.64	0.74	0.86	0.61	0.61	1.00	0.63	0.50	0.80
11/26/00 0.93 0.34 0.43 0.47 1.40 1.30 1.20 na 1.40 na na na na na RAIN TOTAL 40.11 40.11 40.11 17 25 15 12 No.Obs. Average 28 26 26 18 28 17 19 17 25 15 12 Average 0.512 0.557 0.579 0.859 0.814 0.836 0.819 0.808 0.864 0.536 0.54 Median 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.50 St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79		2.05		na	0.30	na		na	0.46	na	0.58	0.40	na	0.49
RAIN TOTAL 40.11 No.Obs. 28 26 26 18 28 17 19 17 25 15 12 Average 0.512 0.557 0.579 0.859 0.814 0.836 0.819 0.808 0.864 0.536 0.549 0.809 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.509 0.510 0.509	9/24/00	1.16	2.20	na	2.10	2.00	1.90	1.80	2.40	1.80	2.50	1.00	0.52	1.00
TOTAL 40.11 No.Obs. 28 26 26 18 28 17 19 17 25 15 12 Average 0.512 0.557 0.579 0.859 0.814 0.836 0.819 0.808 0.864 0.536 0.54 Median 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.50 St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79	1/26/00	0.93	0.34	0.43	0.47	1.40	1.30	1.20	na	1.40	na	na	na	na
No.Obs. 28 26 26 18 28 17 19 17 25 15 12 Average 0.512 0.557 0.579 0.859 0.814 0.836 0.819 0.808 0.864 0.536 0.54 Median 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.50 St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79														
Average 0.512 0.557 0.579 0.859 0.814 0.836 0.819 0.808 0.864 0.536 0.54 Median 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.50 St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79	OTAL	40.11												
Average 0.512 0.557 0.579 0.859 0.814 0.836 0.819 0.808 0.864 0.536 0.54 Median 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.50 St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79	Obs		28	26	26	18	28	17	19	17	25	15	12	17
Median 0.375 0.450 0.485 0.630 0.692 0.650 0.630 0.580 0.620 0.550 0.50 St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79				1								1	0.547	0.676
St.Dev. 0.498 0.391 0.485 0.658 0.506 0.516 0.583 0.589 0.662 0.305 0.43 0.70. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79	-													0.580
C.V. 0.973 0.701 0.839 0.765 0.621 0.617 0.712 0.729 0.767 0.569 0.79				1			1					1		0.360
				ı										0.424
WAXIMUM 2.200 1.000 2.100 2.000 2.000 1.800 2.400 2.400 2.500 1.200 1.80				l										
Minimum 0.000 0.120 0.030 0.190 0.107 0.060 0.082 0.260 0.200 0.080 0.12				!								į.	1.800 0.120	1.700 0.080

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

^{*} Total nitrogen not tested - lab error

APPENDIX G - 5a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE		ASPHALT I	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER	POND
	AMOUNT IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	DRAIN MG/L	MG/L
08/05/98	0.57	0.005	0.036	0.027	na	0.116	na	na	na	na	na	na	na
08/06/98	0.68	0.011	0.025	0.022	0.135	0.098	na	0.054	na	0.040	na	na	0.027
08/07/98	1.30	0.017	0.030	0.032	0.107	0.072	0.040	0.055	0.054	0.049	na	na	na
08/09/98	2.47	0.005	0.017	0.010	0.037	0.040	0.015	0.024	0.034	na	na	na	na
08/20/98	0.68	0.005	0.025	0.016	0.115	0.065	na	0.046	0.094	0.056	na	na	na
09/03/98	1.97	0.005	0.016	0.005	0.072	0.150	0.060	0.012	0.040	0.030	na	na	0.038
09/***/98	1.85	0.015	0.005	0.003	0.063	0.052	0.021	0.033	0.063	0.031	na	na	na
09/17/98	0.49	0.005	0.037	0.013	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.005	0.018	0.005	na	0.085	na	na	na	na	na	na	0.037
09/19/98	0.75	0.005	0.010	0.005	0.108	0.052	na	0.038	0.058	na	na	na	0.023
09/20/98	1.85	0.005	0.005	0.005	0.055	0.039	0.017	0.029	0.041	0.023	na	na	na
09/26/98	1.64	na	0.005	0.072	0.037	0.036	na	0.048	0.040	0.037	na	na	na
11/05/98	1.20	0.005	0.035	0.023	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.005	0.012	na	na	na	na	na	0.119	na	na	na	na
01/03/99	1.23	0.005	0.016	0.022	0.175	0.149	0.051	0.129	0.194	0.127	na	na	na
01/23/99	2.60	0.011	0.031	0.026	0.175	0.392	0.033	0.464	0.147	0.155	na	na	0.112
02/28/99	0.36	0.030	0.163	0.129	na	na	na	na	na	0.259	na	na	0.069
03/14/99	0.80	0.013	0.089	0.401	na	1.780	na	na	na	1.900	na	na	0.241
04/17/99	0.54	0.017	0.135	0.349	na	na	na	na	na	na	na	na	na
05/21/99	1.34	0.022	0.070	0.170	0.413	0.605	na	0.596	0.244	0.596	na	na	na
05/30/99	0.39	0.005	0.065	0.147	na	na	na	na	na	0.394	na	na	na
06/09/99	0.81	0.005	0.031	0.054	na	0.295	na	0.311	na	0.348	na	na	na
06/13/99	1.22	0.005	0.035	0.042	0.353	0.272	0.100	0.360	0.143	0.318	na	na	na
06/16/99	1.68	0.005	0.036	0.037	0.179	0.213	0.090	0.276	0.118	0.227	na	na	0.427
06/17/99	0.77	0.005	0.022	0.032	0.176	0.166	na	0.216	na	0.271	na	na	na
06/18/99	1.60	0.005	0.019	0.022	0.152	0.145	0.046	0.121	0.071	0.147	na	na	na
07/01/99	1.53	0.038	0.042	0.028	0.187	0.160	0.079	0.183	0.122	0.149	na	na	0.086
07/07/99	0.81	0.260	0.042	0.041	na	0.125	na	na	na	0.092	na	na	na
07/09/99	1.17	0.005	0.035	0.020	0.134	0.119	0.062	0.146	0.099	0.096	na	0.4	0.353
07/13/99	1.58	0.016	0.040	0.041	na	0.059	na	na	na	0.079	na	na	0.394
07/20/99	0.88	0.019	0.039	0.022	na	0.099	na	0.073	na	na	na	na	0.422
RAIN													
TOTAL	35.79												
No.Obs.		30	31	30	18	25	12	20	17	22	0	1	12
Average		0.019	0.038	0.061	0.149	0.215	0.051	0.161	0.099	0.247	na	na	0.186
Median		0.005	0.031	0.027	0.135	0.119	0.049	0.097	0.094	0.137	na	na	0.099
St.Dev.		0.046	0.035	0.095	0.099	0.350	0.028	0.164	0.059	0.397	na	na	0.169
C.V.		2.487	0.919	1.564	0.669	1.627	0.551	1.019	0.598	1.612	na	na	0.908
Maximum		0.260	0.163	0.401	0.413	1.780	0.100	0.596	0.244	1.900	na	na	0.427
Minimum		0.005	0.005	0.003	0.037	0.036	0.015	0.012	0.034	0.023	na	na	0.023

9/***/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 5b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus	4 mo											
-	999-00 RAIN	DAIM		NO/SWALE		E W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	0.013	0.018	0.025	0.202	0.113	0.055	0.145	0.133	0.103	0.498	0.836	0.209
08/12/99	0.70	0.005	0.016	0.015	0.241	0.089	na	0.094	na	0.067	na	na	na
08/14/99	1.23	0.012	0.022	0.013	0.141	0.095	0.063	0.105	0.083	0.071	0.113	0.188	0.005
08/19/99	0.90	na	0.023	0.018	0.133	0.102	0.061	0.120	0.097	0.089	0.116	0.198	0.010
08/22/99	2.95	0.160	0.022	0.017	0.125	0.100	0.042	0.055	0.056	0.070	0.055	na	0.013
09/11/99	0.84	0.023	0.026	0.016	na	0.151	na	na	na	0.082	na	na	0.101
09/18/99	0.85	0.042	0.021	0.021	0.300	0.144	na	0.198	0.114	0.064	0.516	0.508	0.150
09/25/99	1.37	0.029	0.030	0.018	0.155	0.108	0.069	0.169	0.129	0.069	0.217	0.249	0.173
10/03/99	1.22	0.043	0.026	0.023	0.192	0.113	0.045	0.181	0.110	0.061	0.272	0.352	0.020
10/04/99	0.98	0.005	0.016	0.016	na	0.102	na	na	na	0.056	0.357	0.317	0.308
11/01/99	1.63	0.041	0.033	na	0.353	0.316	0.119	0.292	na	0.213	na	0.169	0.191
12/17/99	0.75	0.005	0.026	0.035	na	na	na	na	na	na	na	na	na
01/06/00	0.79	0.005	0.690	0.077	na	0.220	na	na	na	0.089	na	na	na
01/24/00	0.68	0.005	0.034	0.038	na	0.330	na	na	na	0.327	na	na	na
01/31/00	0.70	0.005	0.016	0.027	na	0.244	na	na	na	0.177	na	na	na
06/13/00	1.29	0.021	0.054	0.122	0.603	0.739	na	0.922	0.263	0.557	na	na	na
06/22/00	0.39	0.005	0.040	0.121	na	na	na	na	na	na	na	na	na
06/***/00	1.39	0.005	0.040	0.055	na	0.288	0.207	na	na	na	na	na	na
06/29/00	0.71	0.005	0.030	0.045	na	0.274	0.047	0.403	na	0.192	na	na	na
07/01/00	0.81	0.005	0.028	0.031	na	0.230	na	na	0.119	0.131	na	na	na
07/04/00	1.95	0.028	na	0.019	0.268	0.312	0.113	0.290	0.111	0.225	na	na	na
07/08/00	1.07	0.005	0.025	0.023	0.155	0.123	0.104	0.245	0.097	0.125	0.098	na	0.193
07/15/00	1.98	0.005	na	na	0.151	0.167	0.073	0.155	0.073	0.127	na	na	0.257
07/26/00	1.24	na	0.032	na	na	0.106	na	0.249	na	0.112	na	na	na
07/31/00	2.69	0.026	0.022	0.027	0.171	0.161	0.113	0.163	0.113	0.169	0.113	0.14	0.115
08/12/00	2.41	0.005	0.046	na	0.152	0.114	0.090	0.168	0.095	0.171	0.162	0.21	0.198
08/29/00	1.20	0.005	0.023	0.008	0.170	0.147	0.099	0.127	0.106	0.188	0.193	0.215	0.105
09/07/00	1.96	0.005	0.023	0.022	0.140	0.111	0.110	0.166	0.103	0.126	0.14	0.163	0.112
09/17/00	2.05	0.005	na	0.020	na	0.102	na	0.103	na	0.095	0.112	na	0.075
09/24/00	1.16	0.027	na	0.024	0.096	0.086	0.086	0.242	0.061	0.106	0.106	0.138	0.106
11/26/00	0.93	0.016	0.030	0.041	0.220	0.135	0.127	na	0.173	na	na	na	na
RAIN				0.0.1									***
TOTAL	40.11												
No.Obs.		29	27	27	19	29	18	20	18	27	15	13	18
Average		0.019	0.052	0.034	0.209	0.184	0.090	0.225	0.113	0.143	0.205	0.283	0.130
Median		0.005	0.026	0.023	0.170	0.135	0.088	0.169	0.108	0.112	0.140	0.210	0.114
St.Dev.		0.030	0.128	0.029	0.115	0.132	0.040	0.183	0.046	0.104	0.145	0.195	0.087
C.V.		1.545	2.443	0.856	0.552	0.718	0.445	0.812	0.408	0.729	0.708	0.690	0.673
/laximum		0.160	0.690	0.122	0.603	0.739	0.207	0.922	0.263	0.557	0.516	0.836	0.308
Minimum		0.005	0.016	0.008	0.096	0.086	0.042	0.055	0.056	0.056	0.055	0.138	0.005

6/***/00 Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX G - 6a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

YE	AR ONE												
1	1998-99		ASPHALT	WO/SWALE	CONCRETI	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	PONE
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	0.025	0.061	0.059	na	0.158	na	na	na	na	na	na	na
08/06/98	0.68	0.019	0.027	0.031	0.170	0.116	na	0.070	na	0.046	na	na	0.080
08/07/98	1.30	0.018	0.038	0.040	0.123	0.104	0.058	0.077	0.068	0.080	na	na	na
08/09/98	2.47	0.005	0.033	0.018	0.050	0.058	0.028	0.035	0.051	na	na	na	na
08/20/98	0.68	0.005	0.033	0.026	0.129	0.086	na	0.066	0.114	0.087	na	na	na
09/03/98	1.97	0.005	0.030	0.020	0.080	0.070	0.023	0.060	0.110	0.040	na	na	0.069
09/***/98	1.85	0.014	0.020	0.016	0.068	0.092	0.032	0.053	0.093	0.060	na	na	na
09/17/98	0.49	0.005	0.972	0.041	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.005	0.033	0.032	na	0.114	na	na	na	na	na	na	0.479
09/19/98	0.75	0.005	0.010	0.008	0.128	0.067	na	0.054	0.083	na	na	na	0.084
09/20/98	1.85	0.005	0.029	0.028	0.087	0.062	0.041	0.056	0.070	0.058	na	na	na
09/26/98	1.64	na	0.018	0.104	0.098	0.066	na	0.062	0.046	0.076	na	na	na
11/05/98	1.20	0.018	0.054	0.057	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.018	0.118	na	na	na	na	na	0.191	na	na	na	na
01/03/99	1.23	0.005	0.029	0.080	0.186	0.171	0.085	0.167	0.235	0.180	na	na	na
01/23/99	2.60	0.005	0.048	0.078	0.198	0.134	0.059	0.122	0.186	0.141	na	na	0.16
02/28/99	0.36	0.052	0.318	0.258	na	na	na	na	na	0.321	na	na	0.10
03/14/99	0.80	0.005	0.170	0.513	na	2.190	na	na	na	2.330	na	na	0.40
04/17/99	0.54	0.015	0.212	0.460	na	na	na	na	na	na	na	na	na
05/21/99	1.34	0.072	0.146	0.312	0.512	0.761	na	0.708	0.394	0.734	na	na	na
05/30/99	0.39	0.020	0.127	0.240	na	na	na	na	na	0.457	na	na	na
06/09/99	0.81	0.005	0.079	0.076	na	0.352	na	0.397	na	0.429	na	na	na
06/13/99	1.22	0.005	0.073	0.082	0.404	0.325	0.137	0.423	0.192	0.379	na	na	na
06/16/99	1.68	0.005	0.050	0.056	0.404	0.323	0.137	0.330	0.152	0.274	na	na	1.43
06/17/99	0.77	0.003	0.052	0.091	0.193	0.210	na	0.330	na	0.336	na		
06/17/99 06/18/99	1.60	0.005	0.032	0.091	0.227	0.210	0.076	0.274	0.105	0.330	na	na	na
						0.194		0.166	0.105	0.191		na	na 0.15 4
07/01/99	1.53	0.046	0.068	0.048	0.222		0.107				na	na	
07/07/99	0.81	0.037	0.067	0.101	na	0.186	na • • • • •	na 0.403	na 0.442	0.138	na	na 0.454	na
07/09/99	1.17	0.012	0.062	0.040	0.165	0.159	0.086	0.193	0.142	0.129	na	0.454	0.48
07/13/99	1.58	0.022	0.066	0.075	na	0.086	na	na	na	0.095	na	na	0.53
07/20/99	0.88	0.037	0.066	0.053	na	0.149	na	0.117	na	na	na	na	0.82
RAIN TOTAL	35.79												
No.Obs.		30	31	30	18	25	12	20	17	22	0	1	12
Average		0.017	0.102	0.103	0.180	0.254	0.070	0.184	0.141	0.308	na	na	0.40
Median		0.012	0.054	0.057	0.168	0.149	0.068	0.120	0.114	0.161	na	na	0.28
St.Dev.		0.017	0.174	0.127	0.116	0.428	0.037	0.172	0.086	0.484	na	na	0.40
C.V.		0.990	1.710	1.229	0.646	1.685	0.519	0.935	0.605	1.571	na	na	1.00
laximum		0.072	0.972	0.513	0.512	2.190	0.137	0.708	0.394	2.330	na	na	1.43
linimum		0.005	0.010	0.008	0.050	0.058	0.023	0.035	0.046	0.040	na	na	0.06

9/***/98 includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 6b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

YEAR T	WO plus	4 mo											
1	999-00		ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	RESTOR	TREATMEN	T TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
08/06/99	1.29	0.013	0.028	0.027	0.217	0.137	0.088	0.179	0.192	0.133	0.554	0.936	0.812
08/12/99	0.70	0.015	0.046	0.015	0.268	0.108	na	0.125	na	0.097	na	na	na
08/14/99	1.23	0.02	0.045	0.048	0.172	0.151	0.085	0.144	0.124	0.112	0.14	0.21	0.077
08/19/99	0.90	na	0.042	0.043	0.164	0.148	0.081	0.160	0.134	0.127	0.15	0.225	0.053
08/22/99	2.95	0.123	0.030	0.026	0.141	0.109	0.062	0.083	0.072	0.091	0.07	na	0.119
09/11/99	0.84	0.045	0.052	0.044	na	0.198	na	na	na	0.151	na	na	0.333
09/18/99	0.85	0.073	0.039	0.026	0.364	0.171	na	0.246	0.165	0.104	0.664	0.599	0.233
09/25/99	1.37	0.072	0.095	0.087	0.237	0.325	0.114	0.276	0.172	0.180	0.232	0.371	0.242
10/03/99	1.22	0.058	0.024	0.028	0.213	0.128	0.061	0.244	0.156	0.098	0.332	0.357	0.058
10/04/99	0.98	0.014	0.036	0.027	na	0.140	na	na	na	0.088	0.49	0.407	0.41
11/01/99	1.63	0.049	0.071	na	0.429	0.388	0.286	0.305	na	0.340	na	0.194	0.23
12/17/99	0.75	0.005	0.046	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	0.019	0.099	0.138	na	0.296	na	na	na	0.267	na	na	na
01/24/00	0.68	0.022	0.103	0.060	na	0.385	na	na	na	0.407	na	na	na
01/31/00	0.70	0.024	0.048	0.064	na	0.267	na	na	na	0.342	na	na	na
06/13/00	1.29	0.016	0.195	0.246	0.652	1.040	na	1.270	0.347	0.738	na	na	na
06/22/00	0.39	0.025	0.120	0.177	na	na	na	na	na	0.616	na	na	na
06/***/00	1.39	0.037	0.073	0.092	na	0.335	0.269	na	na	na	na	na	na
06/29/00	0.71	0.023	0.078	0.077	na	0.358	0.069	0.540	na	0.285	na	na	na
07/01/00	0.81	0.015	0.040	0.050	na	0.334	na	na na	0.145	0.174	na	na	na
07/04/00	1.95	0.042	na	0.036	0.342	0.388	0.103	0.328	0.157	0.233	na	na	na
07/08/00	1.07	0.014	0.054	0.026	0.151	0.117	0.103	0.251	0.137	0.235	0.153		0.263
07/05/00	1.98	0.014	0.034 na	na	0.131	0.117	0.143	0.231	0.110	0.133	l	na	0.20
07/15/00 07/26/00	1.24	0.026 na	0.053	na	na na	0.200	0.093 na	0.173		0.142	na	na	
		0.018	0.055	0.044	0.197		0.174		na 0.463		na	na 0.467	0.285
07/31/00	2.69					0.196		0.174	0.163	0.237	0.119	0.167	0.191
08/12/00	2.41	0.010	0.117	na	0.172	0.136	0.118	0.214	0.174	0.212	0.211	0.223	0.252
08/29/00	1.20	0.005	0.040	0.018	0.203	0.189	0.136	0.189	0.195	0.262	0.262	0.24	0.444
09/07/00	1.96	0.010	0.046	0.037	0.193	0.158	0.160	0.179	0.153	0.203	0.169	0.184	0.15
09/17/00	2.05	0.018	na	0.033	na	0.134	na 0.420	0.133	na • 400	0.141	0.137	na 0.450	0.112
09/24/00	1.16	0.049	na o oco	0.062	0.136	0.131	0.128	0.311	0.190	0.231	0.135	0.159	0.162
11/26/00	0.93	0.032	0.069	0.073	0.331	0.235	0.235	na	0.272	na	na	na	na
RAIN TOTAL	40.11												
IUIAL	40.11												
No.Obs.		29	27	26	19	29	18	21	18	28	15	13	19
Average		0.031	0.065	0.062	0.250	0.243	0.134	0.278	0.169	0.228	0.255	0.329	0.250
Median		0.022	0.052	0.044	0.203	0.189	0.116	0.214	0.160	0.192	0.169	0.225	0.233
St.Dev.		0.026	0.037	0.053	0.128	0.180	0.068	0.248	0.061	0.153	0.178	0.221	0.170
C.V.		0.832	0.578	0.857	0.510	0.741	0.510	0.891	0.359	0.671	0.699	0.674	0.702
/laximum		0.123	0.195	0.246	0.652	1.040	0.286	1.270	0.347	0.738	0.664	0.936	0.812
/linimum		0.005	0.024	0.015	0.136	0.108	0.061	0.083	0.072	0.088	0.070	0.159	0.05

6/***/00 Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX G - 7a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm betw een the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE	•											
DATE	RAIN	RAIN	ASPHALT V	VO/SWALE F2	F3	E W/\$WALE F4	POROUS F5	W/SWALE F6	ASPHALT F7	W/SWALE F8	STRAND	F TREATMEN UNDER	POND
DAIL	AMOUNT	IVAIIA	''	F.4.	'3	14	13		''		STRAIN	DRAIN	POND
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/05/98	0.57	1.4	11.6	7.7	na	6.7	na	na	na	na	na	na	na
08/06/98	0.68	4.8	2.4	3.0	7.7	2.9	na	4.6	na	6.8	na	na	8.3
08/07/98	1.30	2.3	0.15	1.9	2.4	1.8	2.7	2.1	4.2	7.9	na	na	na
08/09/98	2.47	0.5	4.7	1.8	3.9	0.15	0.15	0.15	0.15	na	na	na	na
08/20/98	0.68	4.0	6.2	5.4	6.9	4.2	na	4.7	12.8	12.3	na	na	na
09/03/98	1.97	15.4	7.0	6.1	4.5	4.4	3.6	2.8	7.4	10.7	na	na	3.2
09/***/98	1.85	11.5	5.8	4.4	3.2	4.4	2.4	2.8	8.3	7.6	na	na	na
09/17/98	0.49	11.4	10.0	7.0	na	na	na	na	na	na	na	na	na
09/18/98	0.66	8.4	5.8	7.0	na	1.85	na	na	na	na	na	na	12.60
09/19/98	0.75	2.2	3.0	3.1	3.20	0.15	na	0.15	6.70	na	na	na	0.15
09/20/98	1.85	4.4	5.2	5.4	5.50	5.50	2.60	4.00	0.92	6.90	na	na	na
09/26/98	1.64	na	5.9	5.2	3.40	3.50	na	4.20	4.00	7.80	na	na	na
11/05/98	1.20	5.4	8.4	11.5	na	na	na	na	na	na	na	na	na
12/13/98	0.37	3.6	14.4	na	na	na	na	na	17.2	na	na	na	na
01/03/99	1.23	1.0	5.0	16.6	3.6	5.9	4.1	6.8	7.8	12.6	na	na	na
01/23/99	2.60	0.6	8.7	12.4	1.8	1.9	1.2	3.5	4.8	5.8	na	na	13.2
02/28/99	0.36	4.1	34.3	31.7	na	na	na	na	na	23.3	na	na	25.1
03/14/99	0.80	0.5	17.3	19.4	na	11.9	na	na	na	15.6	na	na	106.0
04/17/99	0.54	5.9	30.8	33.7	na	na	na	na	na	na	na	na	na
05/21/99	1.34	2.2	14.7	14.8	6.20	6.5	na	6.50	13.10	9.6	na	na	na
05/30/99	0.39	3.4	11.8	17.8	na	na	na	na	na	4.4	na	na	na
06/09/99	0.81	1.4	12.2	8.8	na	2.7	na	4.10	na	6.70	na	na	na
06/13/99	1.22	2.1	21.0	9.5	2.40	3.4	3.40	3.60	5.40	10.2	na	na	na
06/16/99	1.68	0.15	2.80	3.12	0.90	1.37	0.80	2.78	4.80	5.32	na	na	16.7
06/17/99	0.77	2.3	7.2	10.2	3.40	1.3	na	0.90	na	3.5	na	na	na
06/18/99	1.60	0.15	4.5	3.5	2.40	2.6	1.50	2.8	0.90	3.6	na	na	
07/01/99	1.53	12.9	14.4	6.2	3.2	3.8	3.30	3.1	4.70	5.5	na	na	3.5
07/07/99	0.81	6.2	10.8	6.4	na	2.5	na	na	na	1.0	na	na	na
07/09/99	1.17	3.0	9.3	3.7	3.8	3.3	14.2	4.2	6.0	5.5	na	12.5	6.5
07/13/99	1.58	6.7	10.1	10.1	na	4.5	na	na	na	10.0	na	na	3.8
07/20/99	0.88	5.1	13.4	8.5	na	5.6	na	8.0	na	na	na	na	2.7
RAIN			1									7.4	
TOTAL	35.79												
No.Obs.		30	31	30	18	25	12	20	17	22	0	1	12
Average		4.433	10.285	9.527	3.800	3.712	3.329	3.587	6.422	8.303	na	na	16.813
Median		3.500	8.700	7.000	3.400	3.400	2.650	3.534	5.400	7.250	na	na	7.400
St.Dev.		3.980	7.591	7.827	1.777	2.492	3.631	2.021	4.529	4.773	na	na	28.985
C.V.		0.898	0.738	0.822	0.468	0.671	1.091	0.563	0.705	0.575	na	na	1.724
Maximum		15.40	34.30	33.70	7.70	11.90	14.20	8.00	17.20	23.30	na	na	106.00
Minimum		0.150	0.150	1.750	0.900	0.150	0.150	0.150	0.150	1.000	na	na	0.150

9/***/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the sam ples not picked up until September 8th.

APPENDIX G - 7b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 999-00	4 mo	ASPHALT!	WO/SWALE	CONCRETE	W/SWALE	POROUS	W/SWALE	ДСРНДІ Т	W/SWALE	BEST O	F TREATMEN	IT TO AIN
DATE	RAIN	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER	POND
	AMOUNT											DRAIN	
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/06/99	1.29	1.0	6.0	2.2	2.0	2.5	3.8	3.6	4.4	5.3	14.4	10.5	3.0
08/12/99	0.70	3.1	9.0	13.3	5.8	3.4	na	3.0	na	9.2	na	na	na
08/14/99	1.23	4.1	8.6	8.8	3.6	5.0	3.2	3.6	4.5	5.7	7.6	7.7	8.9
08/19/99	0.90	na	8.6	6.6	3.6	4.2	3.8	3.0	4.4	4.3	9	20.3	6.1
08/22/99	2.95	6.2	3.8	5.0	2.6	3.0	1.0	2.7	2.2	5.3	3.8	na	5.0
09/11/99	0.84	8.0	6.8	6.5	na	5.3	na	na	na	0.2	na	na	4.8
09/18/99	0.85	12.7	6.2	13.0	4.6	3.5	na	3.8	9.5	15.2	23.3	17.7	1.0
09/25/99	1.37	32.7	6.7	4.7	5.0	3.9	3.1	4.6	7.4	22.6	11.1	6	3.3
10/03/99	1.22	19.2	4.5	2.6	4.6	4.2	2.7	3.5	5.7	8.2	15.5	7.7	2.8
10/04/99	0.98	13.3	3.2	4.0	na	5.3	na	na	na	5.9	31.3	14.9	3.2
11/01/99	1.63	13.1	8.1	na	8.4	6.9	7.3	3.9	na	17.2	na	7.2	17.9
12/17/99	0.75	1.0	7.7	7.8	l na	na	na	na	na	na	na	na	na
01/06/00	0.79	7.8	12.0	16.3	na	7.8	na	na	na	24.3	na	na	na
01/24/00	0.68	1.0	15.6	10.2	na	7.7	na	na	na	33.8	na	na	na
01/31/00	0.70	1.0	11.2	42.7	na	5.1	na	na	na	44.2	na	na	na
06/13/00	1.29	5.3	42.6	30.1	14.8	11.8	na	8.5	20.8	25.5	na	na	na
06/22/00	0.39	12.7	21.3	19.0	na	na	na	na	na	34.2	na	na	na
06/***/00	1.39	2.6	9.2	12.9	na	8.6	5.9	na	na	na	na	na	na
06/29/00	0.71	1.0	7.6	10.2	na	6.4	3.3	3.5	na	32.8	na	na	na
07/01/00	0.81	2.4	3.9	11.5	na	8.3	5.8	na	24.6	12.0	na	na	na
07/04/00	1.95	5.2	na	3.0	1.0	5.9	3.2	3.6	4.6	3.1	na	na	na
07/08/00	1.07	1.0	9.2	5.2	1.0	1.0	1.0	2.0	11.0	7.8	7.5	na	9.0
07/15/00	1.98	1.0	na	na	2.5	4.0	2.7	3.2	13.5	9.1	na	na	6.9
07/26/00	1.24	na	5.8	na	na	6.8	na	7.1	na	16.3	na	na	na
07/31/00	2.69	1.0	8.9	5.0	8.5	5.5	8.3	2.6	6.8	7.7	6.8	6.0	4.5
08/12/00	2.41	1.0	21.1	na	3.5	3.8	5.6	5.6	10.2	10.1	11.4	6.9	4.3
08/29/00	1.20	1.0	8.4	3.9	4.6	5.9	6.1	5.0	14.3	13.1	8.8	6.1	2.3
09/07/00	1.20	1.0	5.7	5.9 6.8	6.8	3.9 4.4	7.5	3.9	6.6	11.9	8.8	5.4	2.3 2.7
09/17/00	2.05	1.0	na	2.3	na	4.4	na	5.0	na	46.9	10.5	na	1.0
09/17/00	1.16	6.6	na	23.2	8.1	6.3	9.1	14.2	26.7	23.5	11.4	4.7	5.2
11/26/00	0.93	3.7	16.6	23.2 19.6	15.1	6.3 16.1	18.7	14.2 na	12.8	zs.s na	na	na	na
RAIN	0.83	3.1	10.0	13.0	15.1	10.1	10.7	на	12.0	ııa	i ia	Ha	Hd
TOTAL	40.11												
No.Obs.		29	27	27	19	29	19	21	18	28	15	13	18
Average		5.886	10.307	10.976	5.584	5.753	5.374	4.567	10.556	16.261	12.080	9.315	5.106
Median		3.100	8.400	7.800	4.600	5.300	3.800	3.600	8.450	11.969	10.500	7.200	4.400
St.Dev.		7.149	7.981	9.415	4.004	2.936	3.984	2.678	7.166	12.612	6.996	5.067	3.930
C.V.		1.214	0.774	0.858	0.717	0.510	0.741	0.586	0.679	0.776	0.579	0.544	0.770
Maximum		32.700	42.600	42.700	15.100	16.100	18.700	14.200	26.700	46.851	31.300	20.300	17.90
Minimum		1.000	3.200	2.200	1.000	1.000	1.000	2.000	2.200	0.151	3.800	4.700	1.000

6/***/00 Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX G - 8a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE												
	98-99	5 4 15 1		WO/SWALE		W/SWALE		W/SWALE		W/SWALE F8	REST OF	TREATME	POND
DATE	RAIN AMOUNT IN.	RAIN uG/L	F1 uG/L	F2 uG/L	F3 uG/L	F4 uG/L	F5 uG/L	F6 uG/L	F7 uG/L	uG/L	uG/L	UNDER DRAIN uG/L	uG/L
			ļ										
08/05/98	0.57	40	400	300	na	210	na	na	na	na	na	na	na
08/06/98	0.68	380	160	170	120	80	na	110	na	240	na	na	90
08/07/98	1.30	40	150	130	70	80	80	15	130	290	na	na	na
08/09/98	2.47	110	250	136	130	88	75	44	105	na	na	na	na
08/20/98	0.68	90	170	140	110	80	na	80	220	200	na	na	na
09/03/98	1.97	110	350	268	85	89	110	57	235	220	na	na	50
09/***/98	1.85	100	340	118	60	88	60	45	310	209	na	na	na
09/17/98	0.49	90	360	250	na	na	na	na	na	na	na	na	na
09/18/98	0.66	15	160	110	na	70	na	na	na	na	na	na	180
09/19/98	0.75	15	80	70	15	33	na	15	150	na	na	na	90
09/20/98	1.85	70	350	250	60	130	50	90	80	260	na	na	na
09/26/98	1.64	na	200	180	15	50	na	30	100	210	na	na	na
11/05/98	1.20	40	120	210	na	na	na	na	na	na	na	na	na
12/13/98	0.37	15	220	na	na	na	na	na	490	na	na	na	na
01/03/99	1.23	15	220	850	50	130	120	210	190	450	na	na	na
01/23/99	2.60	15	400	518	120	73	120	34	140	137	na	na	80
02/28/99	0.36	60	1120	1220	na	na	na	na	na	560	na	na	220
03/14/99	0.80	50	710	790	na	280	na	na	na	480	na	na	1200
04/17/99	0.54	100	900	950	na	na	na	na	na	na	na	na	na
05/21/99	1.34	120	1100	1120	100	270	na	140	410	390	na	na	na
05/30/99	0.39	110	790	980	na	na	na	na	na	370	na	na	na
06/09/99	0.81	70	700	440	na	70	na	60	na	290	na	na	na
06/13/99	1.22	100	970	430	30	50	110	50	80	350	na	na	na
06/16/99	1.68	90	200	166	30	45	70	34	90	131	na	na	11100
06/17/99	0.77	330	310	510	40	40	na	50	na	100	na	na	na
06/18/99	1.60	40	150	127	15	15	40	28	80	40	na	na	na
07/01/99	1.53	230	420	140	15	15	30	40	120	130	na	na	150
07/07/99	0.81	90	240	190	na	40	na	na	na	80	na	na	na
07/09/99	1.17	80	170	50	15	30	450	30	100	90	na	120	500
07/03/33 07/13/99	1.58	100	370	460		40		na		270	na	na	710
			1		na	40 15	na		na				720
07/20/99	0.88	130	330	160	na	15	na	100	na	na	na	na	120
RAIN TOTAL	35.79												
No.Obs.		30	31	30	18	25	12	20	17	22	0	1	12
Average		95	400	381	60	84	110	63	178	250	na	na	1258
Median		90	330	230	55	70	78	48	130	230	na	na	200
St.Dev.		84	298	338	42	72	112	48	121	139	na	na	3120
C.V.		0.889	0.745	0.888	0.693	0.848	1.018	0.757	0.681	0.557	na	na	2.481
/laximum		380	1120	1220	130	280	450	210	490	560	na	na	11100
Minimum		15	80	50	15	15	30	15	80	40	na	na	50

^{9/***/98} Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th. 7/13/99 Includes several days of rainfall

APPENDIX G - 8b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	VO plus	4 mo											
DATE	99-00 RAIN	RAIN	ASPHALT	WO/SWALE F2	F3	W/SWALE F4	POROUS F5	W/SWALE F6	ASPHALT F7	W/SWALE F8	STRAND	F TREATMEN	PONE
DATE	AMOUNT	10-111	''		'				''		01101112	DRAIN	
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/06/99	1.29	110	170	70	12.5	12.5	12.5	12.5	30	230	15	220	580
08/12/99	0.70	30	260	280	12.5	12.5	12.5	12.5	na	160	na	na	na
08/14/99	1.23	12.5	280	270	12.5	12.5	12.5	12.5	30	110	15	50	60
08/19/99	0.90	na	270	140	12.5	12.5	12.5	12.5	50	1540	50	240	80
08/22/99	2.95	30	70	136	12.5	34	40	40	70	223	15	na	150
09/11/99	0.84	50	210	150	na	60	na	na	na	390	na	na	160
09/18/99	0.85	50	130	360	60	3.5	na	3.8	9.5	15.2	70	120	210
09/25/99	1.37	110	160	120	80	80	70	70	210	640	50	80	150
10/03/99	1.22	100	110	60	50	70	60	70	120	210	50	90	130
10/04/99	0.98	50	60	70	na	50	na	na	na	80	40	60	120
11/01/99	1.63	100	90	na	12.5	12.5	80	40	na	540	na	15	50
12/17/99	0.75	12.5	190	140	na	na	na	na	na	na	na	na	na
01/06/00	0.79	110	690	580	na	130	na	na	na	890	na	na	na
01/24/00	0.68	12.5	460	220	na	210	na	na	na	1120	na	na	na
01/31/00	0.70	12.5	570	360	na	120	na	na	na	1650	na	na	na
06/13/00	1.29	160	1920	1390	190	170	na	350	980	1800	na	na	na
06/22/00	0.39	140	710	640	na	na	na	na	na	1120	na	na	na
06/***/00	1.39	70	300	430	na	120	70	na	na	na	na	na	na
06/29/00	0.71	80	390	530	na	90	120	180	na	650	na	na	na
07/01/00	0.81	40	230	300	na	70	50	na	580	280	na	na	na
07/04/00	1.95	330	na	201	50	74	110	80	250	185	na	na	na
07/08/00	1.07	60	280	140	50	70	90	130	510	290	80	na	180
07/15/00	1.98	50	na	na	40	100	110	114	380	323	na	na	170
07/26/00	1.24	na	360	na	na	70	na	140	na	760	na	na	na
07/31/00	2.69	120	290	194	90	85	290	138	180	273	50	50	100
08/12/00	2.41	100	1200	na	80	98	250	160	410	371	140	60	220
08/29/00	1.20	210	380	105	140	224	250	205	670	420	60	100	210
09/07/00	1.96	50	290	154	40	50	150	153	220	415	60	40	110
09/17/00	2.05	50	na	136	na	125	na	140	na	767	100	na	150
09/24/00	1.16	180	na	400	90	100	180	300	690	480	100	80	180
11/26/00	0.93	40	450	420	370	250	550	na	300	na	na	na	na
RAIN													
TOTAL	40.11										<u> </u>		
No.Obs.		29	27	27	19	29	20	21	18	28	15	13	18
Average		85	390	296	74	87	126	113	316	569	60	93	167
Median		60	280	201	50	74	85	114	235	403	50	80	150
St.Dev.		70	390	272	86	64	130	94	276	483	35	67	114
C.V.		0.82	1.00	0.92	1.16	0.74	1.03	0.84	0.87	0.85	0.58	0.72	0.68
/laximum		330	1920	1390	370	250	550	350	980	1800	140	240	580
Minimum		13	60	60	13	4	13	4	10	15	15	15	50

6/***/00 Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX B - 9a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

YE	AR ON												
	998-99		ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	IT TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/05/98	0.57	1.0	3.7	2.9	na	1.0	na	na	na	na	na	na	na
08/06/98	0.68	1.0	1.0	1.0	1.0	1.0	na	1.0	na	1.0	na	na	1.0
08/07/98	1.30	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.1	na	na	na
08/09/98	2.47	1.0	2.2	1.5	1.0	1.0	1.0	1.0	1.0	na	na	na	na
08/20/98	0.68	1.0	2.5	1.0	1.0	1.0	na	1.0	2.5	3.0	na	na	na
09/03/98	1.97	1.0	2.2	2.0	1.0	1.0	1.0	1.0	1.0	1.0	na	na	1.0
09/***/98	1.85	1.3	2.3	1.4	0.4	8.0	0.7	0.5	0.5	1.5	na	na	na
09/17/98	0.49	1.0	3.9	3.4	na	na	na	na	na	na	na	na	na
09/18/98	0.66	1.0	1.0	1.0	na	1.0	na	na	na	na	na ·	na	1.0
09/19/98	0.75	1.0	1.0	1.0	1.0	1.0	na	1.0	1.0	na	na	na	1.0
09/20/98	1.85	1.0	2.7	1.0	1.0	1.0	1.0	1.0	1.0	1.0	na	na	na
09/26/98	1.64	1.0	1.0	1.0	1.0	1.0	na	1.0	1.0	2.3	na	na	na
11/05/98	1.20	1.0	1.0	1.0	na	na	na	na	na	na	na	na	na
12/13/98	0.37	1.0	2.9	na	na	na	na	na	5.9	na	na	na	na
01/03/99	1.23	1.0	2.8	10.4	1.0	2.4	2.0	3.1	2.8	5.8	na	na	na
01/23/99	2.60	1.0	8.0	9.8	2.9	1.4	1.0	1.0	2.2	2.9	na	na	1.0
02/28/99	0.36	1.0	13.0	14.2	na	na	na	na	na	8.2	na	na	2.2
03/14/99	0.80	1.0	7.7	10.2	na	3.1	na	na	na	5.8	na	na	9.9
04/17/99	0.54	2.2	8.6	10.7	na	na	na	na	na	na	na	na	na
05/21/99	1.34	2.2	9.5	11.1	1.0	1.0	na	1.0	5.1	4.5	na	na	na
05/30/99	0.39	1.0	5.8	8.3	na	na	na	na	na	3.5	na	na	na
06/09/99	0.81	2.0	9.3	6.4	na	3.2	na	2.4	na	5.7	na	na	na
06/13/99	1.22	5.2	11.6	6.6	2.5	1.0	1.0	1.0	1.0	2.5	na	na	na
06/16/99	1.68	1.0	1.0	6.5	1.0	1.0	1.0	1.6	1.0	3.9	na	na	na
06/17/99	0.77	1.0	2.2	4.5	1.0	1.0	na	1.0	na	1.0	na	na	na
06/18/99	1.60	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	na	na	na
07/01/99	1.53	1.0	1.0	1.0	1.50	1.0	1.50	1.0	1.60	2.40	na	na	1.0
07/07/99	0.81	1.0	2.7	1.9	na	1.0	na	na	na	1.0	na	na	na
07/09/99	1.17	1.0	2.0	1.0	2.0	1.0	1.0	4.0	1.0	0.8	na	na	2.0
07/13/99	1.58	1.8	2.9	4.0	na	0.8	na	na	na	2.6	na	na	2.7
07/20/99	0.88	2.7	3.8	2.7	na	0.8	na	2.3	na	na	na	na	3.2
RAIN													
TOTAL	35.79												
No.Obs.		31	31	30	18	25	12	20	17	22	0	1	11
Average		1.335	3.913	4.315	1.239	1.219	1.100	1.395	1.800	2.930	na	na	2.364
Median		1.000	2.700	2.350	1.000	1.000	1.000	1.000	1.000	2.550	na	na	1.000
St.Dev.		0.850	3.455	4.029	0.616	0.657	0.333	0.875	1.531	2.019	na	na	2.625
C.V.		0.636	0.883	0.934	0.497	0.539	0.303	0.627	0.850	0.689	na	na	1.111
/laximum		5.200	13.000	14.200	2.900	3.200	2.000	4.000	5.900	8.200	na	na	9.900
Minimum		1.000	1.000	1.000	0.400	0.750	0.700	0.500	0.500	0.750	na	na	1.000

9/**/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

APPENDIX G - 9b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	TWO plus	4 mo											
	1999-00			WO/SWALE		E W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/06/99	1.29	0.75	1.7	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.8	2.9
08/12/99	0.70	0.75	2.0	2.0	0.75	0.75	na	0.8	na	1.5	na	na	na
08/14/99	1.23	0.75	2.1	2.7	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
08/19/99	0.90	na	2.2	1.9	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
08/22/99	2.95	0.75	0.75	1.33	0.75	0.743	0.75	0.743	0.75	1.763	0.75	na	0.75
09/11/99	0.84	2.4	2.4	2.5	na	0.75	na	na	na	4.2	na	na	1.9
09/18/99	0.85	0.75		3.7	0.75	0.75	na	0.75	0.75	2.1	0.75	0.75	1.5
09/25/99	1.37	1.5	2.1	1.6	0.75	0.75	0.75	0.75	2.1	2.1	0.75	0.75	0.75
10/03/99	1.22	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	2.2	0.75	0.75	0.75
10/04/99	0.98	0.75	0.75	0.75	na	0.75	na	na	na	0.75	0.75	0.75	0.75
11/01/99	1.63	0.75	0.75	na	0.75	0.75	0.75	0.75	na	2	na	3.3	0.75
12/17/99	0.75	0.75	1.9	1.9	na	na	na	na	na	na	na	na	na
01/06/00	0.79	0.75	5.5	5.4	na	2	na	na	na	4.4	na	na	na
01/24/00	0.68	0.75	1.7	2.5	na	0.75	na	na	na	4.6	na	na	na
01/31/00	0.70	0.75	3.8	3.8	na	0.75	na	na	na	13.3	na	na	na
06/13/00	1.29	1.6	14.2	12.3	1.8	3.1	na	2.5	6.1	13	na	na	na
06/22/00	0.39	2.7	5.8	6.2	na	na	na	na	na	10.6	na	na	na
06/***/00	1.39	0.75	3.2	4.1	na	1.8	0.75	na	na	na	na	na	na
06/29/00	0.71	0.75	2.2	3.8	na	0.75	0.75	1.8	na	7.2	na	na	na
07/01/00	0.81	0.75	2.0	3.7	na	2	0.75	na	8.6	3.8	na	na	na
07/04/00	1.95	1.8	na	1.240	0.75	0.750	0.75	0.966	1.8	1.282	na	na	na
07/08/00	1.07	1.6	1.8	0.75	0.75	0.75	0.75	0.75	3.9	2.4	0.75	na	0.75
07/15/00	1.98	0.75	na	na	0.75	0.750	0.75	1.009	4.3	1.979	na	na	0.75
07/26/00	1.24	na	2.7	na	na	0.75	na	0.75	na	6.4	na	na	na
07/31/00	2.69	0.75	1.8	1.278	0.75	0.748	0.2	1.193	1.5	1.995	0.75	0.75	0.75
08/12/00	2.41	0.75	6.3	na	0.75	0.750	0.75	0.75	1.8	1.643	0.75	0.75	0.75
08/29/00	1.20	0.75	2.3	0.750	0.75	1.928	1.9	2.133	4.6	3.450	0.193	0.75	0.75
09/07/00	1.96	0.75	2.2	1.306	0.75	0.750	0.75	1.273	1.9	3.701	0.75	0.75	0.75
09/17/00	2.05	0.75	na	0.750	na	0.750	na	0.955	na	4.932	0.75	na	0.75
09/24/00	1.16	4.5	na	3.1	0.75	0.75	1.8	3.1	7.3	4.1	0.75	0.75	0.75
11/26/00	0.93	0.75	4	4.1	3.4	2.4	4.6	na	3.2	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		29	27	27	19	29	19	21	18	28	15	13	18
Average		1.124	2.876	2.776	0.945	1.051	1.041	1.139	2.867	3.844	0.713	1.027	0.975
Median		0.750	2.100	2.000	0.750	0.750	0.750	0.750	1.850	2.300	0.750	0.750	0.750
St.Dev.		0.837	2.710	2.433	0.641	0.634	0.940	0.673	2.447	3.442	0.144	0.742	0.574
C.V.		0.745	0.942	0.876	0.679	0.603	0.903	0.590	0.853	0.895	0.202	0.723	0.588
Maximum		4.500	14.200	12.300	3.400	3.100	4.600	3.100	8.600	13.300	0.750	3.300	2.900
Minimum		0.750	0.750	0.750	0.750	0.743	0.230	0.743	0.750	0.750	0.193	0.750	0.750

APPENDIX G - 10a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE 1998-99		ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/\$WALE	ASPHALT	W/SWALE	REST OF	TREATMEN	IT TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/05/98	0.57	2.2	10.5	10.1	na	5.3	na	na	na	na	na	na	na
08/06/98	0.68	3.6	5.7	6.0	2.8	3.1	na	2.4	na	6.4	na	na	18.3
08/07/98	1.30	1.0	4.8	4.9	1.8	2.2	2.5	1.3	4.0	6.8	na	na	na
08/09/98	2.47	1.9	5.4	4.0	2.5	1.6	2.2	1.2	3.1	na	na	na	na
08/20/98	0.68	2.0	5.8	5.5	2.4	0.1	na	2.0	8.4	5.4	na	na	na
09/03/98	1.97	2.7	7.3	6.8	2.3	2.4	2.5	1.5	6.3	4.8	na	na	4.1
09/***/98	1.85	3.3	7.1	3.4	1.6	2.1	1.5	0.9	6.9	4.5	na	na	3.4
09/17/98	0.49	3.9	9.9	7.8	na	na	na	na	na	na	na	na	na
09/18/98	0.66	1.3	5.4	6.2	na	2.0	na	na	na	na	na	na	13.30
09/19/98	0.75	0.7	3.2	3.5	0.9	1.5	na	1.1	5.3	na	na	na	6.4
09/20/98	1.85	1.9	8.4	6.4	1.3	2.6	1.1	2.0	2.3	6.2	na	na	na
09/26/98	1.64		4.5	4.5	0.3	1.0	na	8.0	2.8	5.0	na	na	na
11/05/98	1.20	1.1	8.6	10.5	na	na	na	na	na	na	na	na	na
12/13/98	0.37	1.3	14.1	na	na	na	na	na	16.1	na	na	na	na
01/03/99	1.23	0.3	5.6	17.4	1.7	3.7	3.9	3.8	6.2	10.0	na	na	na
01/23/99	2.60	0.3	7.7	11.4	4.3	2.6	2.7	1.1	4.7	4.9	na	na	15.8
02/28/99	0.36	2.0	33.9	33.5	na	na	na	na	na	20.8	na	na	15.7
03/14/99	0.80	2.9	17.1	29.4	na	61.2	na	na	na	48.1	na	na	48.5
04/17/99	0.54	3.4	25.9	37.9	na	na	na	na	na	na	na	na	na
05/21/99	1.34	2.3	24.4	30.9	4.3	32.2	na	5.0	13.1	29.0	na	na	na
05/30/99	0.39	3.6	26.2	37.5	na	na	na	na	na	28.1	na	na	na
06/09/99	0.81	0.9	11.8	10.0	na	10.0	na	1.8	na	14.2	na	na	na
06/13/99	1.22	1.2	13.5	9.4	1.2	5.2	2.3	2.0	3.0	10.1	na	na	na
06/16/99	1.68	1.5	5.0	5.9	1.2	5.2	1.7	1.5	2.7	5.5	na	na	43.6
06/17/99	0.77	2.5	5.9	11.4	1.1	3.6	na	1.4	na	6.0	na	na	na
06/17/99	1.60	0.3	3.7	5.2	0.3	2.9	1.0	1.1	2.0	2.4	na	-	na
07/01/99	1.53	4.4	8.1	4.8	1.3	3.6	1.2	1.1	3.4	5.8	na	na na	5.7
07/07/99	0.81	2.0	7.9	8.1	na	4.2	na		na	6.4	na		na
07/07/99	1.17	1.9	6.5	2.0	0.1	3.1	13.8	na 1.7	3.8	5.1	i	na	38.7
07/09/99		4.6		12.7		2.2			1		na	na	45.3
	1.58		9.6		na		na	na 7.0	na	8.5	na	na	
07/20/99	0.88	2.9	11.5	8.9	na	3.2	na	7.2	na	na	na	na	57.8
RAIN TOTAL	35.79												
No.Obs.		30	31	30	18	25	12	20	17	22	0	1	13
Average		2.130	10.484	11.862	1.742	6.666	3.033	2.077	5.535	11.089	na	na	24.35
Median		2.000	7.900	7.950	1.450	3.100	2.250	1.607	4.000	6.300	na	na	15.80
St.Dev.		1.206	7.529	10.597	1.205	12.895	3.490	1.568	3.885	11.056	na	na	19.45
C.V.		0.566	0.718	0.893	0.692	1.934	1.150	0.755	0.702	0.997	na	na	0.79
/laximum		4.600	33.900	37.900	4.300	61.200	13.800	7.200	16.100	48.100	na	na	57.80
Minimum		0.300	3.200	2.000	0.050	0.065	1.000	0.800	2.000	2.364	na	na	3.40

APPENDIX G - 10b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 4	l mo											
-	999-00			WO/SWALE		W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/06/99	1.29	1.1	5.2	3.7	0.5	2.8	1.1	0.5	2.0	5.8	29.6	69.6	37.8
08/12/99	0.70	1.8	6.5	9.7	1.4	2.8	na	1.5	na	7.7	na	na	na
08/14/99	1.23	1.4	7.0	7.4	0.5	2.5	1.6	1.0	2.5	5.4	5.5	10.8	9.2
08/19/99	0.90	na	5.7	4.8	0.5	2.2	0.5	1.0	2.7	7.9	14	42.8	11.0
08/22/99	2.95	0.5	2.7	7.1	0.5	1.4	0.5	0.5	1.5	5.5	5.5	na	5.7
09/11/99	0.84	2.6	7.4	6.9	na	3.1	na	na	na	14.7	na	na	6.4
09/18/99	0.85	1.2	4.0	10.7	2.6	3.2	na	1.4	5.9	14.4	11	13.5	4.8
09/25/99	1.37	1.5	5.2	4.2	2.1	2.7	1.9	1.6	6.5	21.6	11.6	19.6	6.9
10/03/99	1.22	1.9	3.9	3.5	2.4	3.3	1.2	1.4	4.5	9.4	7	28.9	19.4
10/04/99	0.98	0.5	2.8	3.6	na	1.4	na	na	na	3.4	11.3	21.4	17.8
11/01/99	1.63	2.1	4.1	na	3.8	3.0	2.6	1.7	na	13.2	na	3.7	5.8
12/17/99	0.75	1.1	3.8	6.7	na	na	na	na	na	na	na	na	na
01/06/00	0.79	1.9	14.2	15.2	na	5.0	na	na	na	23.0	na	na	na
01/24/00	0.68	0.3	11.2	8.5	na	5.2	na	na	na	28.7	na	na	na
01/31/00	0.70	0.5	7.8	9.8	na	3.2	na	na	na	40.2	na	na	na
06/13/00	1.29	3.0	35.6	31.7	10.0	12.1	na	3.8	5.6	5.7	na	na	na
06/22/00	0.39	3.9	14.3	13.9	na	na	na	na	na	24.9	na	na	na
06/***/00	1.39	2.8	9.3	11.2	na	7.6	3.4	na	na	na	na	na	na
06/29/00	0.71	2.5	8.1	10.4	na	2.7	2.3	5.2	na	16.1	na	na	na
07/01/00	0.81	1.2	5.0	5.8	na	1.7	0.5	na	12.7	6.8	na	na	na
07/04/00	1.95	6.8	na	4.8	2.1	2.0	2.0	2.0	6.0	4.1	na	na	na
07/08/00	1.07	1.8	6.8	5.2	1.9	2.5	2.3	2.6	11.5	7.2	7.7	na	7.8
07/15/00	1.98	1.8	na	na	1.7	2.9	2.7	2.3	10.9	7.9	na	na	20.0
07/26/00	1.24	na	8.1	na	na	2.4	na	5.7	na	18.0	na	na	na
07/31/00	2.69	2.8	6.3	6.0	2.6	2.5	7.2	3.1	5.4	7.3	4.6	1.3	5.9
08/12/00	2.41	1.6	13.4	na	1.8	2.6	2.6	2.7	6.5	5.1	5.2	1.6	7.9
08/29/00	1.20	1.9	9.5	3.9	2.9	6.1	5.3	5.2	16.5	11.6	10.4	48.9	10.8
09/07/00	1.96	1.0	6.4	5.7	1.6	2.0	3.3	3.2	6.4	11.8	3.6	0.5	5.9
09/17/00	2.05	1.2	na	0.5	na	1.6	na	2.4	na	18.5	3.5	na	7.0
09/24/00	1.16	2.0	na	9.0	2.2	1.7	2.5	4.7	19.0	10.9	10.8	26.5	10.7
11/26/00	0.93	1.4	10.3	11.6	10.0	9.2	12.1	na	10.3	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		29	27	27	19	29	19	21	18	28	15	13	18
Average		1.87	8.32	8.20	2.69	3.50	2.93	2.55	7.58	12.74	9.42	22.24	11.16
Median		1.80	6.80	6.90	2.10	2.70	2.30	2.32	6.20	10.15	7.70	19.60	7.85
St.Dev.		1.26	6.35	5.83	2.72	2.45	2.76	1.58	4.94	8.67	6.50	21.08	8.18
C.V.		0.68	0.76	0.71	1.01	0.70	0.94	0.62	0.65	0.68	0.69	0.95	0.73
Maximum		6.80	35.60	31.70	10.00	12.10	12.10	5.70	19.00	40.20	29.60	69.60	37.80
Minimum		0.30	2.70	0.50	0.50	1.38	0.50	0.50	1.50	3.40	3.50	0.50	4.80

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

APPENDIX G - 11a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ON 998-99	E	ASPHALT	WO/SWALE	CONCRETI	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT IN.	RAIN uG/L	F1 uG/L	F2 uG/L	F3 uG/L	F4 uG/L	F5 uG/L	F6 uG/L	F7 uG/L	F8 uG/L	STRAND uG/L	UNDER DRAIN uG/L	POND uG/L
08/05/98	0.57	15	50	40	na	30	na	na	na	na	na	na	na
08/06/98	0.68	15	15	15	15	15	na	15	na	15	na	na	70
08/07/98	1.30	15	15	30	15	15	15	15	15	30	na	na	na
08/09/98	2.47	30	30	21	30	15	15	15	15	na	na	na	na
08/20/98	0.68	15	30	30	30	15	na	15	40	15	na	na	na
09/03/98	1.97	40	15	33	15	15	15	15	15	15	na	na	15
09/***/98	1.85	20	30	17.9	10	4	20	15	40	20	na	na	0
09/17/98	0.49	70	40	30	na	na	na	na	na	na	na	na	na
09/18/98	0.66	15	15	15	na	15	na	na	na	na	na	na	15
09/19/98	0.75	15	15	15	15	15	na	15	15	na	na	na	15
09/20/98	1.85	15	15	15	15	15	15	15	15	15	na	na	na
09/26/98	1.64	15	15	15	15	15	na	15	15	15	na	na	na
11/05/98	1.20	15	40	50	na	na	na	na	na	na	na	na	na
12/13/98	0.37	110	70	na	na	na	na	na	70	na	na	na	na
01/03/99	1.23	15	15	60	15	30	15	40	40	50	na	na	na
01/23/99	2.60	15	30	57	15	15	15	15	30	41	na	na	15
02/28/99	0.36	170	160	160	na	na	na	na	na	100	na	na	15
03/14/99	0.80	80	90	100	na	70	na	na	na	80	na	na	50
04/17/99	0.54	30	130	130	na	na	na	na	na	na	na	na	na
05/21/99	1.34	70	90	80	15	30	na	15	60	50	na	na	na
05/30/99	0.39	15	70	90	na	na	na	na	na	40	na	na	na
06/09/99	0.81	15	60	40	na	15	na	15	15	15	na	na	na
06/13/99	1.22	110	100	40	15	15	30	30	30	40	na	na	na
06/16/99	1.68	15	15	15	15	15	15	15	15	15	na	na	80
06/17/99	0.77	15	15	15	15	15	na	15	na	15	na	na	na
06/18/99	1.60	15	15	15	15	25	15	15	15	15	na	na	na
07/01/99	1.53	15	40	15	15	15	15	15	30	30	na	na	15
07/07/99	0.81	40	40	30	na	20	na	na	na	20	na	na	na
07/09/99	1.17	60	20	15	15	20	50	20	30	20	na	7.5	50
07/13/99	1.58	40	40	40	na	20	na	na	na	30	na	na	20
07/20/99	0.88	30	30	20	na	15	na	20	na	na	na	na	15
RAIN	0.00				110				7.12.		1.5		
TOTAL	35.79												
No.Obs.		31	31	30	18	25	12	20	18	22	0	1	13
Average		37.258	43.710	41.637	16.389	19.560	19.583	17.500	28.056	31.182	na	na	28.84
Median		15.000	30.000	30.000	15.000	15.000	15.000	15.000	22.500	20.000	na	na	15.00
St.Dev.		37.234	36.855	36.603	5.089	12.035	10.544	6.387	16.728	22.694	na	na	24.92
C.V.		0.999	0.843	0.879	0.311	0.615	0.538	0.365	0.596	0.728	na	na	0.86
/laximum		170.000	160.000	160.000	30.000	70.000	50.000	40.000	70.000	100.000	na	na	80.00
Minimum		15.000	15.000	15.000	10.000	4.000	15.000	15.000	15.000	15.000	na	na	0.000

^{9/***/98} Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th. 7/13/99 Includes several days of rainfall

APPENDIX G - 11b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

•	WO plus 1999-00	4 mo	ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE		TREATMEN	T TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	PONE
	iN.	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L	uG/L
08/06/99	1.29	7.5	20	20	7.5	20	7.5	7.5	20	20	7.5	7.5	7.5
08/12/99	0.70	40	30	40	20	20	na	20	na	20	na	na	na
08/14/99	1.23	180	20	20	8	8	8	8	20	20	20	7.5	50
08/19/99	0.90	na	30	40	7.5	20	20	7.5	20	20	7.5	20	30
08/22/99	2.95	7.5	7.5	11.2	7.5	11	20	10	20	19	20	na	7.5
09/11/99	0.84	40	20	40	na	20	na	na	na	60	na	na	7.5
09/18/99	0.85	20	7.5	30	7.5	7.5	na	7.5	20	40	20	7.5	7.5
09/25/99	1.37	7.5	7.5	7.5	20	20	20	20	30	80	7.5	7.5	7.5
10/03/99	1.22	20	7.5	7.5	7.5	7.5	7.5	7.5	20	30	7.5	7.5	7.5
10/04/99	0.98	7.5	7.5	7.5	na	20	na	na	na	20	30	7.5	7.5
11/01/99	1.63	*	*	*	*	*	• *	*	*	*	*	*	*
12/17/99	0.75	7.5	40	30	na	na	na	na	na	na	na	na	na
01/06/00	0.79	20	70	60	na	30	na	na	na	90	na	na	na
01/24/00	0.68	7.5	60	40	na	30	na	na	na	100	na	na	na
01/31/00	0.70	7.5	40	50	na	20	na	na	na	130	na	na	na
06/13/00	1.29	30	130	110	50	50	na	50	100	140	na	na	na
06/22/00	0.39	40	50	60	na	na	na	na	na	90	na	na	na
06/***/00	1.39	7.5	7.5	7.5	na	7.5	7.5	na	na	na	na	na	na
06/29/00	0.71	20	20	30	na	30	20	20	na	40	na	na	na
07/01/00	0.81	7.5	20	20	na	20	7.5	na	20	30	na	na	na
07/04/00	1.95	20	na	12	7.5	20	7.5	8	20	20	na	na	na
07/08/00	1.07	20	20	20	7.5	20	7.5	7.5	40	20	7.5	na	7.5
07/15/00	1.98	7.5	na	na	20	20	20	15	40	32	na	na	7.5
07/26/00	1.24	na	30	na	na	8	na	30	na	60	na	na	na
07/31/00	2.69	20	30	30	40	34	50	174	8	12	7.5	7.5	7.5
08/12/00	2.41	7.5	140	na	8	20	20	20	30	33	20	7.5	7.5
08/29/00	1.20	30	40	22	20	28	30	28	60	46	20	7.5	20
09/07/00	1.96	7.5	30	24	20	16	20	23	30	35	7.5	7.5	7.5
09/17/00	2.05	7.5	na	15	na	20	na	23	na	63	20	na	7.5
09/24/00	1.16	30	na	40	30	20	20	40	70	40	50	7.5	7.5
11/26/00	0.93	30	50	60	60	50	60	na	50	na	na	na	na
RAIN													
TOTAL	40.11						·						
No.Obs.		28	26	27	18	28	18	20	18	27	15	12	17
Average		23.5	36.0	31.6	19.3	21.3	19.6	26.3	34.3	48.5	16.8	8.5	12.1
Median		20.0	30.0	30.0	13.8	20.0	20.0	20.0	25.0	34.6	20.0	7.5	7.5
St.Dev.		32.7	33.7	22.7	16.1	10.9	14.7	36.6	23.0	35.1	11.8	3.6	11.5
Ç.V.		1.39	0.94	0.72	0.83	0.51	0.75	1.39	0.67	0.72	0.70	0.42	0.95
aximum		180	140	110	60	50	60	174	100	140	50	20	50
/linimum		7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	11.8	7.5	7.5	7.5

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

^{*} Zinc quality control out of limits

APPENDIX G - 12a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

1	AR ONE 1998-99			WO/SWALE		E W/SWALE		W/SWALE		W/SWALE		TREATME	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	na	9.7	11.3	na	29.5	na	na	na	na	na	na	na
08/06/98	0.68	na	5.6	9.2	na	na	na	9.9	na	13.0	na	na	2.5
08/07/98	1.30	na	4.8	12.4	2.0	11.5	6.8	2.3	6.16	13.0	na	na	na
08/09/98	2.47	0.35	6.2	12.0	4.6	2.9	4.9	1.1	5.3	na	na	na	na
08/20/98	0.68	na	6.0	5.9	2.8	3.6	na	3.0	7.1	14.08	na	na	na
09/03/98	1.97	na	6.5	1.9	0.6	4.3	1.5	8.0	6.8	10.3	na	na	1.1
09/***/98	1.85	0.79	5.7	5.3	1.7	4.2	2.5	1.4	5.4	9.6	na	na	2.6
09/17/98	0.49	na	8.1	5.9	na	na	na	na	na	na	na	na	na
09/18/98	0.66	na	4.5	2.9	na	na	na	na	na	na	na	na	21.45
09/19/98	0.75	na	1.9	3.8	1.9	3.6	na	1.3	7.0	na	na	na	4.8
09/20/98	1.85	na	6.8	6.5	1.1	6.2	na	1.6	0.0	7.9	na	na	na
09/26/98	1.64	na	4.7	7.5	0.5	4.8	na	1.9	na	27.3	na	na	na
11/05/98	1.20	na	13.1	8.7	na	na	na	na	na	na	na	na	na
12/13/98	0.37	na	na	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	na	15.7	32.8	2.5	5.0	6.6	4.1	3.6	22.3	na	na	na
01/23/99	2.60	na	15.0	38.8	0.2	1.3	4.0	0.5	3.0	4.3	na	na	2.4
02/28/99	0.36	na	na	na	na	na	na	na	na	na	na	na	10.5
03/14/99	0.80	na	na	na	na	na	na	na	na	na	na	na	43.4
04/17/99	0.54	na	na	na	na	na	na	na	na	na	na	na	na
05/21/99	1.34	na	36.3	60.6	5.2	6.1	na	14.5	7.1	12.1	na	na	na
05/30/99	0.39	na	28.1	na	na	na	na	na	na	na	na	na	na
06/09/99	0.81	na	23.0	12.7	na	4.0	na	na	na	8.0	na	na	na
06/13/99	1.22	na	24.4	11.4	1.8	3.6	2.4	3.0	4.3	na	na	na	na
06/16/99	1.68	na	5.7	9.9	1.0	1.9	2.1	1.7	3.9	9.1	na	na	253.6
06/17/99	0.77	na	8.1	18.3	1.1	1.5	na	3.9	na	7.8	na	na	na
06/18/99	1.60	na	5.3	4.50	1.7	1.3	2.1	1.7	11.3	3.0	na	na	na
07/01/99	1.53	7.4	9.4	3.5	2.4	2.7	na	5.5	na	5.7	na	na	na
07/07/99	0.81	na	7.6	8.3	na	na na	na	na	na	11.5	na	na	na
07/09/99	1.17	na	5.2	4.7	0.6	2.3	na	5.9	3.6	4.1	na	6.02	11.1
07/03/33	1.58	na	7.8	22.0	na	2.0	na	na	na	8.6	na	na	13.3
07/13/99	0.88	na	12.2	8.2	na	na	na	7.2	na	na	na	na	36.8
RAIN	0.00	114	12.2	V.2	TIQ	na	i i a	1.4	Ha	Ha	IIG	IIG.	30.0
TOTAL	35.79			, . <u></u>									
No.Obs.		3	27	26	17	20	9	19	14	18	0	1	12
Average		2.838	10.655	12.649	1.868	5.113	3.645	3.751	5.315	10.657	na	na	33.624
Median		0.790	7.630	8.525	1.740	3.591	2.450	2.300	5.310	9.353	na	na	10.793
St.Dev.		3.934	8.270	13.120	1.364	6.195	2.021	3.582	2.639	6.117	na	na	70.637
C.V.		1.386	0.776	1.037	0.730	1.212	0.555	0.955	0.497	0.574	na	na	2.101
Maximum		7.374	36.280	60.619	5.179	29.510	6.800	14.481	11.306	27.340	na	na	253.58
Minimum		0.350	1.920	1.860	0.160	1.270	1.460	0.507	0.000	2.996	na	na	1.070

APPENDIX G - 12b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus	4 mo											
	999-00			WO/SWALE		E W/SWALE		W/SWALE	ASPHALT			TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F 7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	na	5.7	3.5	na	1.9	na	2.0	na	10.1	43.8	13.5	3.8
08/12/99	0.70	na	6.7	12.3	na	1.3	na	na	na	9.7	na	na	na
08/14/99	1.23	na	10.3	7.0	1.5	2.3	2.0	9.0	6.5	2.7	9.4	4.1	1.8
08/19/99	0.90	na	4.2	3.8	1.1	2.2	na	2.5	3.5	7.2	4.3	3.3	0.9
08/22/99	2.95	na	2.5	3.4	1.1	2.9	1.4	2.3	3.0	15.1	7.4	na	0.7
09/11/99	0.84	na	9.4	5.9	na	na	na	na	na	35.2	17.9	na	na
09/18/99	0.85	na	5.3	2.7	na	1.9	na	na	na	17.5	17.4	2.2	6.5
09/25/99	1.37	na	4.0	2.2	1.4	1.6	2.5	2.3	9.8	7.2	5.8	1.7	2.8
10/03/99	1.22	na	4.4	1.1	1.8	2.0	na	10.3	9.8	7.2	1.9	1.6	7.1
10/04/99	0.98	na	na	na	na	na	na	na	na	na	8.7	1.5	3.6
11/01/99	1.63	na	4.8	na	2.3	2.7	3.6	3.7	na	11.7	3.0	1.0	na
12/17/99	0.75	na	na	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	na	20.7	16.4	na	na	na	na	na	32.0	na	na	na
01/24/00	0.68	na	na	na	na	na	na	na	na	na	na	na	na
01/31/00	0.70	na	na	na	na	na	na	na	na	na	na	na	na
06/13/00	1.29	na	42.5	42.1	na	8.8	na	10.5	121.1	24.8	na	na	na
06/22/00	0.39	na	20.7	24.9	na	na	na	na	na	na	na	na	na
06/***/00	1.39	na	10.6	22.3	na	na	na	na	na	na	na	na	na
06/29/00	0.71	na	10.8	16.8	na	na	na	na	na	32.7	na	na	na
07/01/00	0.81	na	4.4	12.4	na	na	na	na	na	28.9	na	na	na
07/04/00	1.95	8.7	na	11.1	2.1	1.5	5.6	3.5	12.1	7.0	na	na	na
07/08/00	1.07	na	6.6	3.7	1.5	1.8	3.0	5.3	29.2	8.3	3.4	na	3.1
07/15/00	1.98	na	na	na	1.2	4.1	5.1	9.2	18.7	12.9	5.1	na	na
07/26/00	1.24	na	7.1	na	na	2.3	na	na	na	44.0	na	na	na
07/31/00	2.69	na	10.1	6.8	2.8	3.1	16.3	11.0	7.9	9.2	5.0	1.0	1.3
08/12/00	2.41	na	na	na	1.7	2.1	9.2	7.3	24.6	13.0	5.3	1.2	6.7
08/29/00	1.20	na	8.4	2.8	6.1	7.4	14.2	15.3	16.9	10.7	9.4	0.7	2.5
09/07/00	1.96	na	8.2	4.2	2.3	2.0	7.9	6.6	12.5	11.3	2.1	na	na
09/17/00	2.05	na	na	5.3	na	3.2	na	12.4	na	77.0	2.3	na	1.8
09/24/00	1.16	na	na	5.7	5.6	4.5	13.5	12.2	71.5	36.2	3.7	0.3	1.9
11/26/00	0.93	na	19.1	11.2	21.9	22.7	41.6	na	51.7	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		1	22	23	15	21	13	17	15	24	18	12	14
Average		8.710	10.286	9.881	3.619	3.917	9.686	7.377	26.583	19.651	8.655	2.663	3.178
Median		8.710	7.624	5.870	1.800	2.271	5.560	7.271	12.461	12.305	5.221	1.540	2.663
St.Dev.		ERR	8.888	9.588	5.275	4.706	10.804	4.239	32.243	16.824	9.929	3.577	2.143
C.V.		ERR	0.864	0.970	1.458	1.202	1.115	0.575	1.213	0.856	1.147	1.343	0.674
Maximum		8.710	42.467	42.071	21.867	22.731	41.613	15.310	121.076	77.035	43.770	13.500	7.120
Minimum		8.710	2.510	1.090	1.080	1.270	1.380	1.950	3.010	2.710	1.860	0.256	0.730

APPENDIX G - 13a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

YE 1	AR ONE 1998-99		ASPHALT	WO/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	IT TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
		WOL	WG/L	WG/L	WG/L	MOL	1410/2	1910/2	111072	WO/L	IIIO/L		
08/05/98	0.57	0.59	0.72	0.67	na	1.31	na	na	na	na	na	na	na
08/06/98	0.68	0.64	0.75	0.51	0.89	1.16	na	0.75	na	0.63	na	na	314.00
08/07/98	1.30	0.65	0.69	0.67	0.83	0.93	0.61	0.74	0.76	0.71	na	na	na
08/09/98	2.47	1.14	0.41	0.45	0.39	0.61	0.60	0.50	0.51	na	na	na	na
08/20/98	0.68	1.22	1.70	0.94	1.39	0.99	na	1.54	1.38	0.94	na	na	na
09/03/98	1.97	2.82	2.49	2.41	2.14	2.65	2.07	2.40	2.68	2.74	na	na	9.32
09/***/98	1.85	1.44	1.39	1.26	2.53	1.69	1.14	1.34	2.53	1.36	na	na	33.70
09/17/98	0.49	0.89	1.00	0.82	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.59	0.71	0.64	na	1.85	na	na	na	na	na	na	39.1
09/19/98	0.75	0.48	0.50	0.47	0.81	0.88	na	0.71	0.65	na	na	na	34.1
09/20/98	1.85	1.11	0.94	1.04	0.68	1.01	0.69	1.26	0.92	0.93	na	na	na
09/26/98	1.64	na	0.62	0.55	0.99	0.91	1.04	1.04	0.84	na	na	na	na
11/05/98	1.20	1.04	1.47	1.24	na	na	na	na	na	na	na	na	na
12/13/98	0.37	1.32	2.60	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.56	0.83	0.71	1.55	2.14	1.66	2.19	2.77	1.57	na	na	na
01/23/99	2.60	0.59	0.65	0.63	1.09	1.34	1.09	1.30	1.76	1.17	na	na	27.20
02/28/99	0.36	1.56	3.55	2.31	na	na	na	na	na	2.67	na	na	55.00
03/14/99	0.80	3.20	2.79	2.70	na	5.15	na	na	na	6.33	na	na	71.60
04/17/99	0.54	1.05	1.94	1.98	na	na	na	na	na	na	na	na	na
05/21/99	1.34	1.13	1.21	1.19	3.38	4.09	na	3.74	3.17	3.09	na	na	na
05/21/99	0.39	1.19	1.16	1.22	na	na	na	na	na	1.24	na	na	na
06/09/99	0.39	0.71	0.53	0.57	na	1.67	na	1.63	na	1.23	na	na	na
06/13/99	1.22	na	1.51	1.26	2.28	2.09	1.8	2.05	2.2	1.76	na	na	na
06/16/99	1.68	0.47	0.41	0.87	0.63	1.90	0.72	1.87	0.66	1.52	na	na	6.64
06/17/99	0.77	0.37	0.33	0.35	0.03	1.90	na	0.62	na	0.13	na	na	na
06/17/99	1.60	0.37	0.33	0.80	0.40	1.88	0.82	1.8	0.76	1.51	na	na	na
07/01/99	1.53	0.77	0.47	0.67	1.05	1.57	1.05	1.37	1.13	1.23	na	na	11.2
		0.86	0.85	0.87		1.13		na		1.00	na		na
07/07/99	0.81		i	0.45	na 0.72	1.13	na 0.92	1.12	na 1.02	0.87	1	na 2.61	8.34
07/09/99	1.17	0.87	0.52	0.45		0.98			l		na	na	9.07
07/13/99	1.58	0.95	0.98		na	1.09	na	na 0.79	na na	na	na		10.70
07/20/99	0.88	0.61	0.57	0.58	na	1.09	na	0.79	па	na	na	na	10.70
RAIN TOTAL	35.79												
No.Obs.		29	31	30	18	25	13	20	16	20	0	1	13
Average		1.028	1.134	0.989	1.252	1.678	1.093	1.440	1.484	1.632	na	na	48.459
Median		0.890	0.850	0.809	0.940	1.340	1.040	1.320	1.075	1.235	na	na	27.200
St.Dev.		0.630	0.796	0.609	0.818	1.027	0.471	0.773	0.897	1.325	na	na	82.315
C.V.		0.613	0.702	0.616	0.654	0.612	0.431	0.537	0.604	0.812	na	na	1.699
C.V. Maximum		3.200	3.550	2.700	3.380	5.150	2.070	3.740	3.170	6.330	na	na	314.000
Minimum		0.370	0.330	0.350	0.390	0.610	0.600	0.500	0.510	0.130	na	na	6.640

APPENDIX G - 13b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 999-00	4 mo	ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	IT TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
08/06/99	1.29	0.20	0.20	na	0.74	0.74	0.52	0.66	0.60	0.57	na	3.42	27.50
08/12/99	0.70	0.54	0.52	0.41	1.31	1.21	na	0.84	na	0.74	na	na	na
08/14/99	1.23	0.84	0.49	0.46	0.69	0.74	0.74	0.73	0.77	0.71	1.15	1.46	18.60
08/19/99	0.90	na	0.53	0.62	0.84	0.88	0.77	0.90	0.76	0.74	1.14	1.56	14.40
08/22/99	2.95	1.02	0.81	0.77	0.71	1.080	0.48	0.47	0.56	0.74	0.6	na	1.11
09/11/99	0.84	1.44	0.55	0.48	na	1.48	na	na	na	0.78	na	na	1.32
09/18/99	0.85	1.52	0.67	0.65	1.58	1.62	na	1.60	1.23	0.88	3.25	4.17	3.26
09/25/99	1.37	0.82	0.72	0.60	0.83	0.93	0.51	0.95	0.83	0.81	1.37	2.03	8.97
10/03/99	1.22	1.40	0.74	0.74	1.13	1.16	na	1.35	1.13	0.88	1.96	2.73	9.71
10/04/99	0.98	0.47	0.20	0.20	na	1.12	na	na	na	0.57	2.42	2.37	9.78
11/01/99	1.63	1.68	0.77	na	1.75	2.56	1.99	1.55	na	1.99	na	13.2	15.80
12/17/99	0.75	0.67	0.56	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	1.72	1.56	1.64	na	3.22	na	na	na	1.84	na	na	na
01/24/00	0.68	0.58	0.76	0.62	na	na	na	na	na	na	na	na	na
01/31/00	0.70	0.20	0.53	0.44	na	2.67	na	na	na	1.79	na	na	na
06/13/00	1.29	2.34	2.43	2.61	4.53	6.70	na	4.55	4.14	6.12	na	na	na
06/22/00	0.39	2.43	2.48	2.68	na	na	na	na	na	na	na	na	na
06/***/00	1.39	2.53	2.36	2.54	na	4.26	2.28	na	na	na	na	na	na
06/29/00	0.71	2.34	2.25	2.20	na	3.08	1.77	2.61	na	2.73	na	na	na
07/01/00	0.81	1.83	1.76	1.86	na	2.58	na	na	na	2.14	na	na	na
07/04/00	1.95	1.83	na	1.87	1. 9 5	2.31	1.82	1.89	1.90	2.03	na	na	na
07/08/00	1.07	2.17	1.79	1.83	1.89	1.97	1.87	1.88	1.93	1.97	2.00	na	15.50
07/15/00	1.98	2.24	na	na	1.87	2.30	1.93	1.96	2.12	2.09	na	na	16.80
07/26/00	1.24	na	2.06	na	na	2.52	na	na	na	2.35	na	na	na
07/31/00	2.69	2.10	2.32	2.25	2.16	2.49	2.10	2.25	2.29	2.50	2.39	2.28	12.90
08/12/00	2.41	1.64	2.56	na	1.79	1.96	1.71	2.00	1.79	2.11	1.99	2.02	11.10
08/29/00	1.20	1.69	1.86	1.84	1.93	2.32	1.82	1.88	2.02	2.41	2.97	3.33	17.20
09/07/00	1.96	1.90	2.11	2.16	2.07	2.30	1.98	1.94	2.06	2.25	1.80	2.17	12.80
09/17/00	2.05	2.53	na	2.28	na	2.60	na	2.39	na	2.32	2.96	na	14.20
09/24/00	1.16	2.84	na	2.94	3.02	3.23	3.07	3.59	2.82	3.36	3.19	4.45	15.80
11/26/00	0.93	1.11	1.42	1.48	1.98	2.78	1.96	na	2.43	na	na	na	na
RAIN							•						
TOTAL	40.11												
No.Obs.		29	27	25	19	28	17	20	17	26	14	13	18
Average		1.539	1.297	1.447	1.725	2.243	1.607	1.799	1.728	1.823	2.085	3.476	12.597
Median		1.680	0.810	1.640	1.790	2.305	1.820	1.878	1.900	1.980	1.995	2.370	13.55
St.Dev.		0.761	0.814	0.881	0.921	1.241	0.736	1.001	0.940	1.188	0.829	3.067	6.462
C.V.		0.495	0.628	0.609	0.534	0.553	0.458	0.557	0.544	0.652	0.397	0.882	0.513
Maximum		2.840	2.560	2.940	4.530	6.700	3.070	4.550	4.140	6.120	3.250	13.200	27.50
Minimum		0.200	0.200	0.200	0.690	0.740	0.480	0.468	0.560	0.570	0.600	1.460	1.110

APPENDIX G - 14a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE 1998-99		ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	PONE MG/L
						111.07.2					10/2		
08/05/98	0.57	0.03	0.36	0.13	na	1.79	na	na	na	na	na	na	na
08/06/98	0.68	0.03	0.21	0.10	2.34	1.69	na	1.93	na	0.05	na	na	8.68
08/07/98	1.30	0.03	0.21	0.22	2.09	1.75	1.50	1.98	0.55	0.33	na	na	na
08/09/98	2.47	0.06	0.20	0.11	1.07	1.03	0.86	1.03	na	na	na	na	na
08/20/98	0.68	0.08	0.29	0.16	1.87	1.19	na	1.45	0.64	0.36	na	na	na
09/03/98	1.97	0.03	0.19	0.13	1.83	2.00	1.46	2.09	0.60	0.31	na	na	4.08
09/***/98	1.85	0.04	0.13	0.14	1.72	1.69	0.92	1.56	0.49	0.20	na	na	7,49
09/17/98	0.49	0.03	0.14	0.08	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.03	0.44	0.14	na	1.91	na	na	na	na	na	na	7.37
09/19/98	0.75	0.48	0.09	0.05	2.58	2.01	na	2.18	0.26	na	na	na	6.60
09/20/98	1.85	0.03	0.07	0.07	1.63	1.28	1.49	1.54	0.23	0.16	na	na	na
09/26/98	1.64	na	0.10	0.11	1.72	3.28	1.91	0.37	0.23	na	na	na	na
11/05/98	1.20	0.43	0.16	0.16	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.03	0.20	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.03	0.37	0.11	3.51	3.06	2.39	5.21	2.20	1.09	na	na	na
01/03/99	2.60	0.05	0.20	0.09	3.17	2.25	2.06	4.18	1.14	0.53	na	na	15.2
01/23/99	0.36	0.03	1.18	0.70	ſ	na	na		na	1.42	na	na	24.1
02/26/99	0.80	0.10	0.39	1.56	na	11.00		na na	na na	7.82	na	na	20.2
03/14/99	0.54	0.03	0.39	1.15	na		na				1		
					na o o z	na 9.42	na	na 44.20	na 2.50	na 3.24	na	na	na
05/21/99	1.34	0.03	0.12	0.51	8.87	8.12	na	11.20			na	na	na
05/30/99	0.39	0.06	0.27	0.65	na	na	na	na 5.04	na	1.71	na	na	na
06/09/99	0.81	0.03	0.09	0.17	na	3.53	na	5.21	na	1.55	na	na	na
06/13/99	1.22	na	0.67	0.31	5.34	3.18	2.20	5.04	1.34	1.34	na	na	na
06/16/99	1.68	0.07	0.26	0.12	2.03	2.28	1.70	3.98	0.48	0.78	na	na	na
06/17/99	0.77	0.07	0.26	0.12	1.74	4.62	na	1.30	na	0.66	na	na	na
06/18/99	1.60	0.06	0.22	0.14	1.62	1.41	1.00	1.53	0.27	0.41	na	na	
07/01/99	1.53	0.03	0.03	0.03	1.02	1.02	0.91	1.57	0.03	0.03	na	na	0.03
07/07/99	0.81	0.05	0.12	0.12	na	1.71	na	na	na	0.36	na	na	na
07/09/99	1.17	0.02	0.25	0.06	1.69	1.49	1.27	2.14	0.40	0.38	na	2.7	8.70
07/13/99	1.58	0.02	0.11	0.10	na	1.04	na	na	na	na	na	na	9.34
07/20/99	0.88	1.50	0.12	0.12	na	1.72	na	0.26	na	na	na	na	11.1
RAIN													
TOTAL	35.79												
No.Obs.		29	31	30	18	25	13	20	15	20	0	1	12
Average		0.122	0.274	0.255	2.547	2.642	1.513	2.788	0.757	1.136	na	na	10.24
Median		0.040	0.210	0.125	1.850	1.790	1.490	1.955	0.490	0.470	na	na	8.69
St.Dev.		0.286	0.251	0.344	1.872	2.298	0.516	2.503	0.734	1.752	na	na	6.69
C.V.		2.339	0.915	1.347	0.735	0.870	0.341	0.898	0.969	1.543	na	na	0.65
/laximum		1.500	1.180	1.560	8.870	11.000	2.390	11.200	2.500	7.820	na	na	24.10
/linimum		0.020	0.025	0.025	1.020	1.020	0.860	0.260	0.025	0.025	na	na	0.02

9/***/98 Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th. 7/13/99 Includes several days of rainfall

APPENDIX G - 14b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus	4 mo											
	999-00			WO/SWALE		E W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	0.02	0.12	na	2.87	1.61	2.02	2.81	0.95	0.43	na	10.30	10.00
08/12/99	0.70	0.02	0.02	0.02	3.28	1.05	na	1.65	na	0.02	na	na	na
08/14/99	1.23	0.33	0.02	0.02	1.49	0.47	0.47	1.02	0.04	0.02	0.55	1.63	5.74
08/19/99	0.90	na	0.05	0.02	1.70	1.17	0.75	1.56	0.13	0.09	0.35	1.20	7.28
08/22/99	2.95	0.02	0.02	0.02	1.10	0.77	0.25	1.01	0.37	0.33	0.74	na	0.23
09/11/99	0.84	0.27	0.26	0.23	na	3.26	na	na	na	0.54	na	na	0.06
09/18/99	0.85	0.59	0.62	0.21	5.70	2.92	na	6.66	0.94	0.44	10.20	8.79	0.17
09/25/99	1.37	0.25	0.32	0.10	2.95	2.00	2.08	4.29	4.23	3.98	4.26	5.20	20.60
10/03/99	1.22	0.51	0.02	0.17	3.16	2.02	na	3.89	0.69	0.40	3.84	5.25	2.15
10/04/99	0.98	0.09	0.18	0.12	na	2.74	na	na	na	0.19	4.75	4.09	3.62
11/01/99	1.63	0.27	0.27	na	4.74	4.19	3.07	5.38	na	1.53	na	3.63	3.97
12/17/99	0.75	0.05	0.27	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	0.10	0.32	0.39	na	3.69	na	na	na	0.67	na	na	na
01/24/00	0.68	0.02	0.29	0.27	na	na	na	na	na	na	na	na	na
01/31/00	0.70	0.02	0.23	0.26	na	3.97	na	na	na	1.19	na	na	na
06/13/00	1.29	0.43	0.37	0.96	6.96	7.44	na	6.15	2.37	4.42	na	na	na
06/22/00	0.39	0.26	0.53	1.22	na	na	na	na	na	na	na	na	na
06/***/00	1.39	0.23	0.44	0.59	na	5.43	2.45	na	na	na	na	na	na
06/29/00	0.71	0.25	0.33	0.44	na	3.60	1.22	5.26	na	1.53	na	na	na
07/01/00	0.81	0.27	0.32	0.39	na	3.73	na	na	na	1.49	na	na	na
07/04/00	1.95	0.29	na	0.30	2.68	3.10	1.73	3.11	0.70	1.06	na	na	na
07/08/00	1.07	0.56	0.31	0.30	1.94	1.76	1.56	2.18	0.55	0.63	1.10	na	5.59
07/15/00	1.98	0.20	na	na	1.89	2.35	1.39	2.07	0.68	0.67	na	na	7.20
07/26/00	1.24	na	0.26	na	na	2.44	na	na	na	0.59	na	na	na
07/31/00	2.69	0.14	0.26	0.30	1.71	1.24	1.45	1.52	0.79	0.96	1.19	1.12	3.30
08/12/00	2.41	0.12	0.29	na	1.32	1.08	0.89	1.25	0.61	0.77	1.49	1.61	2.73
08/29/00	1.20	0.02	0.35	0.34	2.48	2.13	1.57	2.16	1.19	1.73	2.87	3.13	1.11
09/07/00	1.96	0.21	0.29	0.27	1.78	1.69	1.49	1.68	0.76	0.95	1.36	1.64	1.28
09/17/00	2.05	0.24	na	0.28	na	1.58	na	1.62	na	0.56	1.06	na	0.73
09/24/00	1.16	0.29	na	0.32	1.59	1.54	1.52	2.12	0.54	0.72	1.18	2.20	0.52
11/26/00	0.93	0.10	0.23	0.25	1.61	1.84	1.69	na	1.51	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		29	27	25	19	28	17	20	17	26	14	13	18
Average		0.213	0.259	0.312	2.682	2.529	1.506	2.870	1.003	0.996	2.496	3.830	4.238
Median		0.230	0.270	0.274	1.940	2.074	1.520	2.141	0.700	0.668	1.275	3.130	3.015
St.Dev.		0.163	0.149	0.276	1.571	1.524	0.695	1.776	0.989	1.056	2.642	2.922	5.004
C.V.		0.766	0.576	0.884	0.586	0.603	0.461	0.619	0.986	1.061	1.058	0.763	1.18
/laximum		0.590	0.620	1.220	6.960	7.440	3.070	6.660	4.230	4.420	10.200	10.300	20.60
Minimum		0.020	0.020	0.020	1.100	0.470	0.250	1.010	0.040	0.020	0.350	1.120	0.06

APPENDIX G - 15a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONI 1998-99	E	ASPHALT	WO/SWALE	CONCRETI	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATME	NT TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	0.39	0.50	0.52	na	1.06	na	na	na	na	na	na	na
08/06/98	0.68	0.14	0.17	0.13	0.70	0.98	na	0.54	na	0.16	na	na	174.00
08/07/98	1.30	0.25	0.32	0.25	2.09	1.75	1.5	1.98	0.35	0.33	na	na	na
08/09/98	2.47	0.55	0.31	0.44	0.47	0.53	0.42	0.44	0.35	na	na	na	na
08/20/98	0.68	0.66	0.59	0.48	0.88	0.73	na	0.71	0.93	0.46	na	na	na
09/03/98	1.97	1.23	1.5	1.63	1.46	1.91	1.44	1.28	1.65	1.36	na	na	8.41
09/***/98	1.85	0.32	0.31	0.38	1.43	1.01	0.41	0.7	1.4	0.36	na	na	21.9
09/17/98	0.49	0.23	0.28	0.27	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.20	0.86	0.33	na	1.22	na	na	na	na	na	na	24.6
09/19/98	0.75	0.19	0.19	0.21	0.68	1.24	na	0.44	0.27	na	na	na	22.00
09/20/98	1.85	0.43	0.57	0.79	0.86	0.78	1.65	0.87	0.49	0.77	na	na	na
09/26/98	1.64	na	0.42	0.29	0.83	0.41	0.87	0.75	0.43	na	na	na	na
11/05/98	1.20	0.21	0.47	0.39	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.73	1.43	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.37	0.50	0.40	0.88	1.14	1.28	1.01	1.35	0.80	na	na	na
01/23/99	2.60	0.24	0.36	0.29	0.77	0.92	0.83	0.78	0.87	0.64	na	na	20.00
02/28/99	0.36	1.06	13.00	14.20	na	na	na	na	na	1.64	na	na	42.40
03/14/99	0.80	1.69	1.62	1.59	na	2.49	na	na	na	328	na	na	45.10
04/17/99	0.54	0.56	1.18	1.31	na	na	na	na	na	na	na	na	na
05/21/99	1.34	0.43	0.49	0.47	1.56	2.37	na	1.79	1.53	1.71	na	na	na
05/30/99	0.39	0.52	0.51	0.52	na	na	na	na	na	0.71	na	na	na
06/09/99	0.81	0.25	0.19	0.22	na	1.14	na	0.96	na	0.63	na	na	na
06/13/99	1.22	na	0.63	0.47	1.02	1.11	0.89	0.93	0.88	0.86	na	na	na
06/16/99	1.68	0.14	0.17	0.15	0.45	0.67	0.41	0.48	0.34	0.40	na	na	4.95
06/17/99	0.77	0.16	0.22	0.18	0.54	0.66	na	7.2	na	8.14	na	na	na
06/18/99	1.60	0.38	0.22	0.25	0.57	0.62	0.48	0.38	0.39	0.41	na	na	na
07/01/99	1.53	0.31	0.27	0.18	0.61	0.82	0.63	0.6	0.41	0.38	na	na	16.6
07/07/99	0.81	0.44	0.38	0.39	na	0.85	na	na	na	0.43	na	na	na
07/09/99	1.17	0.27	0.29	0.26	0.56	0.70	0.7	0.7	0.47	0.40	na	1.8	3.97
07/13/99	1.58	0.49	0.66	0.50	na	0.79	na	na	na	na	na	na	4.28
07/20/99	0.88	16.10	0.35	0.40	na	0.92	na	0.46	na	na	na	na	6.39
RAIN													
TOTAL	35.79												
No.Obs.		29	31	30	18	25	13	20	16	19	0	1	13
Average		0.998	0.934	0.929	0.909	1.073	0.885	1.150	0.757	1.083	na	na	30.354
Median		0.380	0.420	0.390	0.800	0.922	0.830	0.730	0.480	0.630	na	na	20.000
St.Dev.		2.925	2.273	2.535	0.447	0.531	0.444	1.487	0.481	1.764	na	na	45.226
C.V.		2.931	2.434	2.728	0.492	0.495	0.501	1.292	0.636	1.628	na	na	1.490
Maximum		16.100	13.000	14.200	2.090	2.490	1.650	7.200	1.650	8.140	na	na	174.000
Minimum		0.140	0.170	0.130	0.450	0.410	0.410	0.378	0.270	0.160	na	na	3.970

APPENDIX G - 15b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 999-00	4 mo	ASPHALT	NO/SWALE	CONCRET	E W/SWALE	POPOLIS	W/\$WALE	ASDHALT	W/SWALE	PEST OF	TREATMEN	UT TOAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	0.15	0.17	na	0.5	0.65	0.59	0.5	0.35	0.35	na	1.62	11.60
08/12/99	0.70	0.41	0.42	0.35	1.05	1.38	na	0.81	na	0.53	na	na	na
08/14/99	1.23	0.59	0.34	0.31	0.60	0.78	0.78	0.60	0.46	0.48	0.94	1.11	131.0
08/19/99	0.90	na	0.31	0.34	0.62	0.64	0.66	0.60	0.37	0.38	0.77	1.01	143.0
08/22/99	2.95	0.38	0.31	0.26	0.52	0.607	0.36	0.40	0.23	0.35	0.39	na	0.76
09/11/99	0.84	0.90	0.48	0.40	na	1.24	na	na	na	0.52	na	na	1.01
09/18/99	0.85	0.83	0.49	0.41	1.04	1.25	na	0.86	0.71	0.51	1.37	2.32	1.84
09/25/99	1.37	0.32	0.27	0.19	0.54	0.64	0.79	0.50	0.38	0.31	0.82	1.63	4.66
10/03/99	1.22	0.88	0.54	0.52	0.86	0.99	na	0.89	0.66	0.58	1.11	2.15	5.42
10/04/99	0.98	0.21	0.25	0.24	na	1.53	na	na	na	0.40	1.40	1.89	5.38
11/01/99	1.63	1.12	0.57	na	1.04	1.75	1.36	1.07	na	1.06	na	20.00	21.40
12/17/99	0.75	0.30	0.37	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	1.01	0.86	0.96	na	2.19	na	na	na	1.06	na	na	na
01/24/00	0.68	0.45	0.62	0.55	na	na	na	na	na	na	na	na	na
01/31/00	0.70	0.15	0.41	0.43	na	2.51	na	na	na	1.33	na	na	na
06/13/00	1.29	0.46	0.40	0.54	1.68	2.93	na	1.26	1.50	2.82	na	na	na
06/22/00	0.39	0.51	0.60	0.78	na	na	na	na	na	na	na	na	na
06/***/00	1.39	0.44	0.38	0.59	na	2.51	0.85	na	na	na	na	na	na
06/29/00	0.71	0.64	0.67	0.64	na	2.02	0.61	1.05	na	1.09	na	na	na
07/01/00	0.81	0.32	0.34	0.41	na	1.84	na	na	na	0.85	na	na	na
07/04/00	1.95	0.22	na	0.41	0.50	1.03	0.45	0.54	0.40	0.67	na	na	na
07/08/00	1.07	0.55	0.40	0.31	0.55	0.77	0.55	1.03	0.53	0.53	0.47	na	9.98
07/15/00	1.98	0.87	na	na	0.87	1.31	0.81	0.83	0.84	0.87	na	na	9.97
07/26/00	1.24	na	0.28	na	na	1.07	na	na	na	0.53	na	na	na
07/31/00	2.69	0.03	0.44	0.35	0.41	0.68	0.32	0.42	0.40	0.58	0.48	0.20	6.47
08/12/00	2.41	0.03	0.41	na	0.07	0.19	0.03	0.10	0.03	0.16	0.11	0.12	5.78
08/29/00	1.20	0.03	0.19	0.17	0.36	0.68	0.34	0.30	0.30	0.74	1.26	1.59	9.68
09/07/00	1.96	0.22	0.27	0.31	0.49	0.68	1.49	0.41	0.37	0.55	1.09	1.54	7.21
09/17/00	2.05	0.77	na	0.57	na	0.95	na	0.68	na	0.68	1.41	na	7.73
09/24/00	1.16	0.64	na	1.05	1.28	1.43	1.29	1.85	0.90	1.28	1.09	2.74	8.65
11/26/00	0.93	0.38	0.69	0.69	1.17	1.48	1.25	na	1.21	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		29	27	25	19	28	17	20	17	26	14	13	18
Average		0.476	0.425	0.472	0.745	1.276	0.737	0.735	0.567	0.739	0.908	2.917	21.75
Median		0.440	0.400	0.410	0.600	1.155	0.660	0.642	0.400	0.562	1.015	1.620	7.47
St.Dev.		0.305	0.164	0.223	0.388	0.682	0.409	0.395	0.371	0.522	0.416	5.188	42.23
C.V.		0.640	0.385	0.472	0.521	0.534	0.555	0.538	0.654	0.706	0.458	1.779	1.94
laximum		1.120	0.860	1.050	1.680	2.930	1.490	1.850	1.500	2.820	1.410	20.000	143.0
linimum		0.030	0.170	0.174	0.070	0.189	0.030	0.100	0.030	0.156	0.110	0.120	0.76

APPENDIX G - 16a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE												
	1998-99			WO/SWALE		W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	PONE
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	0.36	7.47	8.15	na	12.30	na	na	na	na	na	na	na
08/06/98	0.68	0.28	6.69	7.55	8.65	11.60	na	12.20	na	7.43	na	na	23.70
08/07/98	1.30	0.19	7.66	9.00	7.90	24.50	23.30	13.80	8.52	8.75	na	na	na
08/09/98	2.47	0.48	5.77	6.31	4.96	9.40	24.70	7.89	6.17	na	na	na	na
08/20/98	0.68	0.01	5.26	5.65	6.46	7.97	na	11.00	8.10	7.06	na	na	na
09/03/98	1.97	0.22	6.08	6.86	4.73	8.64	42.10	12.43	7.83	6.68	na	na	36.4
09/***/98	1.85	0.20	7.14	7.32	4.54	10.78	18.60	14.59	8.47	8.80	na	na	35.8
09/17/98	0.49	0.32	6.97	6.60	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.20	7.65	8.35	na	15.80	na	na	na	na	na	na	39.0
09/19/98	0.75	0.00	7.02	7.28	10.30	21.45	na	17.50	10.30	na	na	na	37.0
09/20/98	1.85	0.14	6.47	6.23	6.04	8.58	30.30	14.30	8.85	7.35	na	na	na
09/26/98	1.64	na	6.43	6.72	7.36	25.70	na	16.50	10.50	11.40	na	na	na
11/05/98	1.20	0.38	10.70	11.10	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.69	10.40	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.28	5.87	7.38	3.36	4.92	13.70	6.63	6.62	6.63	na	na	na
01/23/99	2.60	0.19	6.07	7.03	5.22	9.06	37.20	15.35	7.12	7.28	na	na	83.1
02/28/99	0.36	0.83	17.80	18.50	na	na	na	na	na	13.50	na	na	110.0
03/14/99	0.80	1.12	10.70	11.20	na	8.80	na	na	na	11.10	na	na	148.0
04/17/99	0.54	1.18	14.40	15.20	na	na	na	na	na	na	na	na	na
05/21/99	1.34	1.17	14.60	13.50	10.60	11.80	na	14.50	13.50	13.30	na	na	na
05/30/99	0.39	1.57	14.30	15.70	na	na	na	na	na	11.80	na	na	na
06/09/99	0.81	0.60	10.20	9.80	na	9.21	na	15.70	na	9.60	na	na	na
06/13/99	1.22	na	11.40	10.20	6.77	8.31	12.80	9.76	7.39	10.50	na	na	na
06/16/99	1.68	0.54	8.82	9.13	7.01	9.06	18.20	10.29	7.70	10.09	na	na	47.6
06/17/99	0.77	0.81	9.76	8.94	7.01	0.83	na	0.19	na	0.03	na	na	na
06/18/99	1.60	0.50	7.99	8.81	6.30	8.02	19.10	8.81	6.30	8.75	na	na	na
07/01/99	1.53	0.82	8.53	7.41	8.15	9.44	35.80	13.40	8.54	9.27	na	na	25.8
07/07/99	0.81	0.95	9.89	9.80	na	10.90	na	na	na	10.30	na	na	na
07/09/99	1.17	1.08	11.70	9.09	8.03	9.64	15.70	12.10	9.67	10.10	na	17.4	49.6
07/13/99	1.58	1.70	11.60	11.50	na	10.90	na	na	na	na	na	na	55.6
07/20/99	0.88	25.80	12.30	11.20	na	13.20	na	12.70	na	na	na	na	65.1
RAIN													
TOTAL	35.79												
No.Obs.		29	31	30	18	25	12	20	16	21	0	1	13
Average		1.469	9.279	9.384	6.855	11.233	24.292	11.982	8.474	9.035	na	na	58.20
Median		0.500	8.530	8.875	6.890	9.440	21.200	12.565	8.285	9.270	na	na	47.60
St.Dev.		4.701	3.127	3.064	1.926	5.539	9.853	3.999	1.860	2.890	na	na	36.1
C.V.		3.200	0.337	0.327	0.281	0.493	0.406	0.334	0.220	0.320	na	na	0.62
laximum		25.800	17.800	18.500	10.600	25.700	42.100	17.500	13.500	13.500	na	na	148.0
/linimum		0.000	5.260	5.650	3.360	0.830	12.800	0.190	6.170	0.030	na	na	23.7

APPENDIX G - 16b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

1	WO plus 4 999- 00		ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	IT TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	PONE MG/L
08/06/99	1.29	2.28	9.60	na	8.46	9.58	30.50	13.00	9.60	11.20	na	19.10	53.70
08/12/99	0.70	0.93	11.10	12.00	13.70	13.10	na	18.30	na	14.20	na	na	na
08/14/99	1.23	0.81	11.70	11.00	8.68	20.10	20.10	12.90	10.30	12.10	10.30	14.60	23.1
08/19/99	0.90	na	11.90	11.80	8.94	10.60	18.90	13.70	10.70	12.20	10.60	16.80	26.7
08/22/99	2.95	1.23	13.30	13.67	12.80	13.29	23.30	17.55	8.96	15.52	10.90	na	14.0
09/11/99	0.84	1.47	11.40	10.40	na	12.90	na	na	na	13.00	na	na	33.4
09/18/99	0.85	1.60	9.78	9.01	9.76	12.10	na	13.90	10.70	10.70	8.87	17.50	39.2
09/25/99	1.37	1.01	10.60	8.62	7.51	8.11	20.40	12.00	9.68	10.40	9.62	17.50	38.0
10/03/99	1.22	1.50	9.61	8.66	8.82	9.36	na	14.00	10.50	9.63	8.92	19.60	43.5
10/04/99	0.98	1.11	11.80	11.40	na	23.80	na	na	na	18.90	11.60	17.50	42.4
11/01/99	1.63	1.39	9.32	na	8.43	12.00	29.70	14.70	na	12.80	na	38.00	42.4
12/17/99	0.75	2.63	12.70	na	na	na							
01/06/00	0.79	2.15	10.80	11.10	na	9.88	na	na	na	11.40	na	na	na
01/24/00	0.68	1.58	12.60	12.40	na	na	na						
01/31/00	0.70	1.80	11.00	11.90	na	15.10	na	na	na	20.80	na	na	na
06/13/00	1.29	0.74	14.20	14.60	9.63	9.92	na	10.30	15.90	17.60	na	na	na
06/22/00	0.39	0.80	14.80	14.60	na	na	na						
06/***/00	1.39	0.54	11.90	12.60	na	16.50	14.10	na	na	na	na	na	na
06/29/00	0.71	0.52	9.85	10.20	na	9.43	6.35	10.90	na	10.60	na	na	na
07/01/00	0.81	0.00	9.85	11.40	na	15.30	na	na	na	13.90	na	na	na
07/04/00	1.95	9.83	na	11.03	6.83	10.66	9.13	9.98	8.64	10.89	na	na	na
07/08/00	1.07	0.70	10.60	10.80	6.64	8.83	10.70	11.10	11.50	10.30	8.16	na	52.4
07/15/00	1.98	0.30	na	na	7.02	14.18	10.60	11.25	10.00	11.81	na	na	50.4
07/26/00	1.24	na	12.40	na	na	15.60	na	na	na	17.10	na	na	na
07/31/00	2.69	0.00	11.40	9.41	5.78	9.50	9.41	10.15	8.14	10.60	11.30	12.00	26.7
08/12/00	2.41	0.04	16.90	na	5.77	8.04	6.72	7.11	7.36	8.83	9.66	10.50	34.7
08/29/00	1.20	0.80	12.00	10.98	6.21	10.47	9.57	9.65	9.07	11.73	16.10	19.80	41.4
09/07/00	1.96	0.79	13.00	12.16	7.53	11.52	11.20	10.64	9.50	11.01	11.80	15.50	33.3
09/17/00	2.05	0.79	na	9.81	na	13.38	na	13.47	na	11.39	12.40	na	43.4
09/24/00	1.16	*	*	*	*	*	*	*	*	*	*	*	*
11/26/00	0.93	0.89	10.10	9.81	6.78	6.50	8.28	na	13.10	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		28	27	24	18	27	16	19	16	25	13	12	17
Average		1.365	11.637	11.223	8.294	12.212	14.935	12.347	10.228	12.744	10.787	18.200	37.57
Median		0.910	11.400	11.065	7.980	11.517	10.950	12.000	9.840	11.731	10.600	17.500	39.20
St.Dev.		1.786	1.769	1.642	2.188	3.821	7.884	2.731	2.031	3.039	2.036	6.867	10.67
C.V.		1.308	0.152	0.146	0.264	0.313	0.528	0.221	0.199	0.238	0.189	0.377	0.28
/laximum		9.830	16.900	14.600	13.700	23.800	30.500	18.300	15.900	20.800	16.100	38.000	53.70
/linimum		0.000	9.320	8.620	5.770	6.500	6.350	7.110	7.360	8.826	8.160	10.500	14.00

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

^{*} Calcium analysis rejected by laboratory

APPENDIX G - 17a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE 1998-99		ASPHALT	WO/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	0.98	2.30	3.05	na	3.11	na	na	na	na	na	na	na
08/06/98	0.68	2.70	3.44	3.06	3.66	4.84	na	4.20	na	2.95	na	na	51.20
08/07/98	1.30	3.49	4.42	4.92	4.44	5.12	4.90	5.47	3.95	4.42	na	na	na
08/09/98	2.47	2.25	2.84	2.34	2.75	3.18	2.92	2.82	2.74	na	na	na	na
08/20/98	0.68	1.21	1.65	1.40	1.99	2.25	na	2.21	2.35	1.89	na	na	na
09/03/98	1.97	2.12	2.47	1.80	2.49	2.86	2.46	2.54	2.25	2.78	na	na	48.60
09/***/98	1.85	3.66	3.71	3.76	2.07	4.34	3.64	4.20	2.13	3.46	na	na	59.70
09/17/98	0.49	2.14	3.46	3.48	na	na	na	na	na	na	na	na	na
09/18/98	0.66	1.20	2.05	1.86	na	4.98	na	na	na	na	na	na	74.80
09/19/98	0.75	1.08	1.40	1.15	2.70	2.73	na	2.50	1.56	na	na	na	68.60
09/20/98	1.85	3.31	3.05	2.76	3.97	3.67	2.95	4.15	3.43	2.79	na	na	na
09/26/98	1.64	na	1.46	1.42	1.82	2.17	na	2.31	1.67	1.41	na	na	na
11/05/98	1.20	0.84	2.23	1.81	na	na	na	na	na	na	na	na	na
12/13/98	0.37	3.04	5.55	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.73	1.91	1.55	3.25	4.74	3.09	4.97	5.85	3.51	na	na	na
01/23/99	2.60	0.92	1.20	1.22	1.02	2.92	2.59	3.36	3.61	2.58	na	na	180.00
02/28/99	0.36	3.75	9.01	8.51	na	na	na	na	na	7.19	na	na	52.40
03/14/99	0.80	2.04	3.71	3.26	na	5.68	na	na	na	5.33	na	na	338.00
04/17/99	0.54	2.20	6.33	6.21	na	na	na	na	na	na	na	na	na
05/21/99	1.34	4.90	5.98	5.69	9.65	10.50	na	10.10	9.37	9.26	na	na	na
05/30/99	0.39	2.62	0.51	4.71	na	na	na	na	na	3.34	na	na	na
06/09/99	0.81	na	na	na	na	na	na	na	na	na	na	na	na
06/13/99	1.22	na	5.79	5.28	6.48	6.33	5.33	6.03	5.06	6.03	na	na	na
06/16/99	1.68	2.40	2.46	2.31	2.55	3.52	2.53	2.94	2.42	2.90	na	na	na
06/17/99	0.77	1.56	2.40	1.78	2.40	0.36	na	0.01	na	0.01	na na	na	na
06/17/99	1.60	1.09	1.56	1.78	2.14	2.82	2.11	1.92	1.72	1.84	na	na	na
07/01/99	1.53	na	na	na	na	na	na		na	na	na	na	na
	0.81	0.44	3.88	0.39		4.38		na		4.18	1		
07/07/99	1.17	1.90		2.65	na	4.04	na 2.46	na 2.52	na 3.23		na	na 4.40	na 16.40
07/09/99			3.08		2.82	;	3.16	3.52		3.17	na	4.49	
07/13/99	1.58	4.25	0.66	4.88	na	4.14	na	na	na	na	na	na	16.20
07/20/99	0.88	3.72	4.43	4.45	na	5.40	na	4.61	na	na	na	na	17.80
RAIN TOTAL	35.79												
No.Obs.		27	29	28	17	23	11	18	15	19	0	1	11
Average		2.242	3.193	3.125	3.306	4.091	3.244	3.770	3.423	3.634	na	na	83.97
Median		2.140	2.840	2.705	2.700	4.040	2.950	3.442	2.740	3.170	na	na	52.40
St.Dev.		1.203	1.927	1.871	2.049	1.942	1.015	2.140	2.060	2.136	na	na	95.66
C.V.		0.536	0.603	0.599	0.620	0.475	0.313	0.568	0.602	0.588	na	na	1.139
/laximum		4.900	9.010	8.510	9.650	10.500	5.330	10.100	9.370	9.260	na	na	338.00
Minimum		0.440	0.510	0.390	1.020	0.360	2.110	0.005	1.560	0.005	na	na	16.20

^{9/***/98} Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

^{7/13/99} Includes several days of rainfall

APPENDIX G - 17b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 4 999-00	4 mo											
DATE	RAIN	RAIN	ASPHALT	WO/SWALE F2	F3	E W/SWALE F4	F5	W/SWALE F6	ASPHALT	W/SWALE F8	STRAND	UNDER	T TRAIN POND
DATE	AMOUNT	KAIN	F1	ГZ	「3	Γ**	5	FU	"	го	SIKAND	DRAIN	FOND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	0.69	1.78	na	2.15	2.26	2.41	2.05	1.77	1.84	na	4.06	28.10
08/12/99	0.70	1.65	2.23	2.01	4.29	3.74	na	3.01	na	2.87	na	na	na
08/14/99	1.23	5.55	4.30	4.51	5.06	5.87	5.87	5.74	5.99	5.39	6.75	7.03	44.20
08/19/99	0.90	na	3.67	3.87	3.84	4.31	3.68	4.34	3.58	3.71	3.74	4.37	46.80
08/22/99	2.95	2.99	3.64	3.65	3.35	3.343	2.50	3.41	2.40	3.38	2.82	na	4.37
09/11/99	0.84	3.42	3.59	3.45	na	5.70	na	na	na	4.09	na	na	6.29
09/18/99	0.85	1.67	2.25	2.27	4.36	4.75	na	4.86	3.59	2.68	5.4	6.68	12.70
09/25/99	1.37	2.79	4.27	3.62	4.64	4.51	3.72	4.08	4.23	3.98	4.26	5.20	20.60
10/03/99	1.22	1.97	2.04	2.32	2.61	3.29	na	3.93	2.98	2.62	5.72	3.49	16.80
10/04/99	0.98	0.92	1.01	0.93	na	4.14	na	na	na	1.76	3.76	3.97	16.80
11/01/99	1.63	1.28	1.63	na	3.19	4.41	3.93	3.72	na	3.35	na	59.40	67.60
12/17/99	0.75	0.94	1.37	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	1.16	2.57	2.93	na	5.09	na	na	na	3.55	na	na	na
01/24/00	0.68	1.72	2.35	2.07	na	na	na	na	na	na	na	na	na
01/31/00	0.70	1.03	1.62	11.90	na	5.36	na	na	na	3.29	na	na	na
06/13/00	1.29	2.98	4.36	4.62	7.48	7.04	na	5.91	6.28	7.93	na	na	na
06/22/00	0.39	4.22	5.39	5.16	na	na	na	na	na	na	na	na	na
06/***/00	1.39	3.82	4.80	4.85	na	9.20	4.92	na	na	na	na	na	na
06/29/00	0.71	2.46	3.10	2.89	na	5.49	2.07	4.82	na	3.34	na	na	na
07/01/00	0.81	2.36	2.26	2.27	na	5.45	na	na	na	3.07	na	na	na
07/04/00	1.95	3.04	na	3.55	3.18	4.66	3.02	3.17	2.93	3.61	na	na	na
07/08/00	1.07	5.04	3.67	3.87	3.40	4.04	3.59	3.92	3.78	4.15	3.67	na	62.40
07/15/00	1.98	2.88	na	na	2.80	4.26	2.97	3.08	3.00	3.32	na	na	38.60
07/26/00	1.24	na	5.61	na	na	6.60	na	na	na	6.16	na	na	na
07/31/00	2.69	3.16	4.01	4.20	3.53	4.61	3.65	3.85	3.79	4.56	4.13	4.07	18.30
08/12/00	2.41	1.15	8.47	na	1.99	2.51	1.69	2.17	1.78	2.81	2.39	2.46	12.60
08/29/00	1.20	1.98	3.16	3.18	2.58	3.95	2.46	2.70	2.90	4.52	4.91	5.55	15.50
09/07/00	1.96	2.22	2.82	2.84	2.47	3.35	2.68	2.50	2.43	3.13	4.44	5.89	13.30
09/17/00	2.05	1.32	na	1.54	na	2.71	na	2.33	na	2.17	3.62	na	14.00
09/24/00	1.16	5.93	na	7.67	6.88	7.18	7.11	7.52	6.30	7.59	7.05	10.80	16.50
11/26/00	0.93	1.25	2.98	3.51	4.17	5.05	5.05	na	4.01	na	na	na	na
RAIN								.,					
TOTAL	40.11												
No.Obs.		29	27	25	19	28	17	20	17	26	14	13	18
Average		2.47	3.29	3.75	3.79	4.74	3.61	3.86	3.63	3.80	4.48	9.46	25.30
Median		2.22	3.10	3.51	3.40	4.56	3.59	3.79	3.58	3.36	4.20	5.20	16.80
St.Dev.		1.41	1.60	2.18	1.47	1.52	1.43	1.40	1.41	1.53	1.36	15.15	18.71
C.V.		0.57	0.48	0.58	0.39	0.32	0.40	0.36	0.39	0.40	0.30	1.60	0.74
Maximum		5.93	8.47	11.90	7.48	9.20	7.11	7.52	6.30	7.93	7.05	59.40	67.60
Minimum		0.69	1.01	0.93	1.99	2.26	1.69	2.05	1.77	1.76	2.39	2.46	4.37

APPENDIX G - 18a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE												
	1998-99			WO/SWALE		W/SWALE		W/SWALE		W/SWALE		TREATMEN	
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	0.06	0.15	0.13	na	0.26	na	na	na	na	na	na	na
08/06/98	0.68	0.03	0.11	0.10	0.26	0.26	na	0.20	na	0.14	na	na	20.20
08/07/98	1.30	0.04	0.13	0.16	0.22	0.36	0.15	0.25	0.24	0.21	na	na	na
08/09/98	2.47	0.08	0.10	0.09	0.17	0.20	0.15	0.16	0.15	na	na	na	na
08/20/98	0.68	0.07	0.12	0.08	0.19	0.17	na	0.15	0.29	0.23	na	na	na
09/03/98	1.97	0.18	0.18	0.21	0.19	0.31	0.17	0.18	0.33	0.17	na	na	2.77
09/***/98	1.85	0.06	0.10	0.11	0.16	0.19	0.09	0.52	0.27	0.13	na	na	3.82
09/17/98	0.49	0.04	0.10	0.07	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.05	0.23	0.14	na	0.33	na	na	na	na	na	na	3.91
09/19/98	0.75	0.01	0.06	0.05	0.22	0.28	na	0.15	0.27	na	na	na	3.96
09/20/98	1.85	0.07	0.08	0.16	0.20	0.06	0.01	0.14	0.26	0.22	na	na	na
09/26/98	1.64		0.08	0.06	0.24	4.00	na	0.16	0.33	0.07	na	na	na
11/05/98	1.20	0.06	0.20	0.20	na	na	na	na	na	na	na	na	na
12/13/98	0.37	0.11	0.30	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.05	0.14	0.13	0.21	0.28	0.23	0.24	0.45	0.33	na	na	na
01/23/99	2.60	0.19	0.10	0.09	0.27	0.27	0.15	0.24	0.50	0.36	na	na	7.83
02/28/99	0.36	0.16	0.51	0.37	na	na	na	na	na	0.50	na	na	15.50
03/14/99	0.80	0.28	0.34	0.38	na	0.82	na	na	na	0.95	na	na	15.30
04/17/99	0.54	0.11	0.32	0.44	na	na	na	na	na	na	na	na	na
05/21/99	1.34	0.11	0.16	0.20	0.63	0.94	na	0.79	0.72	0.91	na	na	na
05/30/99	0.39	0.16	0.16	15.70	na	na	na	na	na	0.55	na	na	na
06/09/99	0.81	0.06	0.09	0.15	na	0.65	na	0.86	na	0.57	na	na	na
06/13/99	1.22	na	0.16	0.16	0.54	0.60	0.28	0.56	0.47	0.75	na	na	na
06/16/99	1.68	0.06	0.09	0.12	0.42	0.60	0.20	0.54	0.46	0.65	na	na	na
06/17/99	0.77	0.20	0.11	11.00	0.39	0.42	na	0.11	na	0.02	na	na	na
06/18/99	1.60	0.10	0.10	0.14	0.38	0.46	0.21	0.37	0.33	0.54	na	na	na
07/01/99	1.53	0.07	0.09	0.08	0.35	0.46	0.20	0.46	0.35	0.38	na	na	1.35
07/07/99	0.81	0.12	0.13	0.16	na	0.54	na	na	na	0.40	na	na	na
07/09/99	1.17	0.07	0.18	0.15	0.39	0.49	0.22	0.47	0.44	0.47	na	1.65	2.76
07/13/99	1.58	0.22	0.21	0.23	na	0.44	na	na	na	na	na	na	2.95
07/13/99	0.88	2.59	0.46	0.43	ì	0.62	na	0.58	na		na	na	3.93
RAIN	0.00	2.39	0.40	0.43	na	0.02	IIA	0.36	iia .	na	IIa	Ha	3.93
TOTAL	35.79					-							
No.Obs.		29	31	30	18	25	12	20	16	21	0	1	12
Average		0.187	0.171	1.050	0.302	0.560	0.172	0.356	0.366	0.407	na	na	7.023
Median		0.070	0.130	0.150	0.250	0.420	0.185	0.246	0.330	0.380	na	na	3.920
St.Dev.		0.467	0.110	3.402	0.134	0.746	0.071	0.227	0.136	0.263	na	na	6.314
C.V.		2.502	0.643	3.241	0.443	1.332	0.411	0.637	0.371	0.646	na	na	0.899
Maximum		2.590	0.510	15.700	0.630	4.000	0.280	0.860	0.720	0.950	na	na	20.200
Minimum		0.010	0.060	0.050	0.160	0.060	0.010	0.110	0.150	0.020	na	na	1.350

APPENDIX G - 18b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	WO plus 999-00	4 mo	ASPHALT	WO/SWALE	CONCRETI	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	T TRAIN
DATE	RAIN AMOUNT IN.	RAIN MG/L	F1 MG/L	F2 MG/L	F3 MG/L	F4 MG/L	F5 MG/L	F6 MG/L	F7 MG/L	F8 MG/L	STRAND MG/L	UNDER DRAIN MG/L	POND MG/L
08/06/99	1.29	0.35	0.22	na	0.41	0.48	0.24	0.44	0.54	0.48	na	3.03	4.35
08/12/99	0.70	0.15	0.23	0.26	0.73	0.62	na	0.51	na	0.56	na	na	na
08/14/99	1.23	0.14	0.27	0.20	0.46	0.34	0.34	0.48	0.53	0.44	1.03	1.3	12.90
08/19/99	0.90	na	0.30	0.22	0.54	0.57	0.28	0.56	0.57	0.58	1.21	1.49	17.10
08/22/99	2.95	0.15	0.32	0.27	0.74	0.555	0.21	0.52	0.55	0.71	0.73	na	0.72
09/11/99	0.84	0.23	0.30	0.18	na	0.51	na	na	na	0.40	na	na	1.04
09/18/99	0.85	0.28	0.24	0.17	0.51	0.51	na	0.46	0.49	0.37	2.09	2.37	1.56
09/25/99	1.37	0.13	0.20	0.12	0.34	0.38	0.20	0.41	0.43	0.35	1.18	1.57	1.79
10/03/99	1.22	0.31	0.23	0.18	0.45	0.42	na	0.46	0.48	0.34	1.08	1.84	2.40
10/04/99	0.98	0.14	0.23	0.18	na	0.72	na	na	na	0.55	1.49	1.36	2.58
11/01/99	1.63	0.36	0.29	na	0.46	0.55	0.25	0.49	na	0.57	na	2.73	2.94
12/17/99	0.75	0.37	0.51	na	na	na							
01/06/00	0.79	0.40	0.31	0.34	na	0.57	na	na	na	0.45	na	na	na
01/24/00	0.68	0.30	0.42	0.35	na	na	na						
01/31/00	0.70	0.20	0.24	0.28	na	0.74	na	na	na	0.70	na	na	na
06/13/00	1.29	0.04	0.11	0.19	0.73	0.73	na	0.58	0.56	0.80	na	na	na
06/22/00	0.39	0.00	0.12	0.25	na	na	na	- na	na	na	na	na	na
06/***/00	1.39	0.00	0.05	0.12	na	0.94	0.37	na	na	na	na	na	na
06/29/00	0.71	0.00	0.00	0.06	na	0.42	0.00	0.42	na	0.25	na	na	na
07/01/00	0.81	0.00	0.00	0.09	na	0.70	na	na	na	0.45	na	na	na
07/04/00	1.95	0.00	na	0.05	0.34	0.46	0.12	0.37	0.26	0.42	na	na	na
07/08/00	1.07	0.00	0.00	0.00	0.24	0.35	0.20	0.39	0.32	0.32	0.47	na	0.00
07/15/00	1.98	0.06	na	na	0.47	0.82	0.27	0.53	0.47	0.65	na	na	2.74
07/26/00	1.24	na	0.00	na	na	0.65	na	na	na	0.37	na	na	na
07/31/00	2.69	0.00	0.00	0.02	0.22	0.35	0.14	0.28	0.28	0.35	0.51	0.17	1.08
08/12/00	2.41	0.00	0.00	na	0.00	0.01	0.00	0.00	0.00	0.04	0.02	0.12	1.15
08/29/00	1.20	0.00	0.00	0.01	0.18	0.37	0.13	0.20	0.17	0.35	1.10	1.15	1.85
09/07/00	1.96	0.00	0.00	0.00	0.20	0.37	0.14	0.22	0.22	0.31	0.66	0.80	1.25
09/17/00	2.05	0.17	na	0.00	na	0.40	na	0.27	na	0.22	0.57	na	1.49
09/24/00	1.16	*	*	*	*	*	*	*	*	*	*	*	*
11/26/00	0.93	0.05	0.29	0.26	0.32	0.37	0.45	na	0.49	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		28	27	24	18	27	16	19	16	25	13	12	17
Average		0.137	0.181	0.158	0.408	0.514	0.209	0.399	0.398	0.441	0.934	1.494	3.349
Median		0.135	0.230	0.180	0.430	0.510	0.205	0.440	0.475	0.423	1.030	1.425	1.790
St.Dev.		0.139	0.147	0.110	0.203	0.191	0.122	0.147	0.169	0.171	0.526	0.908	4.559
C.V.		1.015	0.816	0.697	0.497	0.371	0.585	0.369	0.425	0.387	0.563	0.608	1.361
/laximum		0.400	0.510	0.350	0.740	0.940	0.450	0.580	0.570	0.800	2.090	3.030	17.10
Minimum		0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.038	0.020	0.120	0.000

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.

^{*} Magnesium analysis rejected by laboratory

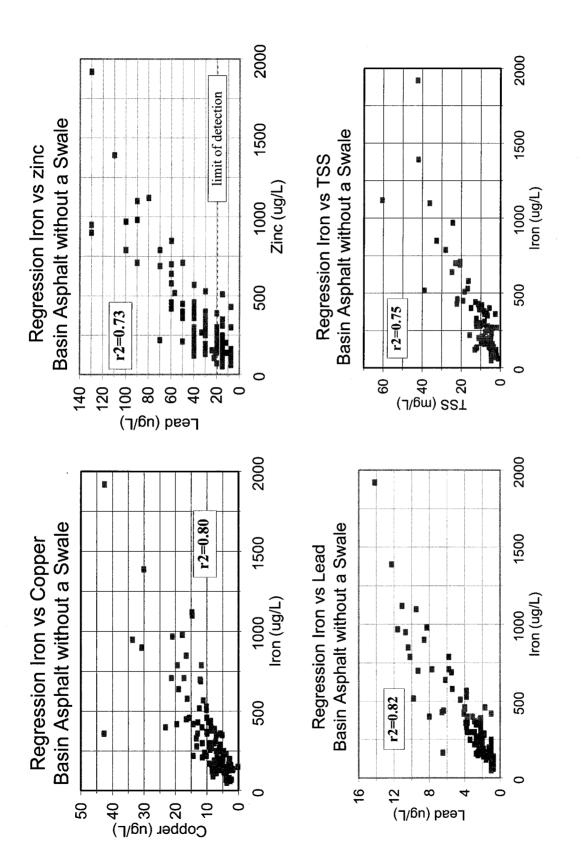
APPENDIX G - 19a PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.

	AR ONE	3	ASPHALT	WO/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	NT TRAIN
DATE	RAIN AMOUNT	RAIN	F1	F2	F3	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/05/98	0.57	1.15	7.47	20.88	na	31.78	na	na	na	na	na	na	na
08/06/98	0.68	0.82	17.16	19.26	22.67	30.04	na	31.29	na	19.13	na	na	142.36
08/07/98	1.30	0.64	19.63	23.13	20.63	62.65	58.80	35.48	22.26	22.71	na	na	na
08/09/98	2.47	1.53	14.82	16.09	13.09	24.29	62.29	17.78	16.28	na	na	na	na
08/20/98	0.68	0.31	13.62	14.43	16.91	20.60	na	28.08	21.41	18.57	na	na	na
09/03/98	1.97	1.29	15.92	17.98	12.60	22.84	105.73	31.78	20.87	17.37	na	na	102.29
09/***/98	1.85	0.75	18.24	18.72	11.99	27.63	34.11	22.73	22.52	22.52	na	na	105.00
09/17/98	0.49	0.96	17.81	16.77	na	na	na	na	na	na	na	na	na
09/18/98	0.66	0.71	20.05	21.43	na	40.81	na	na	na	na	na	na	113.48
09/19/98	0.75	0.04	17.78	18.38	26.62	54.71	na	44.32	26.83	na	na	na	108.70
09/20/98	1.85	0.64	16.48	16.22	15.91	21.67	75.70	36.28	23.17	19.25	na	na	na
09/26/98	1.64	na	11.35	17.02	19.36	80.64	na	41.85	27.58	28.75	na	na	na
11/05/98	1.20	1.19	27.54	28.54	na	na	na	na	na	na	na	na	na
12/13/98	0.37	2.18	27.20	na	na	na	na	na	na	na	na	na	na
01/03/99	1.23	0.91	15.23	18.96	9.25	13.43	35.16	17.54	18.38	17.90	na	na	na
01/23/99	2.60	0.90	15.57	17.95	14.14	23.70	93.50	39.28	19.84	19.66	na	na	239.70
02/28/99	0.36	2.73	46.55	47.72	na	na	na	na	na	35.77	na	na	338.50
03/14/99	0.80	3.94	28.11	29.53	na	25.35	na	na	na	31.62	na	na	432.56
04/17/99	0.54	3.40	37.27	39.77	na	na	na	na	na	na	na	na	na
05/21/99	1.34	3.37	37.12	34.53	29.06	33.34	na	39.46	36.67	36.96	na	na	na
05/30/99	0.39	4.58	36.37	40.23	na	na	na	na	na	31.73	na	na	na
06/09/99	0.81	1.74	25.84	25.09	na	25.67	na	42.74	na	26.32	na	na	na
06/13/99	1.22	na	29.12	26.13	19.13	23.22	33.11	26.68	20.39	29.31	na	na	na
06/16/99	1.68	1.60	22.39	23.29	19.23	25.09	46.27	27.91	21.12	27.87	na	na	na
06/17/99	0.77	2.85	24.82	22.78	19.11	3.08	na	0.93	na	0.16	na	na	na
06/18/99	1.60	1.66	20.36	22.32	17.30	21.94	48.56	23.53	17.09	24.09	na	na	na
07/01/99	1.53	2.34	21.67	18.83	21.79	25.47	90.22	35.35	22.67	24.71	na	na	69.98
07/07/99	0.81	2.86	25.23	25.12	na	29.44	na	na	na	27.36	na	na	na
07/09/99	1.17	2.98	29.95	23.31	21.68	26.09	40.11	32.15	25.96	27.16	na	50.24	
07/13/99	1.58	5.15	29.82	29.66	na	29.02	na	na	na	na	na	na	150.98
07/20/99	0.88	75.08	32.60	29.73	na	35.51	na	34.10	na	na	na	na	178.7
RAIN	0.00	, 0.00	02.00	20.70		00.01	110	0 11.10	- 110	110	,,,,,	*****	
TOTAL	35.79												
No.Obs.		29	31	30	18	25	12	20	16	21	0	1	12
Average		4.424	23.326	24.126	18.359	30.320	60.296	30.463	22.690	24.234	na	na	176.45
Median		1.595	21.670	22.546	19.120	25.670	53.679	31.965	21.835	24.710	na	na	138.78
St.Dev.		13.652	8.791	7.994	5.109	15.677	25.414	10.430	4.895	7.950	na	na	108.65
C.V.		3.086	0.377	0.331	0.278	0.517	0.421	0.342	0.216	0.328	na	na	0.616
/laximum		75.080	46.550	47.720	29.060	80.640	105.730	44.320	36.670	36.960	na	na	432.56
Minimum		0.041	7.470	14.430	9.250	3.080	33.110	0.927	16.280	0.157	na	na	69.980

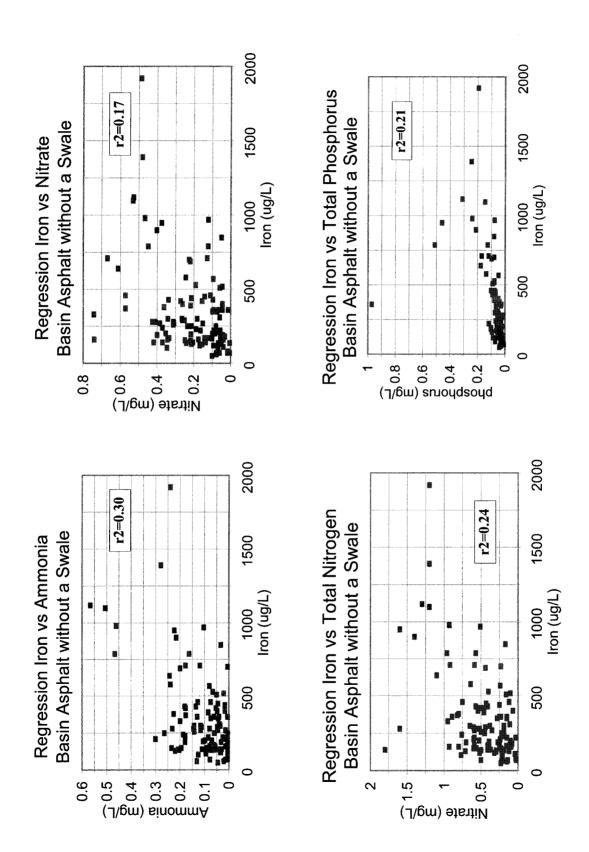
^{9/***/98} Includes 2 storms for September 6 (1.21 in) and 7 (.64in), 1998, and the samples not picked up until September 8th.

^{7/13/99} Includes several days of rainfall

APPENDIX G - 19b PARKING LOT WATER QUALITY DATA. Flow-weighted samples were collected at the outflow of the basins in the parking lot and for rainfall. Grab samples were collected, when possible, in the pond, strand and under drain. Numbers in italics are below the laboratory limit of detection. The abbreviation "na" means data were not available usually because there was too little flow for a sample. The data are divided into two data sets of about 30 storms each. Breaches through the berm between the strand and the pond interfered with collecting strand and pond data until the second set of data.


	WO plus 999-00	4 mo	ASPHALT	WO/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE	ASPHALT	W/SWALE	REST OF	TREATMEN	NT TRAIN
DATE	RAIN AMOUNT	RAIN MG/L	F1	F2	F3 MG/L	F4	F5	F6	F7	F8	STRAND	UNDER DRAIN	POND
	IN.	WIG/L	MG/L	MG/L	WIG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
08/06/99	1.29	7.13	24.88	na	22.81	25.89	77.15	34.27	26.19	29.94	na	60.17	152.00
08/12/99	0.70	2.93	28.66	31.03	37.21	35.26	na	47.79	na	37.76	na	na	na
08/14/99	1.23	2.60	30.30	28.29	23.56	51.58	51.58	34.18	27.90	32.02	29.96	41.80	9.44
08/19/99	0.90	na	30.90	30.30	24.50	28.80	48.30	36.50	29.00	32.80	31.40	48.00	137.00
08/22/99	2.95	3.68	34.52	35.25	35.09	35.45	59.04	46.06	24.63	33.96	30.22	na	37.92
09/11/99	0.84	4.62	29.70	26.71	na	34.31	na	na	na	34.11	na	na	87.68
09/18/99	0.85	5.14	25.40	23.19	26.47	32.31	na	36.60	28.73	28.24	30.75	53.45	104.30
09/25/99	1.37	3.05	27.29	22.01	20.15	21.81	51.76	31.65	25.94	27.41	28.88	50.16	102.25
10/03/99	1.22	5.02	24.94	22.37	23.88	25.10	na	36.85	28.19	25.45	26.72	56.52	118.50
10/04/99	0.98	3.35	30.41	29.20	na	62.39	na	na	na	49.46	35.10	49.30	116.50
11/01/99	1.63	4.95	24.46	na	22.94	32.20	75.19	38.72	na	34.30	na	106.10	117.90
12/17/99	0.75	8.09	33.80	na	na	na	na	na	na	na	na	na	na
01/06/00	0.79	7.02	28.24	29.12	na	27.02	na	na	na	30.32	na	na	na
01/24/00	0.68	5.18	33.19	32.40	na	na	na	na	na	na	na	na	na
01/31/00	0.70	5.32	28.46	30.87	na	40.75	na	na	na	54.82	na	na	na
06/13/00	1.29	2.01	35.91	37.24	27.05	27.78	na	28.11	42.01	47.24	na	na	na
06/22/00	0.39	2.00	37.45	37.49	na	na	na	na	na	na	na	na	na
06/***/00	1.39	1.35	29.92	31.96	na	45.07	36.73	na	na	na	na	na	na
06/29/00	0.71	1.30	24.60	25.72	na	25.28	15.86	28.95	na	27.50	na	na	na
07/01/00	0.81	0.00	24.60	28.84	na	41.09	na	na	na	36.56	na	na	na
07/04/00	1.95	24.55	na	27.73	18.45	28.49	23.29	26.45	22.64	25.29	na	na	na
07/08/00	1.07	1.75	26.47	26.97	17.57	23.49	27.54	29.32	30.03	27.04	22.31	na	130.84
07/15/00	1.98	1.00	na	na	19.46	38.77	27.58	30.25	26.91	32.14	na	na	137.13
07/26/00	1.24	na	30.96	na	na	41.63	na	na	na	44.22	na	na	na
07/31/00	2.69	0.00	28.47	23.58	15.34	25.14	24.07	26.51	21.48	27.91	30.32	30.66	71.12
08/12/00	2.41	0.10	42.20	na	14.41	20.11	16.78	17.75	18.38	22.20	24.20	26.71	91.38
08/29/00	1.20	2.00	29.96	27.47	16.25	27.66	24.43	24.92	23.35	30.75	44.73	54.18	110.99
09/07/00	1.96	0.16	0.11	30.37	0.08	30.28	0.11	27.46	0.12	28.76	0.16	0.04	0.07
09/17/00	2.05	2.67	na	24.49	na	35.05	na	34.76	na	29.35	33.31	na	114.51
09/24/00	1.16	*	*	*	*	*	*	*	*	*	*	*	*
11/26/00	0.93	2.43	26.41	25.57	18.25	17.75	22.53	na	34.73	na	na	na	na
RAIN													
TOTAL	40.11												
No.Obs.		31	28	27	24	18	27	16	19	16	25	13	12
Average		1.294	3.906	28.600	28.673	21.304	32.610	36.371	32.478	25.639	33.182	28.313	48.091
Median		1.200	2.800	28.660	28.563	21.480	30.281	27.561	31.650	26.548	30.752	30.220	49.730
St.Dev.		0.629	4.617	7.155	4.277	8.134	9.976	21.948	7.226	8.722	8.031	10.061	24.796
C.V.		0.486	1.182	0.250	0.149	0.382	0.306	0.603	0.222	0.340	0.242	0.355	0.516
/laximum		2.950	24.546	42.199	37.486	37.210	62.390	77.150	47.790	42.008	54.820	44.732	106.10
Winimum		0.390	0.000	0.112	22.010	0.083	17.754	0.105	17.754	0.117	22.195	0.161	0.036

^{6/***/00} Includes several storms from 6/23 to 6/27 and samples not picked up until the 27th.


^{*} Hardness analysis rejected by laboratory

APPENDIX H

REGRESSION EQUATIONS IN ASPHALT BASINS WITHOUT A SWALE

Appendix H-1. Regressions of iron concentrations with other metals.

Appendix H-2. Regression of iron concentrations with nutrients.

APPENDIX I WATER QUALITY DISCRETE SAMPLES

Appendix I-1. Discrete samples taken at intervals across the hydrograph for the August 9, 1998 storm at the Florida Aquarium parking lot. One pavement type, asphalt with swale was not sampled. Rain amount was 2.47 inches in about an hour and antecedent dry conditions were less than a day. Numbers not in bold type were below the laboratory detection limit and one half the detection limit was used.

CONCENTRATION Contain was ason.																
Column C	August 9, 19	 20 50	Ř	7	wale (F2)			Cemen	alews/w to	(F4)		۵	rmeable n	aving with	swale (F	6
Milk 1985	CONCENTRATI	UNC.		si i	7= 1 2000	moinhead			7000		polyhprod	-	d Signalli	Sin Sina	Sware	
The maph		UNITS	rising	top	falling	average	rising	top gree	top §	falling	average	rising		to g		average
Fig. mg/L 0.0573 0.070 0.071 0.071 0.071 0.071 0.071 0.071 0.072	ANAMACAIIA	1/200	38%	38%	24%		%67	25%	%67	%67		%CZ		25%		
The mail Cost Cos	MITDITE	1 20	0.089	0.322	0.133		0.027	5 5	0.01	- 65		0.00		20.00		
May MITDATE	9 6	0.0	0.010	20.0		2462	187	0.0	4 500		173		0.014			
Fig. Cook	14104	ביי קרוי	0.33	0. 10	20.0		0.192	5 6	0.32	0.41		0.172		0.270		
March May Cours I OI AL-N	mg/L	0.560	0.490	0.410	300	0.30	0.38	0.41	0.37		0.32		0.31			
Line mg Line mg Line mg Line mg Line mg	ORTHO-P	mg/L	. 0.005	0.012	0.013	200	0.029	0.037	0.036	0.029		0.024		0.022		
High	TOTAL-P	mg/L	0.018	0.018	0.019	Š.	0.076	0.049	0.065	0.042		0.032		0.041		
ER ug/L ug/L ug/L ug/L sANESE 3.8 0.5 <td>CADMIUM</td> <td>ng/L</td> <td>0.15</td> <td>0.15</td> <td>0.15</td> <td>9</td> <td>0.15</td> <td>0.15</td> <td>0.15</td> <td>0.15</td> <td>. 38</td> <td>0.15</td> <td></td> <td>0.15</td> <td></td> <td></td>	CADMIUM	ng/L	0.15	0.15	0.15	9	0.15	0.15	0.15	0.15	. 38	0.15		0.15		
Harriage COPPER	ng/L	3.8	0.5	0.5		0.5	0.5	0.5	0.5		0.5		0.5			
Name	IRON	ng/L	180	120	06	1	80	40	140	6		15		06		
Name	LEAD	ua/L	2.3	1.0	1.0	Sotoi-	1.0	1.0	1.0	1.0		1.0		1.0		
Mail	MANGANESE	1/011	5.2	33.5	3.0		1.6	Ţ	2.8			80		8		
RIDE mg/L 0.72 0.32 0.22 0.44 0.5 0.46 0.96 0.52 0.61 0.35 0.57 0.74 0.34 0.44 0.55 0.44 0.14 0.25 0.44 0.82 0.63 0.64 0.85 0.65 0.64 0.65 0	ZNZ	, j	, e	5,	7		5	15	15	; <u>7</u>		15		5 5		
SSIUM mg/L	CHIORIDE	1 2	220	2	0 20			0.46	960	220		2 5		0.74		
Main High	POTASSILIM	1 -	0.00	200	77.0		1 20	200	4.50	20.0	95	6.5		7		
Mile	MINIO	9 1	0.12	9.0	- 6		6.4.0	5.0	2 0	7.05	ă.	6.0				
Mar. May May	SOUTOW SUIT TOTAL	11g/L	9.0	0.00	0.20		7.0	4.0	9.0	4.6	š.,	5 2		0.02		
NESS mg/L 7.98 4.85 5.96 6.31 2.0 4.77 7.82 5.02 9.40 6.46 4.45 5.95 6.41 5.95 NESS mg/L 20.35 12.35 16.25 16.09 0.010 0.03 0.011 0.18 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05 0.011 0.05	SULFATE	mg/L	2.81	2.06	2.02		4.43	2.68	3.32	2.28		2.51		3.75		
NESS Mg Court 0.06	CALCIUM	mg/L	7.98	4.85	5.96		70	4.77	7.82	2.02		6.46		6.61		
Marcart Marc	MAGNESIUM	mg/L	0.11	90.0	60.0		0.31	0.17	0.18	0.13		0.15		0.15		
Marcuert 1984 10.71 1.51 11.97 2.47 2.29 3.62 3.06 2.86 0.83 0.84 1.87 0.77 0.71 Marcuert 742.5 742.5 742.5 469.0 1954.0 319.0	HARDNESS	mg/L	20.35	12.35	15.25	200	51.21	12.61	20.26	13.07		6.46		17.12		
ME (cu ft) 742.5	TSS	mg/L	19.84	10.71	1.5		2.47	2.29	3.62	3.06	330	0.83		1.87		
Marche M																
ME (cu ft) 742.5	MASS															
NIMA grams 1.85 6.77 2.64 11.26 0.24 0.91 0.15 1.54 2.85 0.77 0.51 0.02 1.38	VOLUME (cu ft		742.5	742.5	469.0	1954.0	319.0	319.0	319.0	319.0	1276.0	319.0	319.0	319.0	319.0	1277.0
ILE grams 0.27 0.21 0.13 0.662 0.14 <t< td=""><td>AMMONIA</td><td>grams</td><td>1.85</td><td>6.77</td><td>2.64</td><td>11.26</td><td>0.24</td><td>0.91</td><td>0.15</td><td><u>z</u>.</td><td>2.85</td><td>0.77</td><td>0.51</td><td>0.05</td><td>1.38</td><td>2.68</td></t<>	AMMONIA	grams	1.85	6.77	2.64	11.26	0.24	0.91	0.15	<u>z</u> .	2.85	0.77	0.51	0.05	1.38	2.68
L-N grams 6.96 3.93 2.43 13.32 1.75 1.66 2.89 1.91 8.19 1.55 1.85 2.51 1.85	NITRITE	grams	0.27	0.21	0.13	0.62	0.14	0.10	0.14	0.1	0.49	0.00	0.12	0.13	0.10	0.43
L-N grams	NITRATE	grams	96.9	3.93	2.43	13.32	1.73	1.66	2.89	<u>9</u> .	8.19	1.55	1.85	2.51	1.85	7.77
O-P grams 0.11 0.25 0.17 0.53 0.53 0.26 1.45 0.22 0.27 0.20 0.16 L-P grams 0.038 0.25 1.01 0.69 0.44 0.059 0.33 0.27 0.27 0.20 0.044 0.0044	TOTAL-N	grams	11.78	10.30	5.45	27.52	3.25	3.43	3.70	3.34	13.73	2.89	2.89	2.80	3.43	12.02
L-P grams 0.38 0.38 0.25 1.01 0.69 0.44 0.59 0.38 2.10 0.29 0.37 0.27 0.29 0.31 0.29 0.37 0.23 0.003 0.0032 0.0032 0.0045 0.00	ORTHO-P	grams	0.11	0.25	0.17	0.53	0.53	0.33	0.33	0.26	1.45	0.22	0.27	0.20	0.16	0.85
Harman Grams 0.0032 0.0032 0.0045 0.0014 0.	TOTAL-P	grams	0.38	0.38	0.25	<u>2</u>	0.69	0. 4	0.29	0.38	2.10 	0.29	0.37	0.37	0.23	1.26
FR grams 0.0799 0.0105 0.1016 0.1045 0.0046 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0046 0.0044 0.0044 0.0044 0.0044 0.0044	CADMIUM	grams	0.0032	0.0032	0.0032	0.00	0.0014	0.0014	0.0014	0.0014	0.005	0.0014	0.0014	0.0014	0.0014	0.005
grams 3.7850 2.5233 1.8925 8.201 0.7227 0.3614 1.2648 0.8131 3.162 0.1355 0.2710 0.8131 0.3614 SANESE grams 0.0484 0.0210 0.020 0.0090	COPPER	grams	0.0799	0.0105	0.0105	0.101	0.0045	0.0045	0.0045	0.0045	0.018	0.0045	0.0045	0.0045	0.0045	0.018
grams 0.0484 0.0210 0.0200 0.0090 </td <td>IRON</td> <td>grams</td> <td>3.7850</td> <td>2.5233</td> <td>1.8925</td> <td>8,201</td> <td>0.7227</td> <td>0.3614</td> <td>1.2648</td> <td>0.8131</td> <td>3.162</td> <td>0.1355</td> <td>0.2710</td> <td>0.8131</td> <td>0.3614</td> <td>1.581</td>	IRON	grams	3.7850	2.5233	1.8925	8,201	0.7227	0.3614	1.2648	0.8131	3.162	0.1355	0.2710	0.8131	0.3614	1.581
SANESE grams 0.1093 0.0736 0.0645 0.0145 0.0099 0.0253 0.0163 0.066 0.0072 0.0081 0.0163 0.0117 RRIDE grams 0.6308 0.3154 1.262 0.1355	LEAD	grams	0.0484	0.0210	0.0210	0.090	0.0000	0.000	0.000	0.0000	0.036	0.0000	0.000	0.0090	0.0000	0.036
grams 0.6308 0.3154 1.262 0.1355 <td>MANGANESE</td> <td>grams</td> <td>0.1093</td> <td>0.0736</td> <td>0.0631</td> <td>0.246</td> <td>0.0145</td> <td>0.0099</td> <td>0.0253</td> <td>0.0163</td> <td>990.0</td> <td>0.0072</td> <td>0.0081</td> <td>0.0163</td> <td>0.0117</td> <td>0.043</td>	MANGANESE	grams	0.1093	0.0736	0.0631	0.246	0.0145	0.0099	0.0253	0.0163	990.0	0.0072	0.0081	0.0163	0.0117	0.043
grams 15.14 6.73 2.92 24.79 4.52 4.16 8.67 4.70 22.04 3.16 5.15 6.69 3.07 grams 2.52 1.89 1.46 5.88 11.65 7.59 10.48 7.41 37.13 8.13 11.11 10.39 7.68 grams 9.67 11.78 2.66 24.10 4.70 3.70 7.23 3.61 3.07 3.97 5.60 3.16 grams 167.80 10.198 79.16 3.40.02 24.21 29.99 20.60 114.82 22.68 25.66 33.72 45.35 339.77 58.36 129.60 3.17 45.36 53.67 45.36 136 10.8 45.36 136	ZINC	grams	0.6308	0.3154	0.3154	1.262	0.1355	0.1355	0.1355	0.1355	0.542	0.1355	0.1355	0.1355	0.1355	0.542
IUM grams 2.52 1.89 1.46 5.88 11.65 7.59 10.48 7.41 37.13 8.13 11.11 10.39 7.68 7.68 7.68 7.59 10.48 7.41 37.13 8.13 11.11 10.39 7.68 3.16 3.07 3.97 5.60 3.16 3.16 3.07 3.97 5.60 3.16 3.07 3.97 5.60 3.16 3.16 3.07 3.97 5.60 3.16 3.07 3.97 5.60 3.16 3.07 3.97 5.60 3.16 3.07 3.97 5.60 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.17 3.16 3.16 3.16 3.16 3.16 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.18 3.18 3.19 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18	CHLORIDE	grams	15.14	6.73	2.92	24.79	4.52	4.16	8.67	4.70	22.04	3.16	5.15	6.69	3.07	18.07
grams 9.67 11.78 2.66 24.10 4.70 3.70 7.23 3.61 19.24 3.07 3.97 5.60 3.16 grams 59.09 43.32 26.83 129.23 40.02 24.21 29.99 20.60 114.82 22.68 25.66 33.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.88 19.51 3.97 4.51 4.51 4.53 3.39 7.75 58.36 12.10 4.51 4.51 4.53 4.63 4.53	POTASSIUM	grams	2.52	1.89	1.46	5.88	11.65	7.59	10.48	7.41	37.13	8.13	11.11	10.39	2.68	37.31
grams 59.09 43.32 26.83 129.23 40.02 24.21 29.99 20.60 114.82 22.68 25.66 33.88 19.51 79.51 348.95 180.68 43.09 70.65 45.35 339.77 58.36 121.96 59.72 45.17 2.87 1.54 1.63 1.17 7.14 1.36 1.90 1.36 1.08 87.16 1.36 1.30 1.36 1.08 1.72 45.17 2.80 1.54 1.63 1.17 7.14 1.36 1.90 1.36 1.08 1.36 1.09 1.36 1.08 1.36 1.08 877.66 58.36 312.31 154.66 117.26 6.96 strains 417.19 225.21 20.06 662.45 22.31 20.69 32.70 27.64 103.35 7.50 7.59 16.89 6.96	SODIUM	grams	9.67	11.78	2.66	24.10	4.70	3.70	7.23	3.61	19.24	3.07	3.97	5.60	3.16	15.81
grams 167.80 101.98 79.16 348.95 180.68 43.09 70.65 45.35 339.77 58.36 121.96 59.72 45.17 2.80 1.54 1.63 1.17 7.14 1.36 1.90 1.36 1.08 SS grams 427.91 259.69 202.55 890.15 462.64 113.92 183.03 118.08 877.66 58.36 312.31 154.66 117.26 6 grams 417.19 225.21 20.06 662.45 22.31 20.69 32.70 27.64 103.35 7.50 7.59 16.89 6.96	SULFATE	grams	59.09	43.32	26.83	129.23	40.02	24.21	29.99	20.60	114.82	22.68	25.66	33.88	19.51	101.72
grams 2.31 1.26 1.20 4.77 2.80 1.54 1.63 1.17 7.14 1.36 1.90 1.36 1.08 grams 427.91 259.69 202.55 890.15 462.64 113.92 183.03 118.08 877.66 58.36 312.31 154.66 117.26 6 grams 417.19 225.21 20.06 662.45 22.31 20.69 32.70 27.64 103.35 7.50 7.59 16.89 6.96	CALCIUM	grams	167.80	101.98	79.16	348.95	180.68	43.09	70.65	45.35	339.77	58.36	121.96	59.72	45.17	285.21
grams 427.91 259.69 202.55 890.15 462.64 113.92 183.03 118.08 877.66 58.36 312.31 154.66 117.26 6 grams 417.19 225.21 20.06 662.45 22.31 20.69 32.70 27.64 103.35 7.50 7.59 16.89 6.96	MAGNESIUM	grams	2.31	1.26	1.20	4.77	2.80	<u>7.</u> 22.	1.63	1.17	7.14	1.36	1.90	1.36	1.08	5.69
grams 417.19 225.21 20.06 662.45 22.31 20.69 32.70 27.64 103.35 7.50 7.59 16.89 6.96	HARDNESS	grams	427.91	259.69	202.55	890.15	462.64	113.92	183.03	118.08	877.66	58.36	312.31	154.66	117.26	642.59
(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TSS	grams	417.19	225.21	20.06	662.45	22.31	20.69	32.70	27.64	103.35	7.50	7.59	16.89	96.9	38.94
	-									<u></u>						

Appendix I-2. Discrete samples taken at intervals across the hydrograph for the September 3, 1998 storm at the Florida Aquarium parking lot. Rain amount was 1.97 inches in about four hours and antecedent dry conditions were 30 hours with no significant rainfall. Rain (0.47 inches) fell on September 1st. Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

September 3, 1998	Ask	Asphalt without swale (F2)	it swale (F.	2)	Cen	Cement with swale (F4	wale (F4)		Permeal	Permeable paving w/ swale (F6	w/ swale	(F6)	Asphal	Asphalt paving with swale (F8	h swale (F8)
				weighted				weighted				weighted				weighted
UNITS PERCENTAGE	rising 52%	top 48%	falling 0%	average	rising 40%	top f 45%	falling 15%	average	rising 38%	top 44%	falling 19%	average	rising 50%	top 50%	falling 0%	average
AMMONIA MINONIA	0.010	0.017		0.33	0 005	0 011	0.005	0.008	0.033	0.005	0.043	0.047	0.005	0.054		860 0
_	0.005	0.005		0.005	0.002	0.005	0.005	0.005	0.005	0.005	0.01	0.006	0.003	0.005		0.020
	0.096	0.212		0.152	0.063	0.042	0.045	0.051	0.047	0.035	0.051	0.043	0.012	0.039		0.026
	0.18	0.20		0.19	0.17	0.12	0.20	0.15	0.27	0.17	0.05	0.19	0.10	0.12	<u> </u>	0.11
	0.01	0.01		0.01	90.0	90.0	0.09	90.0	0.05	0.04	0.03	0.04	0.05	0.01		0.03
	0.02	0.02		0.02	80.0	90.0	0.10	20.0	90.0	0.04	0.03	90.0	0.07	0.01		0.04
5	0.15	0.15		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15		0.15
E	7.4	7.4		6.1	5.6	3.0	5.4	4.4	2.1	5.6	4. 8.	2.8	11.8	9.5		10.7
IRON ug/L	350	180		268	120	2 5	8 ,	6 8 ÷	96 ?	4 ′	<u>8</u> ?	25	330	110		220
ANESE	3.0	0.r		0.7). 2. 4	ے د). 1) . (- -). 2. 6	2.c	D: 4).r).c		7.0
ZINC UG/L	50.0	15.0		33.2	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.1	15.0	150		4.0
RIDE	2.82	1.97	<u> </u>	2.41	2.49	2.54	3.43	2.65	2.37	2.08	3.18	2.40	2.66	2.82		2.74
5	0.14	0.11		0.13	1.50	1.39	5.17	2.00	1.82	1.90	3.03	2.09	0.32	0.29		0.31
	1.83	1.42		1.63	1.61	1.49	3.96	1.91	1.14	1.33	1.40	1.28	1.32	1.40		1.36
	2.18	1.80		2.00	3.64	1.78	3.99	2.86	2.29	2.30	3.58	2.54	1.89	3.66		2.78
	6.99	6.71		6.86	6.35	7.56	18.00	8.8 48.5	7.54	10.60	26.50	12.43	7.17	6.18		6.68
5	0.21	0.21		0.21	0.18	0.18	1.02	0.31	0.15	0.18	0.24	0.18	0.17	0.17		0.17
DNESS	18.32	17.62		17.98	16.59	19.62	49.15	22.84	19.44	27.21	67.16	31.78	18.60	16.13		17.37
TSS mg/L	5.94	1.86	<u>aineala</u>	3,98	5.08	3.76	3.66	4.27	1.08	0.58	0.57	0.77	15.08	5.53		10.31
MASS				TOTAL				TOTAL				TOTAL				TOTAL
VOLUME (cu ft)	0.009	550.0	0.0	1150	350.0	400.0	130.0	880.0	260.0	300.0	120.0	680.0	390.0	390.0	0.0	780.0
≰		0.262	0.000	0.430	0.049	0.123	0.018	0.190	0.240	0.042	0.044	0.326	0.055	0.557	0.000	0.612
NITRATE grams	0.084	3.265	0000	0.161	0.049	0.056	0.018	1.753	0.036	0.042	0.037	0.115	0.055	0.055	0.000	0.109
		3.080	0.00	6.104	1.666	1.34	0.728	3.738	1.966	1.428	0.171	3.565	1.092	1.310	0.000	2.402
_		0.077	0.000	0.245	0.549	0.706	0.317	1.571	0.371	0.361	0.104	0.837	0.513	0.055	0.000	0.568
		0.231	0.000	0.634	0.735	0.706	0.375	1.816	0.612	0.361	0.104	1.077	0.710	0.055	0.000	0.764
CADMIUM grams	0.0025	0.0023	0.0000	0.0048	0.0015	0.0017	0.0005	0.0037	0.0011	0.0013	0.0005	0.0029	0.0016	0.0016	0.0000	0.0033
		2.77	0.00	8.65	1.18	0.78	0.22	2.18	0.66	0.34	0.10	1.09	3.60	120	0000	4.80
	_	0.015	0.000	0.066	0.010	0.011	0.004	0.025	0.007	0.008	0.003	0.019	0.011	0.011	0.000	0.022
SANESE		0.08	0.00	0.22	0.03	0.02	0.01	90.0	0.01	0.01	0.00	0.03	0.08	0.03	00:0	0,10
		0.23	0.00	1.07	0.15	0.17	0.05	0.37	0.11	0.13	0.05	0.29	0.16	0.16	00.00	0.33
	_	30.34	0.00	71.71	24.40	28.45	12.49	65.34	17.25	17.47	10.68	45.41	29.05	30.79	0.00	59.84
¥ 2		1.69	0.00	4.05	14.70	15.57	18.82	49.09	13.25	15.96	10.18	39.39	3.49	3.17	0.00	99'9
		21.87	0.0	52.61	15.78	16.69	14.41	46.88	8.30	11.17	4.70	24.18	14.41	15.29	0.0	29.70
SULFATE grams		27.72	0.0	25.34	35.67	19.94	14.52	70.13	16.67	19.32	12.03	48.02	20.64 3.04	39.97	0.00	60.61
Z	117.43	103.33	0.0	27.077	02.23	20.0	20.00	74.262	24.68	88.04	89.04	78.282	78.30	67.49	9.0	145.78
		3.23	9.6	6.75	1.70	2.02	470.7	- 6.43 - 00	 	1.51	1.8.0	3.41	1.86	1.86	0.00	3.77
		28.64	3 6	128.44	102.38	42.74	12.37	405.22	78.1.32 7.86	228.36 4 87	4 00	585.74 44.85	203.11	1/6.14	3.0	379.25
gialis	_	15.07	7.0.7	T CT	10.10	44.11	10.01	100:55	20.1	4.07	1.74	1.4:02	104:01	00.00	۷.۷۷	00.023

Appendix I-3. Discrete samples taken at intervals across the hydrograph for the January 23, 1999 storm at the Florida Aquarium parking lot. Rain amount was 2.54 inches in about five hours and antecedent dry conditions were 336 hours with no significant rainfall. Rain (0.46 inches) fell on January 9th. Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

JANUARY 23, 1999	66																
RAIN 2.61 (5 HOURS)	-	Asphalt wo/ swale (F2)	swale (F2)			ē	Cement w/ swale (F.	vale (F4)	7	Permea	Permeable paving with swale (F6	with swa	le (F6)	Aspha	Asphalt paving with swale	th swale	(F8)
CONSTITUENT UNITS	TS rising 39%	ig top % 40%	falling 21%	~~~~	weighted average	rising 40%	top 1 39%	falling 23%	weighted average	rising 39%	top 39%	falling 22%	weighted average	rising 44%	top 43%	falling 17%	weighted average
				Ŧ													
AMMONIA mg/L	_		0.017 0.0	0.019	0.021	0.028	0.046	0.025	0.035	0.011	0.015	0.022	0.015	0.052	0.018	0.019	0.034
	_			0.005	0.026	0.013	0.01	0.012	0.012	0.011	0.012	0.016	0.012	0.002	0.005	0.002	0.005
	_			747	0.025	080.0	0.132	0.079	0.102	0.094	0.086	0.089	060'0	0.105	0.045	0.032	0.071
	_			17.	0.072	0.121	0.188	0.116	0.148	0.116	0.113	0.127	0.117	0.162	0.068	0.056	0,110
_				121	0.026	0.097	0.149	0.103	0.121	0.115	0.091	0.063	0.094	0.148	0.099	0.105	0.126
		0	0	0.028	0.077	0.110	0.173	0.113	0.137	0.135	0.117	0.11	0.122	0.177	0.124	0.113	0.150
=		0.15	0.15 0.	0.15	0.150	0.15	0.15	0.15	0.153	0.15	0.15	0.15	0.150	0.15	0.15	0.15	0.156
품			N	2.60	12.16	1.10	3.90	0.05	1.97	4.30	1.60	5.20	3.45	9.00	4.40	3.00	6.36
IKON ug/L				06	507	, 20	120	9 ;	76	20	15	4	7 8	230	100	20	153
				2.6	o c	0.6	7 0	7.0	6.5	0.7	1.0	1.0	1.0	4.7	2.4	1.0	3.3
		7.66.7		9. 6	7.1.2	, v.	ا ت ت	2.0	7.7	9.1,	6. ć	0.7	1.1	6.5	9.4	2.5	5.3
מנוסג			15.0	75.0	0.00	15.0	15.0	7.0	6 L	15.0	15.0	15.0	15.0	0.09	30.0	30.0	44.4
DOTASSILIM mg/L					70.0	9.5	97.	5 6	1.34	1.32	77.	1.30	हु: 	1.47	1.03	0.93	1.25
				20.00	600	9 6	6.6	76.	20.0	0.00	4.20	70.4	4.17	0.73	14.0	6.39	0.56
11				1 84	4 23	0.93	2.01	0.70	0.93	9.6	 	9.5	87.5	0.77	0.59	0.53	0.68
					3 6	47.74	5 5	7.65	30.0	9.00	3.21	2.43	C	5.11	7.77	L5.5 20.0	2.70
Σ				0.0	500		2.0	0.00	9.55	0.00	0.40	28.10	15.19	0.45	7.02	9.02	85.7 85.6
		-		17.38	17.89	36.48	13.54	20.05	24.48	17.49	42.10	71 24	28 94	17.54	0.33	24.0	40.05
	_				47.5	4		7		2	16.10	1 7	- 0.00	6.5	0.03	C7.47	9.90
		0.00	Ą	<u> </u>	?	<u>.</u>		<u>.</u>	?		c.:	2	C:	 9.	5.4	4.	4.6
MASS				ľ	TOTAL				TOTAL				TOTAL				TOTAL
VOLUME (cu ft)	ιō	506.6 51		272.8	1299	403.2	393.1	231.8	1008.0	307.3	307.3	173.4	788.0	461.6	451.1	178.3	1049.0
≰				0.145	0.761	0.316	0.506	0.162	0.985	0.095	0.129	0.107	0.334	0.672	0.227	0.095	0.994
				0.038	0.934	0.147	0.110	0.078	0.335	0.095	0.103	0.078	0.276	0.065	0.063	0.025	0.153
				0.359	0.910	0.903	1.453	0.513	2.869	0.809	0.740	0.432	1.981	1.357	0.568	0.160	2.085
				0.542	2.605	1.366	2.069	0.753	4.188	0.998	0.972	0.617	2.587	2.094	0.859	0.280	3.232
DKIHO-P grams		0.454 0.5		0.160	9,040	1.095	1.640	0.669	3.404	0.990	0.783	0.306	2.078	1.913	1.250	0.524	3.688
			0.400	4 4 4 6	2.307	1.242	1.904	0.733	5.879	1.162	1.007	0.534	2.702	2.288	1.566	0.564	4.418
COPPER				0 0 0	0.330	0.002	. 60.0	4 00	0.056	1.43	2.5	0.720	3,310	0.002	0.002	0.00	0.005
			•	69 0	18 43	0.564	1321	0.000	2.145	0.037	0.0	0.023	0.070	0.110	1 263	0.0.0	4.405
				2	0.35	0.01	0.02	0.01	0.04	0.01	0.0	0.00	0.02	0.00	50.0	000	0.10
MANGANESE grams				0.04	0.41	0.05	0.04	0.01	0.08	0.01	0.0	0.00	0.02	0.08	0.00	0.0	0.15
				0.11	2.03	0.17	0.17	0.00	0.34	0.13	0.13	0.07	0.33	0.78	0.38	0.15	1.30
				3.59	22.65	12.42	19.37	6.94	38.74	11.36	10.93	6.31	28.60	19.00	13.01	4.64	36.65
<u>₩</u>				69.0	3.41	23.48	29.17	12.46	65.11	33.21	36.14	22.67	92.03	9.44	5.18	1.95	16.56
				1.60	10.36	11.18	11.12	4.54	26.84	5.68	6.71	4.86	17.25	9.95	7.45	2.65	20.05
					19.44	33.19	36.98	14.80	84.97	25.81	27.62	20.54	73.97	40.20	26.65	12.53	79.38
	``				254.91	159.18	55.14	49.65	263.98	57.56	141.11	136.43	335.11	83.36	88.67	45.03	217.06
5					3.41	3.50	2.75	1.49	7.74	1.63	2.41	1.26	5.31	4.39	4.17	2.10	10.66
HARDNESS grams		CA	132		650.58	411.84	149.03	130.13	691.01	150.49	362.25	345.88	858.62	226.31	238.60	121.07	585.97
TSS grams		1231.2 11	119.3	0.0	1350.5	17.2	9.7	9.8	36.6	2.3	4.0	4.8	11.1	50.1	68.1	17.1	135.3

Appendix I-4. Discrete samples taken at intervals across the hydrograph for the June 18, 1999 storm at the Florida Aquarium parking lot. Rain amount was 1.40 inches in about one hour. The time since the last significant rain was about eleven hours.

Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

JUNE 18, 1999														7. Sec. 10.		
rain=1.4 in. in 1 hour	As	Asphalt without swale (F2)	it swale (F	2)	S	Cement with swale (wale (F4		Perm	Permeable paving w/ swale (F6	ng w/ swa	le (F6)	Aspha	Asphalt paving with swale (F8	th swale (<u>8</u>
CONSTITUENT UNITS	rising	falling	tail	weighted average	rising	falling	tail	weighted average	rising	falling	tai	weighted average	rising	falling	tai	weighted
percentage	top 67%	33%			top 40%	40%	70%		top 38%	38%	25%		top 38%	42%	%0%	1
∢	0.106	0.071		0.094	0.034	0.020	0.018	0.025	0.032	0.019	0.062	0.035	0.058	0.005	0.011	0.027
	0.134	0.197		0.155	0.130	0.054	0.013	0.076	0.144	0.100	0.062	0.107	0.115	0.056	0.021	0.053
	0.005	0.005		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.002	0.0031
	0.27	0.35		0.30	0.32	0.37	0.42	0.36	0.42	0.54	0.54	0.50	0.35	0.25	0.42	0.23
	0.025	0.017		0.022	0.078	0.160	0.249	0.145	0.135	0.109	0.119	0.121	0.130	0.144	0.184	0.091
	0.051	0.035		0.046	0.113	0.215	0.312	0.194	0.178	0.154	0.174	0.168	0.169	0.192	0.232	0.117
COPPER ug/L	2.60	5.30		3.49	0.70	5.30	1.00	2.60	1.90	3.60	2.90	2.79	2.20	4.60	4.40	1.80
	170	40		127	15	15	15	15	20	15	15	28.125	80	15	15	36.6
LEAD ug/L	1	1		1	+	1	-	1	1	1	1	1	-	1	1	1
SANESE	5.3	4.9		5.2	3.1	3.6	0.9	2.9	1.0	8.0	1.5	1.1	4.3	1.7	0.1	1.8
ZINC ng/L	15	15		15	15	40	15	25	15	15	15	. 15	15	15	15	9
	0.36	0.72		0.48	0.51	0.82	1.09	0.75	0.57	0.55	0.62	0.58	0.65	0.64	0.79	0.43
<u>≅</u>	0.13	0.17		0.14	1.09	1.45	1.95	1.41	1.47	1.45	1.74	1.53	0.46	0.39	0.38	0.27
	0.16	0.43		0.25	0.45	0.67	0.87	0.62	0.40	0.36	0.37	0.38	0.41	0.38	0.45	0.26
SULFATE mg/L	1.26	2.89		1.80	1.97	2.98	4.21	2.82	2.14	1.60	2.08	1.92	1.79	1.77	5.09	1.17
	5.86	14.80		8.81	4.42	9.08	13.10	8.02	5.55	8.62	14.00	8.81	5.68	9.62	12.70	4.93
5	0.08	0.25		0.14	0.25	0.53	0.76	0.46	0.28	0.36	0.52	0.37	0.31	0.62	0.82	0.29
DNESS	14.60	37.98		22.32	12.07	24.86	35.84	21.94	15.01	23.01	37.10	23.53	15.46	26.65	35.09	13.51
TSS mg/L	5.53	2.42		4.50	1.14	1.38	1.38	1.28	1.97	1.60	1.33	1.67	5.91	1.32	0.98	2.68
MASS				TOTAL				TOTAL				TOTAL				TOTAL
CT E		356.7	0.0		414.4	414.4	207.2	1036.0	311.3	311.3	207.5	830.0	410.8	454.0	216.2	1081.0
AMMONIA grams		0.709	0.00		0.395	0.232	0.104	0.731	0.279	0.166	0.360	0.805	0.667	0.064	0.067	0.797
		1.968	0.00	4.685	1.508	0.627	0.075	2.210	1.255	0.872	0.360	2.487	1.323	0.712	0.127	2.162
	,	0.050	0.000	0.151	0.058	0.058	0.029	0.145	0.044	0.04	0.029	0.116	0.058	0.064	0.030	0.151
		3.496	0.000	8.971	3.713	4.293	2.437	10.443	3.661	4.707	3.137	11.505	4.026	3.178	2.543	9.746
		0.170	0.000	0.677	0.905	1.857	1.445	4.206	1.177	0.950	0.691	2.818	1.495	1.831	1.114	4.440
COPPLE grams		0.550	0.000		- 6	6.493	0.0.0	5.010	7.55Z	1.342	1.0.1	3,905	1.944	2.441	1.404	5.789
	0.053	0.033	0.000	9.50	0.008	0.00	0.000	0.00	0.017	0.031	710.0	0.065	0.025	0.058	0.027	0.110
		0.40	0000	Z	2.5	2 5	00.0	0000	9.60	- 6	200.0	0.004	0.920	0.191	0.09	1.202
MANGANESE grams		0.00	0000	0.030	0.036	0.0	0000	0.023	0000	0.00	9 6	0.023	0.012	0.01	0000	0.030
		0.045	0000	24.5	0.030	0.042	2000	2000	0.003	0.00	0.00	0.064	0.043	0.022	0.00	0.072
HOIS.		7 191	0.00	14.40	5 92	9.51	3 6	24.76	7 07	2.5	2 60	13.36	7.40	0.13	1.03	20.434
5		1 608	0000	7.3	10.01 10.65	16.91	1 2	40 70	6 6	67.67	5.5	25.56	2	÷ • •	9 6	40.33
		4.295	0000	7.54	5.22	77.7	50.5	18.04	3.49	3.04	2,4	23.30 77 8	0.23 4.73	4.90	2.30	12,33 49.97
ш	_	28.864	000 0	54.42	22.86	34.58	24 42	84.86	18.65	12.05	1 2 2	44.68	30.00	22.50	13.0	17.71
	_	147.816	0.000	266,66	51.29	105.36	76.00	232.64	48.38	75.14	81.34	204.85	65.33	122.67	76.88	23.74 264.89
×	1.622	2.497	0.000	4.12	2.90	6.15	4.41	13.46	2.44	3.14	3 02	8.60	3.57	7 88	4 96	16.41
	~	379.329	0.00	675.42	140.00	288.46	207.93	636.39	130.84	200.53	215.55	546.92	177.82	338.77	212.41	729.00
		24.170	0.00	136.32	13.23	16.01	8.01	37.25	17.16	13.95	7.70	38.80	67.98	16 78	. 6	90.60
	┨))))	1				7,2,2	22:22

Appendix I-5. Discrete samples taken at intervals across the hydrograph for the July 4, 2000 storm at the Florida Aquarium parking lot. Rain amount was 1.95 inches in about three hours and antecedent dry conditions were 79 hours with no significant rainfall. Rain (0.81 inches) fell on July 1st. Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

Constitution: Mathematical states Math	JULY 4, 2000																	
Bull			Asph	alt without swale ((F2)	Ö	ement with	swale (F4)		ů.	ermeable p	aving w/ s	swale (F6)		Aspt	alt paving v	with swale	(F8)
Color Colo	CONCTITUENT		-	Ç.	weighted	7	7		weighted	-	·	3	7	weighted	, , , , , , , , , , , , , , , , , , ,	411	6 77	weighted
A mg/L 0.131 0.037 0.087 0.111 0.113 0.037 0.087 0.111 0.113 0.037 0.038 0.011 0.027 0.040 <t< th=""><th></th><th></th><th></th><th>34.67%</th><th>of a mare</th><th>35.14%</th><th>36.04%</th><th>28.83%</th><th></th><th>28.79%</th><th>30.30%</th><th>30.30%</th><th>10.61%</th><th>average</th><th>39.39%</th><th>40.40%</th><th>20.20%</th><th>average</th></t<>				34.67%	of a mare	35.14%	36.04%	28.83%		28.79%	30.30%	30.30%	10.61%	average	39.39%	40.40%	20.20%	average
A mg1 0.101 0.103 0.004		H																
mg/L 0.318 0.027 0.348 0.016 0.010	AMMONIA	_	0.131	0.033	0.097	0.097	0.101	0.113	0.103	0.081	0.087	0.105	0.128	0,095	0.052	0.159	0.136	0.112
mg/l 0.550 0.450 0.255 0.255 0.255 0.255 0.441 0.536 0.25		_	0.010	0.027	0.016	0.008	0.015	0.020	0.014	0.008	0.009	0.010	0.014	0.010	0.008	0.016	0.025	0.015
mg/l 0.556 0.420 0.420 0.456 0.770 0.400 0.240 0.584 0.23 0.42 0.40 0.40 0.20 0.12 0.44 0.45		_	0.318	0.420	0.353	0.263	0.322	0.441	0.336	0.213	0.187	0.231	0.294	0.219	0.305	0.371	0.367	0.344
mg 0.002	_	_	0.580	0.420	0.525	0.770	0.900	0.240	0.664	0.33	0.32	0.40	2.7	0.600	0.32	0.77	0.58	0.554
mg1		_	0.022	0.013	0.019	0.117	0.344	0.508	0.312	0.28	0.25	0.31	0.4	0.290	0.12	0.28	0.32	0.225
Heat Court		_	0.034	0.039	0.036	0.117	0.453	0.637	0.388	0.25	0.28	0.40	0.46	0.328	0.13	0.29	0.32	0.233
ugl.L 2700 7300 2993 7.00 8.80 8.30 8.30 8.30 9.00 <t< td=""><td>5</td><td></td><td>0.150</td><td>0.150</td><td>0.150</td><td>0.150</td><td>0.150</td><td>0.150</td><td>0.150</td><td>0.15</td><td>0.15</td><td>0.15</td><td>9.0</td><td>0.198</td><td>0.15</td><td>0.15</td><td>0.15</td><td>0.150</td></t<>	5		0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.15	0.15	0.15	9.0	0.198	0.15	0.15	0.15	0.150
Here 1500 700 700 1.340 7750 90.0 60.0 754 150 60.0 60.0 60.0 755 75 75 75 750			2.300	4.300	2.993	1.000	8.800	8.300	5.916	4.8	3.1	3.4	2.3	3.595	2.5	3.0	4.6	3.126
Heat			270.0	70.0	200.7	20.0	0.06	0.09	74.3	130.0	0.09	20.0	90.0	80.3	330.0	100.0	70.0	184.5
Here			1.500	0.750	1.240	0.750	0.750	0.750	0.750	1.5	8.0	9.0	0.75	0.966	2.1	0.8	0.8	1.282
Hard 1860			5.300	4.000	4.849	1.600	2.200	2.100	1.96.1	2.6	1.7	1.6	2.1	1.971	6.4	2.8	2.2	4.097
Magnetia 1860 188			7.500	20.000	11.834	20.000	20.000	20.000	20.002	7.5	7.5	7.5	7.5	7.500	20.0	20.0	20.0	19.998
		_	1.860	1.880	1.867	1.990	2.290	2.710	2.306	1.89	1.83	1.92	1.98	1.890	1.97	2.01	2.18	2.028
mg/L 2.650 0.770 0.641 0.650 1.100 1.440 1.033 0.48 0.43 0.59 0.58 0.541 0.47 0.44	Σ	_	0.280	0.340	0.301	1.630	3.430	4.460	3.095	2.45	2.72	3.63	4.55	3.112	0.74	1.22	1.34	1.055
950 4,6890 3,553 3,20 4,790 6,220 4,685 2,59 2,96 3,57 4,39 3,169 3,169 940 0,130 0,130 0,140 0,150 0,250 0,687 0,19 0,22 0,39 0,39 0,13 0,130 0,130 0,140 0,150 0,570 0,690 0,447 0,19 0,27 0,19 0,270 0,13 0,467 0,19 0,22 0,50 0,50 0,50 0,13 0,14 </td <td></td> <td>_</td> <td>0.220</td> <td>0.770</td> <td>0.411</td> <td>0.630</td> <td>1.100</td> <td>1.440</td> <td>1.033</td> <td>0.48</td> <td>0.43</td> <td>0.59</td> <td>0.88</td> <td>0.541</td> <td>0.47</td> <td>0.69</td> <td>1.02</td> <td>0.670</td>		_	0.220	0.770	0.411	0.630	1.100	1.440	1.033	0.48	0.43	0.59	0.88	0.541	0.47	0.69	1.02	0.670
110 110		_	2.950	4.690	3.553	3.230	4.790	6.220	4.655	2.59	2.96	3.52	4.33	3.169	3.18	3.77	4.15	3.614
National Color Nati		_	8.340	16.100	11.030	5.120	12.500	15.100	10.657	6.10	8.85	12.70	16	9.983	7.84	12.00	14.60	10.885
8.5 40,137 27.728 13.402 33.56 40.546 16.01 23.42 33.77 42.55 26.482 20.11 8.6 450.4 na 1.933 3.256 na 2.603 4.66 3.27 2.76 na 3.54 9.24 113 0.416 0.000 3.529 1.043 1.114 0.997 3154 0.445 0.602 0.606 0.259 1.603 0.606 0.259 1.603 0.606 0.259 1.604 0.605 0.606 0.259 1.604 0.605 0.606 0.259 1.604 0.605 0.606 0.259 0.606 0.607 0.606 0.607 0.606 0.607 0.606 0.607 0.606 0.607 0.606 0.259 0.606 0.259 0.606 0.607 0.607 0.607 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608	_	_	0.000	0.130	0.045	0.150	0.570	0.690	0.457	0.19	0.32	0.50	0.63	0.370	0.13	0.57	0.70	0.423
994 na 1,933 3,256 na 2,663 4,66 3,27 2,76 na 3,54 9,24 886 450.4 0.0 1,299 384.1 383.9 315.1 1093.0 196.0 206.2 72.2 600.6 430.5 9,24 430.5 113 0.416 0.000 3,529 1.043 1.114 0.997 3,144 0.448 0.642 0.652 0.656 0.756 0.096 430.5 0.657 0.006 0.186 0.176 0.044 0.052 0.658 0.658 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.044 0.052 0.058 </td <td></td> <td>_</td> <td>0.825</td> <td>40.737</td> <td>27.728</td> <td>13.402</td> <td>33.560</td> <td>40.546</td> <td>28.494</td> <td>16.01</td> <td>23.42</td> <td>33.77</td> <td>42.55</td> <td>26.452</td> <td>20.11</td> <td>23.31</td> <td>39.34</td> <td>25,285</td>		_	0.825	40.737	27.728	13.402	33.560	40.546	28.494	16.01	23.42	33.77	42.55	26.452	20.11	23.31	39.34	25,285
48.6 450.4 0.0 1 OTAL TOTAL 1 OTAL 1 083.0 1 146 0.06 2.05 2.06.2 2 0.05 0.259 1 312 0.057 0.086 0.144 0.052 0.086 0.258 1.014 0.096 0.044 0.052 0.086 0.258 1.014 0.096 0.044 0.052 0.086 0.258 1.014 0.096 0.044 0.052 0.086 0.258 1.1426 0.096 0.044 0.052 0.066 0.259 1.1417 0.056 0.044 0.054 4.177 0.056 0.044 4.177 0.044	TSS		1.094	na	na	1.933	3.256	eg E	2.603	4.66	3.27	2.76	na	3.54	9.24	4.79	na	66.99
House Hous																		
45.0.0 3.529 3.04.1 3.93.9 3.15.1 1.095.0 195.0 206.2 206.2 6.66.6 6.259 4.30.5 238 0.346 0.000 3.529 1.043 3.154 0.445 0.502 0.666 0.258 1.812 0.086 238 0.341 0.000 0.578 0.086 0.165 0.175 0.245 0.052 0.086 0.752 0.086 0.086 0.165 0.175 0.044 0.052 0.086 0.187 0.086 0.165 0.175 0.044 0.052 0.086 0.028 0.084 0.086 0.164 0.052 0.086 0.086 0.167 0.044 0.052 0.086 0.084 0.087 0.089 0.084 0.084 0.086 0.086 0.084 0.084 0.089 0.084 0.089 0.088 0.094 0.089 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.0	MASS		9		2	7,700	6	,	TOTAL	000	0		í	TOTAL	-	:		TOTAL
238 0.341 0.000 0.578 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.006 0.578 0.028 0.028 0.028 0.028 0.028 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.048 0	_1	1	2 443	ľ	1	1 043	1 444	213.1	0.000	190.0	200.2	7.007	7.7)	080.6	430.5	441.6	220.8	1093.0
556 5.297 0.000 12.853 2.859 3.551 1.0271 1.146 1.080 1.334 0.554 4.177 3.676 781 5.297 0.000 19.078 8.281 9.926 2.117 20.325 1.811 1.848 2.309 5.458 4.177 3.867 781 5.297 0.000 0.687 1.258 3.794 4.442 9.544 1.515 1.442 1.772 0.809 5.528 1.446 808 0.0192 0.0000 0.00655 0.0018 0.0019 0.0009 0.0018 0.0019 0.0009 0.0018 0.0017 0.0018 0.0019 0.0019 0.0018 0.0019 0.0018 0.0019 0.0018 0.0019 0.0018 0.0019 0.0018 0.0019 0.0018 0.0018 0.0019 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0019 0.0018	_		0.238			980 0	0 165	0.337	554 0. 428	0.443	0.302	0.000	0.028	1.012	0.027	1.900	0.847	454.0
781 5.297 0.000 19.078 8.281 9.926 2.117 20.325 1.811 1.846 2.309 5.458 11.426 3.857 523 0.164 0.000 0.687 1.258 3.794 4.442 9.544 1.515 1.432 1.772 0.809 5.528 1.446 808 0.0492 0.0000 0.0055 0.0016 0.0017 0.0017 0.0048 0.0009 0.0009 0.0016 0.0017 0.0017 0.0009 0.0009 0.0016 0.0017 0.0017 0.0009 0.0009 0.0016 0.0017 0.0017 0.0023 0.0019 0.0019 0.0017 0.0017 0.0023 0.0019 0.0019 0.0018 0.0018 0.0023 0.0023 0.0017 0.0023 0.0023 0.0017 0.0023 0.0023 0.0017 0.0023 0.0017 0.0044 0.019 0.0044 0.019 0.0044 0.019 0.0044 0.0049 0.0049 0.0048 0.0048 0.0058 0.00			7.556			2.829	3.551	3.891	10.271	1.169	1.080	1.334	0.594	4.177	3.676	4.587	2 269	10.533
523 0.164 0.000 0.687 1.258 3.794 4.482 9.534 1.515 1.432 1.772 0.809 5.528 1.446 808 0.492 0.000 1.300 1.288 4.996 5.620 1.1875 1.622 2.304 0.900 6.244 1.567 308 0.492 0.000 0.0017 0.0017 0.0013 0.0008 0.0009 0.0018 0.0017 0.0018 0.0008 0.0018 0.0017 0.0018 0.0028 0.0109 0.0046 0.0017 0.0018 0.0028 0.0109 0.0198 0.0046 0.0028 0.0019 0.0049 0.0029 0.0049 0.00		_	3.781			8.281	9.926	2.117	20.325	1.811	1.848	2.309	5.458	11.426	3.857	9.521	3.586	16.964
888 0.492 0.000 1.300 1.258 4.996 5.620 11.875 1.388 1.622 2.304 0.930 6.244 1.567 0.386 0.0019 0.0005 0.0016 0.0017 0.0018 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0001 0.0018 0.0008 0.0009 0.00	_		0.523			1.258	3.794	4.482	9.534	1.515	1.432	1.772	0.80	5,528	1.446	3.462	1.978	6.887
0.05 0.0019 0.0000 0.00455 0.0016 0.0017 0.0008 0.0009 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 </td <td></td> <td></td> <td>0.808</td> <td></td> <td></td> <td>1.258</td> <td>4.996</td> <td>5.620</td> <td>11.875</td> <td>1.388</td> <td>1.622</td> <td>2.304</td> <td>0.930</td> <td>6.244</td> <td>1.567</td> <td>3.586</td> <td>1.978</td> <td>7.131</td>			0.808			1.258	4.996	5.620	11.875	1.388	1.622	2.304	0.930	6.244	1.567	3.586	1.978	7.131
546 0.0542 0.0000 0.1889 0.0108 0.0971 0.0732 0.1810 0.0265 0.0196 0.0196 0.0066 0.0066 0.0068 0.0071 0.0073 0.0166 0.0176 0.0066 0.0066 0.0066 0.0074 0.0196 0.0066 0.0074 0.004	_		.0036			0.0016	0.0017	0.0013	0.0046	0.0008	0.0009	0.000	0.0012	0.0038	0.0018	0.0019	0.000	0.0046
415 0.883 0.000 7.284 0.753 0.993 0.529 2.275 0.713 0.346 0.289 0.189 1.550 3.978 356 0.0095 0.0000 0.0454 0.0081 0.0086 0.0250 0.0043 0.0043 0.0043 0.0043 0.0043 0.0045 0.0045 0.0045 0.0085 0.0004 0.0043 0.0043 0.0043 0.0045 0.0045 0.0045 0.0055 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0044 0.0043 0.0044 0.0043 0.0044 0.0044 0.0043 0.0044<			.0546			0.0108	0.0971	0.0732	0.1810	0.0263	0.0179	0.0196	0.0046	0.0685	0.0301	0.0371	0.0284	0.0957
350 0.0005 0.0451 0.0045 0.0046 0.0			6.415			0.753	0.993	0.529	2.275	0.713	0.346	0.289	0.182	1.530	3.978	1.236	0.433	5.647
172 0.000 0.476 0.017 0.024 0.019 0.014 0.000 0.004 0.017 0.004 0.017 0.004 0.007 0.004 0	1		.0356			0.0083	0.0083	0.0000	0.0230	0.0082	0.0043	0.0043	0.0015	0.0184	0.0253	0.0093	0.0046	0.0392
1.20 5.22 0.00 67.90 0.21 0.11 0.04 <t< td=""><td></td><td></td><td>0.126</td><td></td><td></td><td>0.017</td><td>0.024</td><td>0.019</td><td>0.050</td><td>0.014</td><td>0.010</td><td>0.003</td><td>0.004</td><td>0.038</td><td>0.077</td><td>0.035</td><td>0.014</td><td>0.125</td></t<>			0.126			0.017	0.024	0.019	0.050	0.014	0.010	0.003	0.004	0.038	0.077	0.035	0.014	0.125
5.25 4.29 0.00 4.61.5 0.02 <			0.1.0			0.613	0.22	0.1.0	7.00	0.041	0.043	54.0	CLU.U	0.143	0.241	0.247	0.124	0.612
1.23 4.25 0.00 1.54 1.21 0.25 3.45 1.21 0.25 3.46 1.21 0.25 3.46 1.21 0.25 3.46 1.21 0.25 3.46 1.21 0.25 3.46 1.78 10.30 50.32 8.75 60.33 5.67 3.00 59.15 0.00 401.21 55.06 137.87 133.22 326.16 14.21 17.09 20.32 8.75 60.33 1490.24 94.50 3.00 1.64 0.00 401.21 55.06 137.87 133.22 326.15 33.48 51.10 73.32 32.35 190.24 94.50 3.00 1.64 1.64 1.67 6.09 13.89 1.04 1.85 2.89 1.27 7.05 1.57 4.82 513.74 0.00 10.08 56.70 35.91 0.00 26.70 80.33 111.38			07.44			17.63	37.03	20.00	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10.37	10.57	80.E	9.6	50.03	23.75	24.85	13.48	62.08
1.02 59.17 0.00 129.24 34.74 52.83 42.45 142.45 14.21 7.00 2.50 2.51 1.10 1.20 3.50 9.50 3.17 203.04 0.00 401.21 35.06 137.87 133.22 326.15 14.21 17.03 87.10 73.32 8.75 603 38.33 3.00 1.64 0.00 401.21 55.06 137.87 133.22 326.15 33.48 51.10 73.32 32.35 190.24 94.50 3.00 1.64 1.61 6.29 6.09 13.99 1.04 1.85 2.89 1.27 7.05 1.57 4.82 513.74 0.00 1008.56 144.14 370.14 357.73 872.07 87.88 135.19 19.49 86.02 564.07 242.41 3.64 0.00 263.56 20.79 35.91 0.00 25.55 18.87 15.91 0.00 60.33 111.38			9 6			7.00	42.43	12.70		5.45	2.40	20.30	3.50	108.01	6.92	15.09	8.28	32.23
3.17 203.04 0.00 411.21 55.06 137.87 133.22 326.15 33.48 51.10 73.32 32.35 190.24 94.50 0.00 1.64 1.61 6.29 6.09 13.99 1.04 1.85 2.89 1.27 7.05 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.5			20.07			34.74	52.83	54 88	34.01	14.24	1.40	20.4	0 / C	10.30	20.07	46.63	0.31	20.50
1.64 0.00 1.64 1.65 1.64 <th< td=""><td></td><td>_</td><td>98 17</td><td></td><td></td><td>55.06</td><td>137.87</td><td>133 22</td><td>228 45</td><td>33.48</td><td>51.00</td><td>73 33</td><td>20.00</td><td>40.60</td><td>26.53</td><td>40.02</td><td>20.00</td><td>20.00</td></th<>		_	98 17			55.06	137.87	133 22	228 45	33.48	51.00	73 33	20.00	40.60	26.53	40.02	20.00	20.00
4.82 513.74 0.00 1008.56 144.14 370.14 357.73 872.01 87.88 135.19 194.97 86.02 504.07 242.41 3.61 0.00 0.00 263.54 20.79 35.91 0.00 56.70 25.55 18.87 15.91 0.00 60.33 111.38		_	9		3.K	1.63	20.8	90.9	43.00	25.50		2000	1 27	+7.0c1	34.30	40.30	30.20	933.14
3.61 0.00 0.00 263.64 20.79 35.91 0.00 56.70 25.55 18.87 15.91 0.00 60.33 111.38			94.82		88	144 14	370 14	347 73	872.04	87.88	125 10	107 07	25.03	CO. / CO.	74. 44	000	5.5.5	17.34
THE TARK THE THE TARK			53.61			20.79	35.91	2	56.70	25.55	18.87	15.97	20.02	50 33	111 28	50.22	77.547	470 50
	FLOW DATA IN	L17JL00 WB	3		1										2011	03:00	0.00	20.01

Appendix I-6. Discrete samples taken at intervals across the hydrograph for the July 15, 2000 storm at the Florida Aquarium parking lot. Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

		ర	Cement with swale (F4	swale (F4)		Perme	Permeable paving w/ swale	g w/ swale	(F6)	Asph	Asphalt paving with swale	with swale	(F8)
STINIT THEIR THE	STINI	1	6 H4	, <u>‡</u>	weighted	P# 4	P+1 2	hei 3	weighted	7	7	7	weighted
Challing		43.96%	42.86%	13.19%	after a second	34.48%	34.48%	31.03%	afie lase	41.67%	40.63%	17.71%	average
AMMONIA	ma/L	0.065	0.139	0.047	0.094	0.051	0.054	0.079	0.061	090'0	0.046	0.037	0.050
NITRITE	mg/L	0.022	0.012	0.010	0.016	0.011	0.010	0.012	0.011	0.009	0.00	0.016	0.010
NITRATE	mg/L	0.217	0.150	0.239	0.191	0.276	0.188	0.217	0,227	0.210	0.205	0.230	0.212
TOTAL-N	mg/L	1.000	1.000	0.770	0.970	0.710	0.630	0.830	0.738	0.790	0.510	1.000	0.714
ORTHO-P	mg/L	0.213	0.148	0.079	0.167	0.125	0.155	0.187	0.155	0.081	0.149	0.187	0.127
TOTAL-P	mg/L	0.253	0.179	0.093	0.200	0.148	0.163	0.211	0.173	0.090	0.162	0.221	0.142
CADMIUM	ng/L	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150
COPPER	ng/L	5.600	2.700	2.800	3.988	3.700	2.400	3.500	3.189	10.400	8.300	7.800	9.087
IRON	ng/L	0.09	70.0	330.0	666	160.0	100.0	80.0	114.5	260.0	160.0	140.0	323.2
LEAD	ng/L	0.750	0.750	0.750	0.750	1.500	0.750	0.750	1.009	3.700	0.750	0.750	1.979
MANGANESE	ng/L	3.400	2.400	2.500	2.853	3.400	1.900	1.600	2,324	13.000	4.600	3.200	7.853
ZINC	ng/L	20.000	20.000	20.000	20.02	30.000	7.500	7.500	15.257	40.000	30.000	20.000	32.399
CHLORIDE	mg/L	2.420	2.210	2.200	2.301	2.050	1.910	1.900	1.955	2.030	2.060	2.270	2.085
POTASSIUM	mg/L	2.760	2.210	1.420	2.348	1.640	1.730	2.070	1.804	0.560	0.730	09.20	0.665
SODIUM	mg/L	1.480	1.200	1.100	1.310	0.830	0.820	0.830	0.826	09.20	0.910	1.060	0.874
SULFATE	mg/L	5.000	3.730	3.490	4.257	3.410	2.860	2.970	3.083	3.130	3.260	3.920	3,323
CALCIUM	mg/L	17.200	13.400	009'9	14,175	10.100	10.100	13.800	11.247	8.470	12.700	17.600	11.806
MAGNESIUM	mg/L	0.980	0.780	0.410	0.819	0.380	0.530	0.680	0.525	0.370	0.750	1.060	0.647
HARDNESS	mg/L	46.984	36.672	18.169	38.768	26.785	27.402	37.259	30.245	22.673	34.800	48.312	32.143
TSS	mg/L	2.740	5.463	na	4.08	19.811	3.299	3.866	9.168	20.898	4.691	na	12.90
MASS					TOTAL				TOTAL				TOTAL
VOLUME (cu ft)		193.4	188.6	58.0	440	62.8	62.8	56.5	182.0	245.9	239.7	104.5	590.0
AMMONIA	grams	0.352	0.734	920.0	1.162	060'0	0.095	0.125	0.310	0.413	0.30	0.108	0.830
NITRITE	grams	0.119	0.063	0.016	0.199	0.019	0.018	0.019	0.056	0.062	0.060	0.047	0.169
NITRATE	grams	1.175	0.792	0.388	2,355	0.485	0.331	0.343	1.159	1.446	1.376	0.673	3,495
TOTAL-N	grams	5.415	5.281	1.250	11.946	1.248	1.108	1.408	3.764	5.439	3.423	2.926	11.788
ORTHO-P	grams	1.153	0.782	0.128	2.063	0.220	0.273	0.296	0.788	0.558	1.000	0.547	2.105
TOTAL-P	grams	1.370	0.945	0.151	2.466	0.260	0.287	0.334	0.881	0.620	1.087	0.647	2,354
CADMIUM	grams	0.0008	0.0008	0.0002	0.0018	0.0003	0.0003	0.0002	0.0008	0.0010	0.0010	0.0004	0.0025
COPPER	grams	0.0303	0.0143	0.0045	0.0491	0.0065	0.0042	0.0055	0.0163	0.0716	0.0557	0.0228	0.1501
IRON	grams	0.3249	0.3697	0.5359	1.2305	0.281	0.176	0.127	0.584	3.856	1.074	0.410	5.339
LEAD	grams	0.0041	0.0040	0.0012	0.0092	0.0026	0.0013	0.0012	0.0051	0.0255	0.0050	0.0022	0.0327
MANGANESE	grams	0.018	0.013	0.004	0.035	0.0060	0.0033	0.0025	0.0119	0.000	0.031	600.0	0.130
ZINC	grams	0.108	0.106	0.032	0.246	0.053	0.013	0.012	0.078	0.275	0.201	0.059	0.535
CHLORIDE	grams	13.10	11.67	3.57	28.35	3.60	3.36	3.01	9.97	13.98	13.83	6.64	34,44
POTASSIUM	grams	14.95	11.67	2.31	28.92	2.88	3.04	3.27	9.20	3.86	4.90	2.22	10.98
SODIUM	grams	8.01	6.34	1.79	16.14	1.46	1. 4.	1.31	4.21	5.23	6.11	3.10	14.4 44.4
SULFATE	grams	27.08	19.70	2.67	52.44	00.9	5.03	4.70	15.72	21.55	21.88	11.47	54,90
CALCIUM	grams	93.14	70.76	10.72	174.62	17.76	17.76	21.83	57.35	58.32	85.24	51.50	195.05
MAGNESIUM	grams	5.31	4.12	0.67	10.09	0.67	0.93	1.08	2.68	2.55	5.03	3.10	10.68
HARDNESS	grams	254.43	193.66	29.51	477.59	47.10	48.18	58.94	154.23	156.11	233.57	141.36	531.04
	,	, ,		200	00.00	7070		07.0	*****				-

Appendix I-7. Discrete samples taken at intervals across the hydrograph for the July 31, 2000 storm at the Florida Aquarium parking lot. Rain amount was 1.99 inches in about one hour and antecedent dryconditions were 115 hours with no significant rainfall. Rain (1.24 inches) fell on July 26. Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

Asphalt without swale (F2)	it withou
weighted average btl 1 36.79%	96.
0.015 0.015	
0.150 0.150	
5.97 2.80	
135 0.47	
TOTAL	TOTAL
1287	1287
3,784	3.784
0.525	
14.136	14.136
0.957	0.957
1.578	1.578
0.0054	0.0054
7,000	
0.0461	0.0461
0.215	0.215
200	1.241
81.05	81.05
10.77	10.77
12.49	12.49
151.44	151.44
339.21	339.21
0.72	0.72
243.74	
4 1004	

Appendix I-8. Discrete samples taken at intervals across the hydrograph for the storm at the Florida Aquarium parking lot. Rain amount was 2.91 inches in about 3.75 hous and antecedent dy conditions were 169 hours with no significant rainfall. Rain (0.0.45 inches) fell on August 21st. Numbers in italics were below the laboratory detection limit and one half the detection limit was used in calculations.

AUGUST 22, 1999	- 66																		
RAIN=	*	Asphalt without swale (F2)	out swale	(F2)		Cemen	t with swal	9 (F4)		4	rmeable	aving w/	swale (F6	(1		Asphalt pa	ving with s	swale (F8)	
				weighted	rising									weighted	rising				weighted
CONSTITUENT UNITS	ITS & top	falling 22%	tail 26%	average	& top	falling 25%	tail 1	tail 2	average	& top fa	falling	tail 1	tail 2	average	& top	falling	tail 1	tail 2	average
	Š		20.00		0/47	62.0	63.70	60.02		ı	6276	4370	%C7		%67	%07	%07	72%	
AMMONIA mg/l	/L 0.017	0.037	0.125	0.062	0.010	0.017	0.024	0.020	0.018	0.013	0.018	0.040	0.089	0.040	0.035	0.016	0.026	0.013	0.023
NITRATE mg/l			0.005	0.005	0.005	0.005	0.005	0.002	0.005	0.005	0.079	0.018	0.005	0.027	0.005	0.005	0.005	0.005	0.005
NITRITE mg/l			0.0025	0	0.0025	0.0025	0.0250	0.0025	0.008	0.0025	0.0025	0.0025	0.0025	0.002	0.025	0.003	0.025	0.003	0.014
TOTAL-N mg/l	_	0.140	0.300		0.090	0.100	0.120	0.120	0.107	0.040	0.100	0.100	0.089	0.082	0.270	0.260	0.330	0.320	0.295
_			0.021		0.038	0.079	0.151	0.132	0.100	0.044	0.054	0.068	0.057	0.055	0.046	0.059	0.091	0.084	0.070
	_	<u> </u>	0.030		0.050	0.094	0.177	0.115	0.109	0.055	0.00	0.101	0.107	0.083	0.077	0.070	0.114	0.103	0.094
5		5 0.15	0.20	4	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
ER	_	_	5.03		1.00	2.00	3.70	2.30	2.99	1.00	1.00	3.40	2.60	2.74	12.80	3.70	2.70	2.00	5.32
		_	49		13	13	40	2	*	9	9	13	8	40	670	5	8	4	224
			0.75	1.33	0.75	0.75	0.75	0.75	0.74	0.75	0.75	0.75	0.75	0.74	4.80	0.75	0.75	0.75	1.76
ANESE	/L 8.40	•	3.27		2.40	1.60	0.50	9:F	1.38	0.50	0.50	0.50	0.50	0.50	14.20	3.60	2.60	9.	5.48
		7.50	7.50	11.18	7.50	7.50	7.50	20.00	10.55	7.50	7.50	7.50	20.00	10.55	40.00	7.50	20.00	7.50	18.88
		_	1.12	0.77	0.47	4.	1.03	2.40	1.08	0.20	0.20	0.56	0.92	0.47	09:0	0.40	0.87	1.1	0.74
₹			0.05	0.02	0.21	0.36	1.13	4. 6	0.77	0.28	0.30	0.89	2.59	1.01	0.26	0.30	0.39	0.37	0.33
	/L 0.24		0.30	0.26	0.33	0.38	0.79	0.94	0.61	0.31	0.24	0.38	0.67	0.40	0.26	0.23	0.37	0.54	0.35
			4.79	3.65	3.35	2.36	4.42	Y S	X	3.72	1.95	3.2	4.92	3.41	3.61	1.57	3.49	5.03	3.38
CALCIUM MG/L	9.50	13.00	70.01	13.07	9.94	9.9	02.80	19.30	2 0	9.0	10.00	17.60	36.20	17.55	9.74	10.40	18.00	24.80	15.52
		33.57	46.72	35.25	15.98	26.79	48.36	51.30	3 4	18.36	26.40	46.13	9 5	46.06	25.75	20.07	90.00	6.19	22.05
	670	2.48	1.50	9 %	2 24	3 63	233	3.6	} ?	2000	4 5	4 6	2 0	00.00	20.12	20.3	0.40	70.00	23.30
		4:40	2	ļ	9	6.6	70.7	3	ţ,	9:30	77:1	70.1	¥.3	-	20.3	2	5.5		19.18
MASS	_			TOTAL					TOTAL					TOTAL					TOTAL
VOLUME (cu ft)	654.9	720.4	785.9	2183	473.4	501.5	501.5	501.5	2005.8	503.8	503.8	503.8	503.8	2015.3	513.4	534.0	534.0	472.4	2053.7
⋖		~.	2.753	3.811	0.133	0.239	0.337	0.281	0.989	0.184	0.254	0.564	1.255	2.258	0.503	0.239	0.389	0.172	1.303
		.	0.110	0.303	0.066	0.070	0.070	0.070	0.277	0.071	1.114	0.254	0.071	1.510	0.072	0.075	0.075	990.0	0.288
TOTAL N GE	grams 0.040		0.000	44.44	4 103	1 4 6 5	1.53	1 605	0.434 E 067	0.035	0.033	0.035	0.035	0.141	0.359	0.037	0.374	0.033	0.804
	grams 0.293	0.282	0.454	1.030	0.504	1.109	2.120	1.854	5,587	0.623	0.762	0.959	0.804	3.148	0.661	0.882	1.361	1 111	4.045
			0.662	1.603	0.663	1.320	2.485	1.615	6.083	0.779	0.987	1.425	1.509	4.701	1.107	1.047	1.705	1.362	5.220
5			0.0044		0.0020	0.0021	0.0021	0.0021	0.0083	0.0021	0.0021	0.0021	0.0021	0.0085	0.0022	0.0022	0.0022	0.0020	0.0086
2	grams 0.1357	0.0585	0.1106	0.3048	0.0133	0.0281	0.0520	0.0744	0.1677	0.0142	0.0141	0.0480	0.0790	0.1552	0.1840	0.0553	0.0404	0.0265	0.3061
EAD gra	grams 0.031		0.000		0.100	0.50	0.002	0.90	1.000	0.650	0.040	9 7 6	0.423	2.230	9.63	J. 5	07.0	0.53	12.85
ANESE			0.012		0.032	0.022	0.007	0.015	0.077	0.007	0.00	0.00	0.00	0.042 0.028	20.0	9 6	5 6	0.00	2 S
	-		0.165	0.683	0.099	0.105	0.105	0.281	0.591	0.106	0.106	0.106	0.282	0.600	0.58	0.11	0.30	0.10	1.09
			24.61		6.23	6.18	14.46	33.70	60.57	2.83	2.82	7.90	12.98	26.53	0.0	0.0	0.01	0.0	6.04
M		0.40	0.44		2.78	2.06	15.87	19.66	43.36	3.97	4.23	12.55	36.54	57.29	3.74	4.49	5.83	4.89	18.95
		_	6.68		4.37	5.34	11.09	13.20	34.00	4.39	3.39	5.36	9.45	22.59	3.74	3.44	5.53	7.14	19.85
			105.43		44.40	33.14	62.07	0.00	139.61	52.68	27.51	45.28	69.40	194.88	51.89	23.47	52.18	66.53	194.08
_	_	≅ .	397.66		78.74	139.58	511.13	271.01	1000.45	94.60	141.06	248.27	510.65	994.59	140.01	155.50	269.14	328.03	892.69
5		• -	20.0		3.77	0.70	9.97	10.07	80.15	4.25	27.5	84.7	12.41	29.36	4.89	8.52	12.86	15.74	42.01
HAKUNESS GF	_		1028.00	2134.96	70.1.7	3/6.19	22.60	27.04	1367.71	260.02	373.68	650.59	1326.14	2610.43	369.73	423.29	276.31	883.84	1953.18
	grams 124.51	20.00	33.03	4	43.07	20.97	32.30	37.70	104.04	47.39	17.21	/9.62	41.90	132.37	724.08	47.40	50.39	51.72	873.58

Appendix I-9. Discrete samples taken at intervals across the hydrograph for the September 17, 2000 storm at the Florida Aquarium parking lot. Rain amount was 2.04 inches in about eighteen hours and antecedent dry conditions were 219 hours with no significant rainfall. Rain (1.96 inches) fell on September 7th.

		weighted average	188	2000	0.000	0.583	0.095	0.141	0.140	46.851	37.287	4.932	8.549	32.856	2.323	0.555	0.684	2.166	2003	9.347	77.035		OTAL	702.0	1.308	0,105	1.469	1.864	2.766	1.0028	1.9209	29060	0.365	1.235	45.65	10.92	13,45	42.58	23.85	4.34	576.82
	swale (F8)	e av								- T	×																	3													0.00
	Asphalt paving with swale	bti 2 30.16%	1900	0.00	0.00	0.440	0.104	0.134	0.150	10.30	460.00	3.30	11.40	40.00	2.670	0.600	0.900	2.110	0.290	32.407	29.833								_	_	_								_		192.09
	Asphal	btl 1 63.49%		0.073	0.000	0.710	0.100	0.158	0.150	68.90	990.00	6.20	23.80	80.00	2.390	0.590	0.650	2.410	0.210	30.829	107.162			445.7	0.911	1 847	8.861	1.248	1.972	0.0019	0.8598	0.0774	762 0	0.998	29.83	7.36	8.11	30.08	149.76	2.62	384.73
	le (F6)	weighted average	2000	0.003	0.000	0.461	0,103	0.133	0.215	5.044	139.564	0.955	2.383	23.044	2.390	1.624	0.684	2.326	0.272	34.762	12.39		TOTAL	487.0	1.155	1.040	6.289	1.398	1.814	0.0029	0.0688	0.0130	0.032	0.314	32.58	22.14	9.32	31.72	183.68	3.70	473.91
	ng w/ swa	btl 3 15.22%	700	0000	0 113	0.57	0.13	0.16	0.15	10.0	200	2.1	9.4	40.0	2.76	4.74 200	0.80	3.37	0.30	54.21	na			74.1	0.174	0.019	1.183	0.266	0.332	0.0003	0.0207	0.413	0.010	0.083	5.73	4.44	1.78	6.9	43.36	1.02	112.46
	Permeable paving w/ swale (F6)	btl 2 13.48%	0.435	0 0005	0.113	0.51	0.117	0.15	0.30	6.2	8	0.75	4.	20.0	44.	7.0	0.7	24.7	33.0	37.82	8.69			211.7	0.800	0.670	3.023	0.694	0.913	0.0018	0.0368	0.0044	0.00	0.119	14.46	10.55	4.39	14.70	86.54	1.96	224.15
	Perme	btl 1 41.30%	0 030	0.005	0.103	0.37	0.078	0.10	0.15	2.0	180	0.75	2.6	20.0	2.20	77.1	0.00	2./3 8.8	0.13	24.382	16.28			201.1	0.180	0.580	2.083	0.439	0.569	0.0008	0.0113	0.0042	0.015	0.113	12.39	7.15	3.15	10.02	53.77	0.73	137.29
	6	weighted average	6800	0.006	0.129	0.455	0.102	0.134	0.150	4.213	125.063	0.750	1.647	20.000	2.602	7.5.7	0.940	13.377	0.401	35.054	3.190		TOTAL	838.0	1.918	3.031	10.684	2.388	3.148	0.0035	0.0988	0.0176	0.0386	0.469	61.05	37.00	22.20	63.62	313.88	9.41	822.52
	swale (F4																					80 S.S		0:0	0.000	0.000	0.00	0.000	0.000	0.0000	0.0000	0000	0.0000	0.000	0.00	0.00	0.00	0.00	0.00	0.0	0.00
	Cement with swale (F4	btl 2 50.63%	0.063	0000	0.104	0.480	0.122	0.148	0.150	5.20	130.0	0.750	1.40	20.00	7,700	040	040.0	15 500	0.490	40.721	1.702			424.3	0.748	1.236	5.703	1.449	1.758	0.0018	0.0618	0.00	0.0166	0.238	32.79	20.67	12.36	33.50	184.15	5.82	483.79
	రి	btl 1 49.37%	١,	0.00	0.155	0.430	0.081	0.120	0.150	3.20	120.0	0.750	1.90	20.00	2.440	0.4.0	0.000	11 200	0.310	29.243	4.716			413.7	1.170	1.795	4.981	0.938	1.390	0.0017	0.0371	0.0087	0.0220	0.232	28.26	16.33	9.85	30.12	129.74	3.59	338.74
		weighted average	0.00	0.00	0.067	0.295	0.020	0.033	0.150	2.280	135,729	0.750	0.500	14.838	097.7	70770	0.370	0.807	0.000	24.487	5.272		TOTAL	1309	2.902	2.454	10.801	0.724	1.219	0.0055	0.0836	0.0275	0.018	0.545	83.55	10.33	20.90	56.59	359.43	0.00	897.49
	t swale (F2	btl 3 19.35%	0.055	0.0025	0.189	0.230	0.021	0.029	0.150	2.100	100.000	0.750	0.500	20.000	2.070	0.230	1.040	11 200	000	27.966	4.875			253.3	0.390	1.340	1.631	0.149	0.206	0.0011	0.0149	0.0053	0.004	0.142	20.36	2.06	7.38	13.83	79.43	0.00	198.35
	Asphalt without swale (F2)	btl 2 41.13%	0.050	0.0025	0.021	0.320	0.017	0.024	0.150	1.000	110.0	0.750	0.50	05.7	2.200	0.270	4 270	7.620	0.000	19.027	1.856			538.4	0.889	0.317	4.824	0.256	0.362	0.0023	1,0151	0.0113	0.008	0.113	34.37	4.07	8.74	19.15	114.87	0.00	286.84
	Asp	btl 1 39.52%	0 112	0 0025	0.055	0.300	0.022	0.045	0.150	3.700	180.0	0.750	0.50	20.00	086.	0.230	4.630	11 400	0.000	28.466	9.021			517.3	1.622	0.797	4.345	0.319	0.652	0.0022	0.0536	0.0109	0.007	0.290	28.82	4.20	4.78	23.61	165.12	0.00	412.31
00		SLINO .	1/5m	- 1/sm	ma/L	mg/L	mg/L	mg/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	mg/L	mg/L		mg/L	ma/L	mg/L	mg/L				grams grams	grams	grams	grams	grams	grams	grams	grams	grams	grams							
SEPT. 17, 2000		CONSTITUENT UNITS	VINOMMA	NITRITE	NITRATE	TOTAL-N	ORTHO-P	TOTAL-P	CADMIUM	COPPER	RON	LEAD	MANGANESE	ZINC	CHLORIDE	PO LASSICIE	SUDIOM	CALCIIM	MAGNESIUM	HARDNESS	TSS		MASS	VOLUME (cu ft)	AMMONIA	NITRATE	TOTAL-N	ORTHO-P	TOTAL-P	CADMIUM	COPPER	LEAD	MANGANESE	ZINC	CHLORIDE	POTASSIUM	SODIUM	SULFATE	CALCIUM	MAGNESIUM	HARDNESS

APPENDIX J

CONSTITUENT LOADS

SUMMARY OF SUMMARIES AND INDIVIDUAL EVENTS WITH SUMMARIES

Southwest Florida Water Management District: Stormwater Research Program, December 2001

(See the footnote for rain data and appendicies J and B for all of the data). The even numbered basins are all alike except for Appendix J summaries. Yearly loads for the even numbered basin are calculated for each pavement type to compare years. paving type.

Constituents	units	Asphalt ne	alt no swale	Asphalt w	Asphalt with swale	Concrete with swale	with swale	Porous w	Porous with swale
		VEAR 1	VEAR 2	VEAR 1	VEAR 2	VEAR 1	VEAR 2	VEAR 1	VEAD 2
				-		1 1111111111111111111111111111111111111			7 11111
Ammonia	kg/ha-yr	0.43	0.38	0.23	0.22	0.12	0.19	0.08	0.06
Nitrate	kg/ha-yr	0.61	0.74	0.34	0.58	0.36	0.58	0.21	0.29
Total Nitrogen	kg/ha-yr	1.58	1.77	0.73	1.56	1.33	1.64	0.92	0.80
Ortho Phosphorus	kg/ha-yr	0.19	0.11	0.54	0.36	0.54	0.48	0.34	0.28
Total Phosphorus	kg/ha-yr	0.34	0.20	99.0	0.51	0.55	0.63	0.33	0.35
Suspended Solids	kg/ha-yr	58.61	29.12	32.79	7.31	12.76	15.43	5.11	20.83
Copper	kg/ha-yr	0.033	0.031	0.025	0.027	0.00	0.013	9000	0.006
Iron	kg/ha-yr	1.396	0.994	0.667	1.150	0.228	0.165	0.107	0.132
Lead	kg/ha-yr	0.017	0.000	0.007	0.007	0.004	0.002	0.003	0.002
Manganese	kg/ha-yr	0.041	0.029	0.024	0.025	0.013	0.007	0.003	0.003
Zinc	kg/ha-yr	0.147	0.098	0.079	0.083	0.056	0.049	0.036	0.057

For YEAR ONE the total rainfall measured greater than 0.40 cm (0.16 in) was 105.83 cm (40.88 in) and water quality samples were collected for 85.82 median value for the measured rain events was used. Since these were small events with little runoff, the substitutions give a reasonable estimate and and produced little runoff. Average annual rainfall for the region is 129.54 cm (51 in). For missing data, which occurred in the basins with swales, a cm (33.79 in) of these storms. For YEAR TWO the total rainfall was 86.30 cm (31.61 in). (Most of the missed storms were less than 0.94 cm (0.37 in) is more accurate than leaving these storms out of the calculations completely.

Southwest Florida Water Management District: Stormwater Research Program, December 2001

numbered basin. The rest of the odd numbered basins have larger garden areas. For cement and porous the additional size is Appendix J summaries. Yearly loads for the odd numbered basin are calculated for each pavement type to compare years. Asphalt with no swale is the same size as the even numbered basins and also has the same size garden area as the even about the size of one parking space and for asphalt, it is about the size of two parking spaces

Constituents	units	Asphalt n F1	halt no swale F1	Asphalt wi F7	Asphalt with swale F7	Concrete with swale F3	vith swale	Porous w	Porous with swale F5
		YEAR 1	YEAR 2	YEAR 1	YEAR 2	YEAR 1	YEAR 2	YEAR 1	YEAR 2
Ammonia	kg/ha-yr	0.57	0.47	0.11	0.10	0.08	0.08	0.11	0.00
Nitrate	kg/ha-yr	0.72	0.81	0.19	0.27	0.26	0.37	0.15	0.16
Total Nitrogen	kg/ha-yr	1.86	2.04	1.07	69.0	1.15	0.93	0.53	0.39
Ortho Phosphorus	kg/ha-yr	0.15	0.14	0.15	0.15	0.31	0.35	0.06	90.0
Total Phosphorus	kg/ha-yr	0.28	0.25	0.21	0.21	0.37	0.42	0.07	0.08
Suspended Solids	kg/ha-yr	52.28	37.06	8.68	16.33	4.47	3.41	4.26	3.99
Copper	kg/ha-yr	0.042	0.039	0.008	0.010	0.008	0.008	0.003	0.003
Iron	kg/ha-yr	1.805	1.361	0.227	0.287	0.156	0.086	0.114	0.076
Lead	kg/ha-yr	0.018	0.010	0.002	0.003	0.003	0.002	0.001	0.001
Manganese	kg/ha-yr	0.042	0.031	0.007	0.008	0.004	0.003	0.003	0.002
Zinc	kg/ha-yr	0.174	0.115	0.037	0.032	0.042	0.032	0.020	0.016

See footnote for Figure 6a for rainfall information

APPENDIX Ja-1 . Constituent loads measured for each storm event and summary data for the year

AMMONIA - YEAR ONE

DATE	RAIN	ASPHALT W	IOISWALE	ASPHALT V	V/S/MALE	CONCRETE	W/SWALE	POROUS V	WEWALE
DAIL	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
	AWOUNT	 	F2	Г	го	5	Г4	FJ	го
D == := /==		0.00	2.22			0.00	2.22	2.24	0.00
Basin (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
08/05/98	0.57	2.05	1.59	0.61	2.61	0.21	0.12	0.25	0.24
08/06/98	0.68	0.18	0.16	0.68	0.09	0.07	0.12	0.44	0.06
08/07/98	1.30	16.08	14.62	2.51	8.43	0.17	2.22	1.89	0.37
08/09/98	2.47	56.40	23.40	14.96	0.00	15.05	10.98	26.47	10.29
08/20/98	0.68	3.64	2.44	0.68	0.21	0.85	0.60	0.89	0.13
09/03/97	1.97	5.82	1.33	1.53	2.99	0.44	0.79	1.51	1.30
09/17/98	0.49	1.20	0.13	0.26	1.19	0.06	0.36	0.03	0.09
09/18/98	0.66	0.36	0.13	0.07	0.80	0.05	0.07	0.00	0.07
09/19/98	0.75	0.54	0.82	0.13	5.53	0.24	0.45	0.51	0.22
09/20/98	1.85	3.61	2.55	0.22	1.39	0.12	0.20	0.70	0.31
09/26/98	1.64	0.46	0.46	0.13	0.28	0.21	0.38	0.79	0.22
11/05/98	1.20	1.41	0.90	0.00	0.44	0.00	0.16	0.00	0.00
12/13/98	0.37	0.07	1.47	0.01	0.43	0.00	0.01	0.00	0.00
01/03/99	1.23	2.39	2.33	1.73	2.61	0.26	2.38	0.75	0.15
01/23/99	2.60	2.69	2.96	1.53	3.54	1.08	3.73	2.17	1.29
03/14/99	0.82	6.18	5.67	0.39	6.43	0.07	3.36	0.04	0.06
04/17/99	0.54	4.19	4.96	0.07	0.37	0.00	0.00	0.00	0.00
05/21/99	1.36	39.19	36.91	7.58	22.30	4.07	8.27	0.19	3.24
05/30/99	0.39	12.91	11.87	0.16	3.70	0.03	0.11	0.00	0.01
06/09/99	0.81	0.24	0.70	0.57	0.49	0.21	0.09	0.06	0.08
06/13/99	1.32	10.23	15.81	3.69	6.46	1.05	3.28	3.22	1.13
06/16/99	1.68	9.59	7.15	2.66	5.15	2.49	2.93	1.66	1.30
06/17/99	0.77	1.99	2.04	0.76	3.67	0.41	1.77	0.44	0.35
06/18/99	1.60	10.58	11.12	2.12	2.81	1.63	2.85	2.51	3.13
07/01/99	1.53	13.07	6.99	1.42	4.01	1.38	0.20	0.26	0.91
07/07/99	0.81	7.30	6.30	0.40	3.34	0.19	0.30	0.04	0.16
07/09/99	1.17	5.22	2.21	1.15	1.61	0.93	1.33	0.78	0.51
07/14/99	1.58	7.17	4.57	0.14	1.47	0.10	0.11	0.04	0.05
07/20/99	0.88	7.76	2.86	0.38	2.10	0.16	0.27	0.04	0.47
	2.30			+ · + -					-
TOTALS	33.72	232.50	174.44	46.53	94.46	31.53	47.43	45.69	26.14

MMONIA - SUMMARY S	232.50	174.44	46.53	94.46	31.53	47.43	45.69	26.14
Total loads (g/ac) Average (two basins)(g/		203.47	40.55	70.50	31.33	39.48	45.09	35.92
g/ac-yr	232.50	174.44	46.53	94.46	31.53	47.43	45.69	26.14
kg/ac-yr	0.23	0.17	0.05	0.09	0.03	0.05	0.05	0.03
kg/ha-yr	0.57	0.43	0.11	0.23	80.0	0.12	0.11	0.06
23% more (g/ac-yr)	301.95	226.55	60.43	122.68	40.95	61.59	59.34	33.95
kg/ac-yr	0.30	0.23	0.06	0.12	0.04	0.06	0.06	0.03
kg/ha-yr	0.75	0.56	0.15	0.30	0.10	0.15	0.15	0.08
OAD EFFICIENCY (% R	EDUCTION)	COMPARE	TO NOT H	AVING A SV	VALE			
Even numbered bas	sins (0.26 a	cres)		46%		73%		85%
Odd numbered bas	•	•	80%		86%		80%	

Appendix Jb-1. Constituent loads measured for each storm event and summary data for the year

AMMONIUM - YEAR TWO

DATE	RAIN	ASPHALT V	VO/SWALE	ASPHALT	W/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	. F 7	F8	F3	F4	F5	F6
Basin (ac		0.260	0.260	0.23	0.26	0.23	0.26	0.24	0.26
`	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
08/06/99	1.29	5.89	0.29	0.10	0.21	0.35	0.17	0.03	0.10
08/12/99	0.70	6.06	2.57	0.78	1.75	0.05	0.63	0.10	0.14
08/15/99	1.23	12.29	6.80	4.04	4.90	0.95	3.24	1.65	1.05
08/19/99	0.90	3.16	1.79	1.23	0.93	0.61	2.12	0.15	0.60
08/22/99	2.95	18.55	12.71	0.55	5.14	0.99	3.86	2.50	8.75
09/11/99	0.84	12.13	7.33	0.57	5.12	0.07	0.96	0.39	0.71
09/18/99	0.85	2.16	0.10	0.01	0.04	0.00	0.07	0.00	0.00
09/25/99	1.37	2.98	2.33	2.30	3.77	0.21	1.43	0.30	1.32
10/03/99	1.22	6.56	7.86	1.77	2.93	0.38	1.35	0.22	0.75
10/04/99	0.98	0.60	0.28	0.13	1.34	0.06	0.88	0.00	0.00
11/01/99	1.63	1.41	6.52	2.92	4.31	0.85	9.21	0.27	1.01
12/17/99	0.75	0.67	0.83	0.00	0.14	0.00	0.03	0.00	0.00
01/06/00	0.79	3.53	8.36	0.71	4.07	0.11	2.94	0.06	0.19
01/24/00	0.68	1.88	1.65	0.00	0.56	0.00	1.34	0.00	0.00
01/31/00	0.70	2.35	1.57	0.13	1.49	0.00	2.16	0.00	0.00
06/13/00	1.29	20.49	22.31	2.89	8.53	3.90	9.74	0.34	6.01
06/22/00	0.39	2.54	2.57	0.02	0.45	0.00	0.04	0.02	0.00
06/***/00	1.39	3.27	4.50	0.11	1.16	0.01	1.41	0.20	0.01
06/29/00	0.71	3.56	2.47	0.47	1.25	0.13	2.50	0.16	0.11
07/01/00	0.81	8.60	4.59	1.03	1.78	0.06	1.33	0.11	0.13
07/04/00	1.95	26.28	12.91	8.41	13.26	9.98	12.26	6.87	7.04
07/08/00	1.07	16.80	13.37	1.67	7.63	1.32	3.39	0.94	1.23
07/15/00	1.98	13.21	11.18	3.30	5.40	2.69	8.91	2.16	3.89
07/26/00	1.24	6.32	2.68	0.87	2.02	0.08	0.75	0.07	0.27
07/31/00	2.69	9.40	14.71	8.39	15.30	9.04	7.35	2.55	4.38
TOTALS	30.40	190.70	152.27	42.40	93.49	31.84	78.08	19.07	37.69

AMMONIUM - SUMMAR	Y STATISTI	CS - YEAR	TWO					
Total loads (g/ac)	190.70	152.27	42.40	93.49	31.84	78.08	19.07	37.69
Average (two basins)(g/ac)	171.48		67.95		54.96		28.38
TOTAL RAIN MEASURI	ED FOR YEA	AR (1999-20	11 8e.EE (000	ICHES; TO	TAL WITH	WQ SAMPL	ES 30.40N	CHES
g/ac-yr	190.70	152.27	42.40	93.49	31.84	78.08	19.07	37.69
kg/ac-yr	0.191	0.152	0.042	0.093	0.032	0.078	0.019	0.038
kg/ha-yr	0.47	0.38	0.10	0.23	0.08	0.19	0.05	0.09
ADJUSTED FOR NORM	IAL RAINFA	LL YEAR (OF 51 INCHE	S OF RAIN	l			
33% more (g/ac-yr)	288.93	230.71	64.24	141.66	48.24	118.30	28.89	57.11
kg/ac-yr	0.29	0.23	0.06	0.14	0.05	0.12	0.03	0.06
kg/ha-yr	0.71	0.57	0.16	0.35	0.12	0.29	0.07	0.14
LOAD EFFICIENCY (%	REDUCTION	N) COMPA	RED TO NO	THAVING A	SWALE			
Even numbered basin				39%		49%		75%
Odd numbered basins	w/ larger ga	rdens	78%		83%		90%	

APPENDIX Ja-2 . Constituent loads measured for each storm event and summary data for the year

NITRATE - YEAR ONE

DATE	DAIN			40511417					
DATE	RAIN	ASPHALT W		ASPHALT		CONCRETE		POROUS V	
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
							<u> </u>		
08/05/98	0.57	11.17	11.98	0.96	3.60	0.79	8.09	0.37	0.82
08/06/98	0.68	12.37	10.74	1.00	5.88	3.78	9.23	0.65	3.65
08/07/98	1.30	14.92	14.22	3.64	8.26	7.43	13.88	4.28	7.50
08/09/98	2.47	50.01	27.64	21.40	17.95	31.03	31.55	26.98	29.91
08/20/98	0.68	8.34	7.53	2.86	5.29	4.14	7.40	0.96	2.99
09/03/97	1.97	13.10	15.50	1.95	2.77	12.63	5.00	5.34	3.30
09/17/98	0.49	2.79	5.73	0.41	1.64	0.21	0.50	0.04	0.31
09/18/98	0.66	1.07	1.08	0.11	1.10	0.19	0.07	0.00	0.22
09/19/98	0.75	1.73	1.74	0.29	7.62	0.24	0.98	0.75	0.22
09/20/98	1.85	3.61	3.40	0.59	1.87	0.82	1.76	0.39	1.27
09/26/98	1.64	7.90	2.84	0.13	0.28	0.41	0.38	1.16	0.22
11/05/98	1.20	3.97	2.92	0.00	0.60	0.00	0.22	0.00	0.00
12/13/98	0.37	2.41	1.50	0.13	0.59	0.01	0.01	0.00	0.00
01/03/99	1.23	5.35	3.60	7.88	8.75	6.91	9.60	2.34	4.02
01/23/99	2.60	7.40	6.49	7.63	7.32	8.08	10.87	6.63	7.73
03/14/99	0.82	6.65	4.28	0.61	4.22	0.25	3.73	0.07	0.20
04/17/99	0.54	4.19	4.96	0.11	0.50	0.00	0.00	0.00	0.00
05/21/99	1.36	39.19	36.91	7.58	22.30	4.07	8.27	0.28	3.24
05/30/99	0.39	12.91	11.87	0.25	3.70	0.10	0.15	0.00	0.03
06/09/99	0.81	0.24	0.70	0.89	0.49	0.79	0.09	0.09	0.08
06/13/99	1.32	10.23	15.81	3.69	6.46	1.05	3.28	3.22	1.13
06/16/99	1.68	13.56	10.56	3.87	5.07	9.31	7.86	5.02	4.63
06/17/99	0.77	3.01	2.41	1.18	0.94	1.00	10.33	0.00	0.64
06/18/99	1.60	16.33	18.22	6.67	7.63	7.01	8.61	2.51	9.67
07/01/99	1.53	13.07	6.99	1.42	4.01	1.38	0.20	0.26	0.91
07/07/99	0.81	7.30	6.30	0.62	3.34	0.71	0.30	0.07	0.53
07/09/99	1.17	5.22	2.21	1.15	1.61	0.93	1.33	0.78	0.51
07/14/99	1.58	7.17	4.57	0.23	1.47	0.37	0.11	0.05	0.17
07/20/99	0.88	7.76	2.86	0.60	2.89	0.59	0.27	0.07	0.47
TOTALS	33.72	292.97	245.56	77.83	138.15	104.24	144.07	62.30	84.35

NITRATE - SUMMAR	Y STATIST	CS -YE	AR ONE				-	
Total loads (g/ac)	292.97	245.56	77.83	138.15	104.24	144.07	62.30	84.35
Average (two basins)(g/a	ac)	269.26		107.99		124.16		73.32
TOTAL RAIN MEASURED	FOR YEAR	(1998-99)	39.24 INCH	ES; TOTAL	WQ SAM	PLED 33.72	INCHES	
g/ac-yr	292.97	245.56	77.83	138.15	104.24	144.07	62.30	84.35
kg/ac-yr	0.29	0.25	0.08	0.14	0.10	0.14	0.06	0.08
kg/ha-yr	0.72	0.61	0.19	0.34	0.26	0.36	0.15	0.21
ADJUSTED FOR NORMA	L RAINFALL	YEAR OF	51 INCHES	OF RAIN				
23% more (g/ac-yr)	380.47	318.90	101.07	179.41	135.37	187.11	80.90	109.54
kg/ac-yr	0.38	0.32	0.10	0.18	0.14	0.19	0.08	0.11
kg/ha-yr	0.94	0.79	0.25	0.44	0.33	0.46	0.20	0.27
LOAD EFFICIENCY (% RI	EDUCTION) C	OMPARE	D TO NOT	HAVING A	SWALE			
Even numbered basi	ins (0.26 ac	res)		44%		41%		66%
Odd numbered basir	•		73%		64%		79%	

Appendix Jb-2. Constituent loads measured for each storm event and summary data for the year

NITRATE - YEAR TWO

DATE	RAIN	ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
			·····						***
Basin (ac		0.260	0.260	0.23	0.26	0.23	0.26	0.24	0.26
	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
	4.00	0.00	0.40	4.07	4.47	0.00		1.40	4.70
08/06/99	1.29	3.60	3.46	1.67	4.17	2.92	5.39	1.16	1.73
08/12/99	0.70	13.32	10.13	1.87	7.36	1.36	3.73	0.33	1.14
08/15/99	1.23	34.74	22.56	16.75	24.44	18.73	22.86	9.19	15.93
08/19/99	0.90	21.60	22.10	6.52	16.37	10.05	13.18	2.84	8.05
08/22/99	2.95	1.19	1.01	0.55	1.12	0.99	1.08	5.00	5.86
09/11/99	0.84	2.50	1.95	1.37	0.10	0.59	1.49	1.36	3.22
09/18/99	0.85	1.22	0.91	0.13	0.67	0.00	0.13	0.00	0.00
09/25/99	1.37	9.32	10.89	7.72	19.02	6.23	9.02	2.39	6.01
10/03/99	1.22	4.75	4.74	2.56	3.31	1.13	4.06	0.65	0.75
10/04/99	0.98	2.23	1.67	0.30	0.49	0.50	0.45	0.00	0.00
11/01/99	1.63	8.74	na	6.99	14.88	3.81	11.05	1.07	4.48
12/17/99	0.75	0.90	0.68	0.00	0.36	0.00	0.12	0.00	0.00
01/06/00	0.79	3.88	8.53	1.70	6.41	0.97	7.40	0.19	0.89
01/24/00	0.68	2.76	1.80	0.00	0.63	0.00	2.16	0.00	0.00
01/31/00	0.70	2.79	1.67	0.30	2.29	0.00	1.90	0.00	0.00
06/13/00	1.29	41.59	38.45	5.29	20.76	5.59	29.30	1.20	11.48
06/22/00	0.39	9.55	6.47	0.05	1.25	0.00	0.14	0.06	0.00
06/***/00	1.39	7.80	11.27	0.27	2.91	0.06	5.08	0.22	0.05
06/29/00	0.71	9.14	7.16	1.12	3.66	1.16	4.84	0.44	1.34
07/01/00	0.81	9.03	7.20	0.77	2.27	0.53	4.02	0.39	0.58
07/04/00	1.95	27.60	46.98	16.97	40.73	27.87	40.00	15.27	16.22
07/08/00	1.07	30.78	26.86	4.69	20.03	5.69	17.47	4.63	8.37
07/15/00	1.98	27.60	25.42	14.58	22.91	18.25	18.10	12.42	14.46
07/26/00	1.24	0.68	6.10	2.08	0.30	0.72	0.40	0.25	0.82
07/31/00	2.69	52.19	30.26	19.99	32.29	42.70	29.65	6.99	17.81
TOTALS	30.40	329.52	298.27	114.26	248.73	149.84	233.01	66.08	119.19

Total loads (g/ac)	329.52	298.27	114.26	248.73	149.84	233.01	66.08	119.19
Average (two basins)	(g/ac)	313.89		181.49		191.43		92.64
TOTAL RAIN MEASUR	ED FOR YE	AR (1999-2	2000) 33.98	INCHES; T	OTAL WITH	I WQ SAMP	LES 30.40	NCHES
g/ac-yr	329.52	298.27	114.26	248.73	149.84	233.01	66.08	119.19
kg/ac-yr	0.330	0.298	0.114	0.249	0.150	0.233	0.066	0.119
kg/ha-yr	0.81	0.74	0.28	0.61	0.37	0.58	0.16	0.29
ADJUSTED FOR NORM	VAL RAINF	ALL YEAR	OF 51 INCH	IES OF RA	IN			
33% more (g/ac-yr)	499.27	451.92	173.12	376.86	227.03	353.05	100.12	180.59
kg/ac-yr	0.50	0.45	0.17	0.38	0.23	0.35	0.10	0.18
kg/ha-yr	1.23	1.12	0.43	0.93	0.56	0.87	0.25	0.45
LOAD EFFICIENCY (%	REDUCTIO	N) COMPA	RED TO NO	T HAVING	A SWALE			
Even numbered basir	ns (0.26 acre	es)		17%		22%		60%
Odd numbered basins	s w/ larger g	ardens	65%		55%		80%	

APPENDIX Ja-4 . Constituent loads measured for each storm event and summary data for the year TOTAL NITROGEN - YEAR ONE

DATE	RAIN AMOUNT	ASPHALT W	/O/SWALE F2	ASPHALT	W/SWALE F8	CONCRETE F3	W/SWALE F4	POROUS V	V/SWALE F6
Basin (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
08/05/98	0.57 0.68	23.03	29.50	4.22	10.30 8.70	2.94	17.53 13.89	1.51 2.64	3.58 5.27
08/06/98 08/07/98	1.30	14.43 41.05	12.54 47.19	4.42 14.70	31.13	5.72 18.32	36.05	11.34	23.65
08/09/98	2.47	95.77	57.00	66.47	51.13	53.76	50.05	80.57	46.32
08/20/98	2.47 0.68	14.68	12.18	8.54	12.70	11.50	16.55	3.94	10.13
09/03/97	1.97	37.05	19.37	10.99	11.73	20.03	14.72	9.17	14.58
09/03/97	0.49	4.50	5.87	1.79	4.68	0.77	3.25	0.16	1.36
09/18/98	0.43	2.48	1.08	0.50	3.16	0.72	5.25	0.00	0.97
09/19/98	0.75	3.25	2.56	2.07	21.81	3.43	4.91	3.08	3.51
09/20/98	1.85	7.31	8.93	1.40	5.74	2.89	3.13	1.21	3.36
09/26/98	1.64	9.76	7.33	6.18	8.41	2.89	6.82	0.00	7.62
11/05/98	1.20	13.68	10.30	0.00	1.72	0.00	1.41	0.00	0.00
12/13/98	0.37	8.73	3.68	1.96	1.68	0.04	0.08	0.00	0.00
01/03/99	1.23	14.34	12.02	26.64	25.78	21.50	29.95	11.81	15.60
01/23/99	2.60	11.78	14.40	29.66	17.72	23.64	43.04	22.85	39.84
03/14/99	0.82	30.65	19.84	2.68	23.83	0.93	14.91	0.27	0.86
04/17/99	0.54	27.17	35.60	0.50	1.44	0.00	0.00	0.00	0.00
05/21/99	1.36	92.93	84.62	28.29	79.82	28.24	59.33	1.13	31.84
05/30/99	0.39	26.54	23.89	1.09	9.49	0.38	0.99	0.00	0.12
06/09/99	0.81	11.00	10.95	3.93	11.90	2.91	9.98	0.38	4.12
06/13/99	1.32	50.64	49.79	33.53	114.81	31.44	51.65	18.11	41.09
06/16/99	1.68	13.69	12.52	15.95	37.36	27.66	36.73	17.02	43.24
06/17/99	0.77	5.61	6.52	5.22	12.30	5.71	12.69	2.64	5.70
06/18/99	1.60	26.45	31.79	24.31	37.40	21.95	36.14	18.39	37.96
07/01/99	1.53	37.45	23.50	10.35	21.17	14.12	22.69	5.04	15.31
07/07/99	0.81	29.65	24.50	2.73	15.87	2.61	10.26	0.27	2.30
07/09/99	1.17	29.30	11.27	5.55	11.29	10.36	14.47	3.19	9.85
07/14/99 07/20/99	1.58 0.88	33.20 36.88	26.76 33.64	0.99 2.63	13.93 8.27	1.35 2.19	5.51 15.10	0.22 0.27	0.74 4.85
TOTALS	33.72	752.99	639.15	317.32	615.53	317.97	537.05	215.23	373.76

TOTAL NITROGEN -	SUMMARY	STATIS	STICS -YE	AR ONE				
Total loads (g/ac)	752.99	639.15	317.32	615.53	317.97	537.05	215.23	373.76
Average (two basins)(g/a		696.07		466.42		427.51		294.50
TOTAL RAIN MEASURED	FOR YEAR	(1998-99)	39.24 INCH	IES; TOTAI	_ WQ SAM	IPLED 33.7	72 INCHES	;
g/ac-yr	752.99	639.15	317.32	615.53	317.97	537.05	215.23	373.76
kg/ac-yr	0.75	0.64	0.32	0.62	0.32	0.54	0.22	0.37
kg/ha-yr	1.86	1.58	0.78	1.52	0.79	1.33	0.53	0.92
ADJUSTED FOR NORMA	L RAINFALL	YEAR OF	51 INCHE	S OF RAIN				
23% more (g/ac-yr)	977.91	830.06	412.11	799.38	412.95	697.47	279.52	485.41
kg/ac-yr	0.98	0.83	0.41	0.80	0.41	0.70	0.28	0.49
kg/ha-yr	2.42	2.05	1.02	1.98	1.02	1.72	0.69	1.20
LOAD EFFICIENCY (% RI	EDUCTION)	COMPARE	ED TO NOT	HAVING A	SWALE			
Even numbered basi	ins (0.26 ac	cres)		4%		16%		42%
Odd numbered basir	•	•	58%		58%		71%	

Appendix Jb-4. Constituent loads measured for each storm event and summary data for the year

TOTAL NITROGEN - YEAR TWO

DATE	RAIN	ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 g/ac	0.260 g/ac	0.23 g/ac	0.26 g/ac	0.23 g/ac	0.26 g/ac	0.24 g/ac	0.26 g/ac
08/06/99	1.29	38.62	28.81	11.16	19.61	10.41	24.73	3.67	10.68
08/12/99	0.70	21.35	16.93	4.85	0.00	5.22	11.27	0.87	3.44
08/15/99	1.23	48.30	34.57	16.94	29.52	29.73	26.58	11.63	21.50
08/19/99	0.90	24.55	24.43	7.66	21.68	10.86	19.02	3.35	9.42
08/22/99	2.95	49.93	38.17	28.69	65.97	37.65	23.29	7.51	18.00
09/11/99	0.84	24.18	21.04	3.57	13.80	1.47	9.92	3.56	9.47
09/18/99	0.85	2.88	4.76	0.78	3.27	0.00	1.25	0.00	0.00
09/25/99	1.37	42.61	33.70	26.18	44.35	26.35	40.27	7.45	21.89
10/03/99	1.22	14.66	13.20	7.09	8.60	4.95	12.37	1.41	8.53
10/04/99	0.98	4.30	3.00	0.78	2.88	1.24	4.33	0.00	0.00
11/01/99	1.63	na	na	na	na	na	na	na	na
12/17/99	0.75	5.65	6.08	0.00	1.01	0.00	0.38	0.00	0.00
01/06/00	0.79	7.76	22.38	4.42	10.23	2.40	9.06	0.51	2.61
01/24/00	0.68	3.01	0.59	0.00	7.67	0.00	3.14	0.00	0.00
01/31/00	0.70	7.06	6.34	0.78	8.24	0.00	2.81	0.00	0.00
06/13/00	1.29	102.47	95.94	16.83	49.93	16.91	71.19	3.12	33.11
06/22/00	0.39	13.13	11.62	0.14	1.35	0.00	0.45	0.15	0.00
06/***/00	1.39	8.69	13.67	0.71	8.17	0.15	12.22	0.74	0.14
06/29/00	0.71	19.29	14.99	2.92	10.99	2.87	15.14	1.07	4.80
07/01/00	0.81	9.13	7.51	2.07	5.75	1.32	8.89	1.02	1.72
07/04/00	1.95	66.07	69.88	25.09	65.59	39.50	79.05	39.79	44.44
07/08/00	1.07	115.89	115.67	14.02	99.71	26.88	88.01	18.11	19.82
07/15/00	1.98	66.07	64.55	38.38	77.15	63.91	91.92	34.53	47.02
07/26/00	1.24	43.23	15.48	5.42	28.10	1.78	30.85	0.65	2.40
07/31/00	2.69	87.99	54.91	73.53	120.46	93.50	77.32	19.46	63.12
TOTALS	30.40	826.82	718.22	292.04	704.03	377.09	663.44	158.61	322.10

TOTAL NITROGEN - SU	JMMARY ST	ATISTICS	YEAR TW	0				
Total loads (g/ac)	826.82	718.22	292.04	704.03	377.09	663.44	158.61	322.10
Average (two basins)(g/ac)	772.52		498.03		520.27		240.35
TOTAL RAIN MEASURI	ED FOR YEA	AR (1999-20	000) 33.98 II	NCHES; TO	TAL WITH	WQ SAMPI	ES 30.40N	CHES
g/ac-yr	826.82	718.22	292.04	704.03	377.09	663.44	158.61	322.10
kg/ac-yr	0.827	0.718	0.292	0.704	0.377	0.663	0.159	0.322
kg/ha-yr	2.04	1.77	0.72	1.74	0.93	1.64	0.39	0.80
ADJUSTED FOR NORM	IAL RAINFA	LL YEAR (OF 51 INCH	ES OF RAIN	4			
33% more (g/ac-yr)	1252.75	1088.22	442.48	1066.71	571.35	1005.22	240.31	488.03
kg/ac-yr	1.25	1.09	0.44	1.07	0.57	1.01	0.24	0.49
kg/ha-yr	3.10	2.69	1.09	2.64	1.41	2.48	0.59	1.21
LOAD EFFICIENCY (%	REDUCTION	N) COMPAR	RED TO NO	T HAVING	A SWALE			
Even numbered basin		•		2%		8%		55%
Odd numbered basins	w/ larger ga	rdens	65%		54%		81%	

APPENDIX Ja-6 . Constituent loads measured for each storm event and summary data for the year ORTHO PHOSPHORUS - YEAR ONE

DATE	RAIN AMOUNT	ASPHALT W	F2	ASPHALT F7	F8	CONCRETE F3	F4	POROUS V F5	F6
Basin (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
					,				
08/05/98	0.57	1.54	1.23	0.88	3.29	1.02	2.79	0.40	0.87
08/06/98	0.68	0.90	0.71	0.92	0.89	1.80	2.43	0.70	0.66
08/07/98	1.30	2.05	2.13	1.22	2.12	3.70	4.33	0.69	2.03
08/09/98	2.47	3.62	1.15	3.53	6.07	5.68	5.56	1.92	3.34
08/20/98	0.68	1.47	0.89	2.01	2.37	3.48	2.99	0.31	1.19
09/03/97	1.97	2.12	0.51	2.44	3.20	6.27	14.72	3.24	0.92
09/17/98	0.49	1.11	0.35	0.37	1.49	0.27	0.99	0.04	0.33
09/18/98	0.66	0.50	0.13	0.10	1.01	0.18	1.17	0.00	0.24
09/19/98	0.75	1.08	0.51	1.50	6.96	5.29	4.64	0.81	1.67
09/20/98	1.85	0.24	0.21	0.64	0.69	1.32	1.53	0.14	0.75
09/26/98	1.64	0.46	6.60	1.07	2.07	1.53	2.73	1.26	2.15
11/05/98	1.20	1.50	0.99	0.00	0.55	0.00	0.43	0.00	0.00
12/13/98	0.37	0.18	0.37	0.28	0.54	0.01	0.02	0.00	0.00
01/03/99	1.23	1.53	1.55	6.98	7.36	8.96	7.08	1.16	3.87
01/23/99	2.60	5.21	3.67	12.46	17.72	17.24	43.04	1.84	39.84
03/14/99	0.82	4.62	13.95	0.56	34.83	0.33	20.42	0.07	0.21
04/17/99	0.54	2.62	7.77	0.10	0.46	0.00	0.00	0.00	0.00
05/21/99	1.36	5.42	11.07	3.84	27.99	8.33	21.11	0.30	11.86
05/30/99	0.39	1.80	3.78	0.23	4.56	0.13	0.30	0.00	0.03
06/09/99	0.81	1.48	2.37	0.81	9.01	1.02	5.55	0.10	2.13
06/13/99	1.32	3.48	3.67	5.27	22.82	15.41	18.98	2.52	17.61
06/16/99	1.68	4.93	3.83	5.70	22.28	16.50	20.59	3.83	21.72
06/17/99	0.77	1.12	1.30	1.08	6.54	4.02	4.90	0.70	3.62
06/18/99	1.60	2.18	2.63	4.43	15.67	10.76	16.37	2.56	10.96
07/01/99	1.53	3.08	1.78	2.22	6.57	5.74	6.26	0.61	4.38
07/07/99	0.81	1.64	1.43	0.57	2.25	0.92	1.97	0.07	0.56
07/09/99	1.17	2.50	0.98	2.11	4.17	4.96	4.78	0.86	4.11
07/14/99	1.58	1.62	1.46	0.21	1.49	0.48	0.60	0.06	0.18
07/20/99	0.88	1.51	0.80	0.55	2.64	0.77	1.49	0.07	0.36
						100.15	0.17.75	04.00	405.00
TOTALS	33.72	61.52	77.81	62.06	217.58	126.13	217.78	24.26	135.60

ORTHO PHOSPHORUS	S - SUMN	IARY ST	ATISTICS	S-YEAR (ONE			
Total loads (g/ac)	61.52	77.81	62.06	217.58	126.13	217.78	24.26	135.60
Average (two basins)(g/ac)		69.66		139.82		171.96		79.93
TOTAL RAIN MEASURED F	OR YEAR	(1998-99)	39.24 INCF	ies; total	_ WQ SAM	IPLED 33.7	2 INCHES	;
g/ac-yr	61.52	77.81	62.06	217.58	126.13	217.78	24.26	135.60
kg/ac-yr	0.06	0.08	0.06	0.22	0.13	0.22	0.02	0.14
kg/ha-yr	0.15	0.19	0.15	0.54	0.31	0.54	0.06	0.34
ADJUSTED FOR NORMAL	RAINFALL	YEAR OF	51 INCHE	S OF RAIN				
23% more (g/ac-yr)	79.90	101.05	80.60	282.57	163.80	282.84	31.50	176.10
kg/ac-yr	0.08	0.10	0.08	0.28	0.16	0.28	0.03	0.18
kg/ha-yr	0.20	0.25	0.20	0.70	0.40	0.70	80.0	0.44
LOAD EFFICIENCY (% RED	UCTION)	COMPARE	D TO NOT	HAVING A	SWALE			
Even numbered basins	s (0.26 ac	cres)		-180%		-180%		-74%
Odd numbered basins	w/ larger	garde	-1%		-105%		61%	
1								

Appendix Jb-5. Constituent loads measured for each storm event and summary data for the year

ORTHO	-PHOSP	HORUS -	· YEAR	TWO
-------	--------	---------	--------	-----

DATE	RAIN	ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 g/ac	0.260 g/ac	0.23 g/ac	0.26 g/ac	0.23 g/ac	0.26 g/ac	0.24 g/ac	0.26 g/ac
		J	3,		3,	J		J	3:
08/06/99	1.29	1.18	1.44	2.75	4.30	4.47	3.83	0.38	2.92
08/12/99	0.70	0.68	0.49	0.90	1.70	2.37	1.93	0.12	0.00
08/15/99	1.23	1.86	0.76	3.20	4.19	7.91	5.05	1.13	4.43
08/19/99	0.90	1.61	1.07	2.12	4.59	4.52	4.51	0.55	3.42
08/22/99	2.95	5.23	3.44	6.18	15.65	24.77	21.77	5.25	12.07
09/11/99	0.84	1.05	0.60	0.66	1.71	0.40	2.27	0.48	2.54
09/18/99	0.85	0.50	0.43	0.17	0.54	0.00	0.25	0.00	0.00
09/25/99	1.37	1.60	1.17	5.82	3.83	6.48	5.51	1.05	5.87
10/03/99	1.22	1.82	1.38	2.79	2.62	3.80	4.37	0.23	3.77
10/04/99	0.98	0.46	0.34	0.15	0.70	0.33	1.52	0.00	0.00
11/01/99	1.63	3.31	1.79	3.39	13.32	9.34	15.73	0.63	6.27
12/17/99	0.75	0.54	0.29	0.00	0.18	0.00	0.07	0.00	0.00
01/06/00	0.79	12.18	2.69	0.82	2.22	0.65	3.69	0.07	0.70
01/24/00	0.68	0.85	0.75	0.00	2.28	0.00	2.16	0.00	0.00
01/31/00	0.70	0.47	0.69	0.15	2.35	0.00	2.37	0.00	0.00
06/13/00	1.29	4.61	9.75	1.84	11.59	4.08	27.69	0.42	16.07
06/22/00	0.39	0.57	1.28	0.03	0.24	0.00	0.09	0.02	0.00
06/***/00	1.39	0.91	1.83	0.13	1.48	0.04	3.20	0.14	0.04
06/29/00	0.71	1.26	1.69	0.54	3.70	0.77	4.72	0.13	1.98
07/01/00	0.81	1.34	1.23	0.42	2.28	0.36	4.26	0.14	0.46
07/04/00	1.95	3.82	2.53	8.19	26.64	29.40	37.14	7.25	21.48
07/08/00	1.07	1.81	1.48	1.13	5.42	2.19	5.41	1.05	4.86
07/15/00	1.98	3.82	3.06	5.60	13.72	13.99	15.82	3.50	9.88
07/26/00	1.24	1.55	0.73	1.01	2.10	0.48	2.04	0.09	0.95
07/31/00	2.69	4.40	3.78	11.70	23.73	26.65	19.73	3.44	15.20
TOTALS	30.40	57.45	44.68	59.71	151.09	143.00	195.12	26.05	112.88

ORTHO-PHOSPHORUS	-SUMMAR	Y STATIST	ICS - YEAR	TWO					
Total loads (g/ac)	57.45	44.68	59.71	151.09	143.00	195.12	26.05	112.88	
Average (two basins)(g/ac)	51.06		105.40		169.06		69.47	
TOTAL RAIN MEASURED FOR YEAR (1999-2000) 33.98 INCHES; TOTAL WITH WQ SAMPLES 30.40NCHES									
g/ac-yr	57.45	44.68	59.71	151.09	143.00	195.12	26.05	112.88	
kg/ac-yr	0.057	0.045	0.060	0.151	0.143	0.195	0.026	0.113	
kg/ha-yr	0.14	0.11	0.15	0.37	0.35	0.48	0.06	0.28	
ADJUSTED FOR NORM	IAL RAINFA	LL YEAR C	OF 51 INCH	ES OF RAIN	4				
33% more (g/ac-yr)	87.04	67.70	90.47	228.92	216.66	295.64	39.48	171.04	
kg/ac-yr	0.09	0.07	0.09	0.23	0.22	0.30	0.04	0.17	
kg/ha-yr	0.22	0.17	0.22	0.57	0.54	0.73	0.10	0.42	
LOAD EFFICIENCY (%	REDUCTION	N) COMPAR	RED TO NO	T HAVING	A SWALE				
Even numbered basin				-238%		-337%		-153%	
Odd numbered basins w/ larger gardens		-4%		-149%		55%			

APPENDIX Ja-7 . Constituent loads measured for each storm event and summary data for the year TOTAL PHOSPHORUS - YEAR ONE

DATE	RAIN	ASPHALT W		ASPHALT '		CONCRETE		POROUS V	
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basın (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
08/05/98	0.57	2.60	2.68	0.87	2.79	0.98	3.79	0.11	0.61
08/06/98	0.68	0.97	1.00	0.91	0.87	2.26	2.88	0.18	0.86
08/07/98	1.30	2.60	2.66	1.54	3.46	4.25	6.25	1.00	2.85
08/09/98	2.47	7.02	2.06	5.30	13.94	7.68	8.06	3.58	4.87
08/20/98	0.68	1.94	1.44	2.43	3.68	3.90	3.95	0.23	1.71
09/03/97	1.97	3.97	2.04	6.72	4.27	6.97	6.87	1.24	4.61
09/17/98	0.49	2.92	1.09	0.37	1.27	0.26	0.97	0.01	0.23
09/18/98	0.66	0.91	0.86	0.10	0.86	0.24	1.58	0.00	0.17
09/19/98	0.75	1.08	0.82	2.15	5.92	6.27	5.98	0.21	2.37
09/20/98	1.85	1.41	1.19	1.09	1.75	2.09	2.43	0.33	1.45
09/26/98	1.64	1.67	9.53	1.24	4.26	4.04	5.00	0.33	2.78
11/05/98	1.20	2.31	2.45	0.00	0.47	0.00	0.42	0.00	0.00
12/13/98	0.37	1.75	0.80	0.45	0.46	0.01	0.02	0.00	0.00
01/03/99	1.23	2.77	5.65	8.46	10.43	9.52	8.13	1.93	5.01
01/23/99	2.60	8.07	11.01	15.76	16.12	19.51	14.71	3.29	10.48
03/14/99	0.82	8.83	17.85	0.55	42.71	0.31	25.12	0.02	0.15
04/17/99	0.54	4.11	10.24	0.10	0.39	0.00	0.00	0.00	0.00
05/21/99	1.36	11.31	20.31	6.19	34.47	10.33	26.56	0.08	14.09
05/30/99	0.39	3.51	6.16	0.22	5.29	0.13	0.30	0.00	0.02
06/09/99	0.81	3.78	3.33	0.81	11.10	0.98	6.63	0.03	2.72
06/13/99	1.32	7.65	7.16	7.08	27.20	17.64	22.68	3.45	20.69
06/16/99	1.68	6.85	5.89	7.44	26.92	17.98	23.41	4.77	25.94
06/17/99	0.77	2.65	3.71	0.38	8.10	5.18	6.20	0.18	4.59
06/17/55	1.60	4.83	5.38	6.55	20.44	13.53	21.86	4.24	15.18
07/01/99	1.53	4.99	3.05	3.09	8.38	6.81	7.98	0.83	5.76
07/07/99	0.81	2.61	3.53	0.56	3.37	0.88	2.94	0.03	0.39
07/09/99	1.17	4.43	1.96	3.03	5.60	6.11	6.39	1.19	5.43
07/14/99	1.58	2.67	2.68	0.07	1.79	0.45	0.88	0.02	0.13
07/20/99	0.88	2.56	1.92	0.54	2.24	0.74	2.25	0.02	0.57
01,20,00	0.00	2.00	1.02	0.0-1	٠٠٠٠ ١	0., 1	2.20	0.02	3.01
TOTALS	33.72	112.79	138.46	83.98	268.54	149.05	224.21	27.28	133.66

TOTAL PHOSPHORUS	S - SUMM	ARY ST	ATISTICS	-YEAR C	NE			
Total loads (g/ac)	112.79	138.46	83.98	268.54	149.05	224.21	27.28	133.66
Average (two basins)(g/ac		125.63		176.26		186.63		80.47
TOTAL RAIN MEASURED	FOR YEAR	(1998-99)	39.24 INCH	IES; TOTAL	_ WQ SAM	IPLED 33.7	2 INCHES	1
g/ac-yr	112.79	138.46	83.98	268.54	149.05	224.21	27.28	133.66
kg/ac-yr	0.11	0.14	0.08	0.27	0.15	0.22	0.03	0.13
kg/ha-yr	0.28	0.34	0.21	0.66	0.37	0.55	0.07	0.33
ADJUSTED FOR NORMAL	. RAINFALL	YEAR OF	51 INCHE	S OF RAIN				
23% more (g/ac-yr)	146.48	179.82	109.06	348.75	193.57	291.19	35.42	173.58
kg/ac-yr	0.15	0.18	0.11	0.35	0.19	0.29	0.04	0.17
kg/ha-yr	0.36	0.44	0.27	0.86	0.48	0.72	0.09	0.43
LOAD EFFICIENCY (% REI	DUCTION)	COMPARE	D TO NOT	HAVING A	SWALE			
Even numbered basir				-94%		-62%		3%
Odd numbered basins	s w/ larger	r garde	26%		-32%		76%	
Even numbered basir	ns (0.26 ac	cres)				-62%	76%	3%

Appendix Jb-6. Constituent loads measured for each storm event and summary data for the year

TOTAL PHOSPHORUS - YEAR TWO

DATE	RAIN	ASPHALT WO/SWALE		ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS W/SWALE		
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6	
Basin (ac		0.260	0.260	0.23	0.26	0.23	0.26	0.24	0.26	
	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	
08/06/99	1.29	1.83	1.56	3.97	5.55	4.80	4.64	0.61	3.61	
08/12/99	0.70	1.96	0.49	1.34	2.46	2.64	2.34	0.16	1.05	
08/15/99	1.23	3.81	2.81	4.77	6.61	9.65	8.03	1.52	6.07	
08/19/99	0.90	2.95	2.56	2.93	6.56	5.57	6.54	0.73	4.57	
08/22/99	2.95	7.13	5.35	7.94	20.35	27.94	23.71	7.76	18.22	
09/11/99	0.84	2.10	1.65	0.98	3.16	0.47	2.98	0.64	3.22	
09/18/99	0.85	0.93	0.54	0.24	0.87	0.00	0.30	0.00	0.00	
09/25/99	1.37	5.06	5.64	7.76	9.98	9.91	16.57	1.73	9.59	
10/03/99	1.22	1.68	1.68	3.95	4.22	4.22	4.95	0.31	5.08	
10/04/99	0.98	1.03	0.58	0.22	1.10	0.40	2.09	0.00	0.00	
11/01/99	1.63	7.13	3.42	5.02	21.26	11.34	19.31	1.50	6.54	
12/17/99	0.75	0.96	0.55	0.00	0.31	0.00	0.10	0.00	0.00	
01/06/00	0.79	1.75	4.82	1.22	6.66	0.77	4.97	0.09	0.89	
01/24/00	0.68	2.58	1.18	0.00	2.84	0.00	2.52	0.00	0.00	
01/31/00	0.70	1.41	1.62	0.22	4.54	0.00	2.59	0.00	0.00	
06/13/00	1.29	16.65	19.67	2.43	15.35	4.41	38.97	0.56	22.13	
06/22/00	0.39	1.71	1.87	0.04	1.34	0.00	0.12	0.03	0.00	
06/***/00	1.39	1.67	3.07	0.20	2.53	0.05	3.72	0.18	0.05	
06/29/00	0.71	3.27	2.89	0.81	5.49	0.92	6.16	0.19	2.65	
07/01/00	0.81	1.92	1.98	0.52	3.03	0.42	6.18	0.18	0.58	
07/04/00	1.95	7.63	4.79	11.59	27.59	37.52	46.19	6.61	24.29	
07/08/00	1.07	3.91	1.67	1.36	5.85	2.14	5.15	1.50	4.98	
07/15/00	1.98	7.63	5.86	9.29	15.34	15.84	18.95	4.46	11.02	
07/26/00	1.24	2.57	1.40	1.50	4.35	0.57	2.81	0.12	1.22	
07/31/00	2.69	11.20	6.16	16.88	33.27	30.70	24.02	5.29	16.22	
TOTALS	30.40	100.50	83.80	85.17	210.62	170.30	253.91	34.15	141.97	

TOTAL PHOSPHORUS -	SUMMARY	STATISTIC	S - YEAR	TWO				
Total loads (g/ac)	100.50	83.80	85.17	210.62	170.30	253.91	34.15	141.97
Average (two basins)(g	ı/ac)	92.15		147.90		212.10		88.06
TOTAL RAIN MEASURE	D FOR YEA	R (1999-20	11 8e.EE (00	ICHES; TO	TAL WITH	WQ SAMPL	ES 30.40N	CHES
g/ac-yr	100.50	83.80	85.17	210.62	170.30	253.91	34.15	141.97
kg/ac-yr	0.100	0.084	0.085	0.211	0.170	0.254	0.034	0.142
kg/ha-yr	0.25	0.21	0.21	0.52	0.42	0.63	0.08	0.35
ADJUSTED FOR NORM	AL RAINFA	LL YEAR O	F 51 INCHE	S OF RAIN	1			
33% more (g/ac-yr)	152.27	126.97	129.05	319.12	258.03	384.70	51.75	215.10
kg/ac-yr	0.15	0.13	0.13	0.32	0.26	0.38	0.05	0.22
kg/ha-yr	0.38	0.31	0.32	0.79	0.64	0.95	0.13	0.53
LOAD EFFICIENCY (% F	REDUCTION) COMPAR	ED TO NO	F HAVING A	A SWALE			
Even numbered basins				-151%		-203%		-69%
Odd numbered basins	w/ larger ga	rdens	15%		-69%		66%	

APPENDIX Ja-7 . Constituent loads measured for each storm event and summary data for the year TOTAL COPPER - YEAR ONE

DATE	RAIN AMOUNT	ASPHALT WO/SWALE F1 F2		F7	W/SWALE F8	CONCRETE F3	F4	POROUS 1	F6
Basın (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac
08/05/98 08/06/98 08/06/98 08/09/98 08/20/98 09/03/97 09/17/98 09/18/98 09/19/98 09/20/98 11/05/98 12/13/98 01/03/99 01/23/99 03/14/99 04/17/99 05/21/99 05/30/99 06/13/99 06/13/99 06/16/99 06/17/99	0.57 0.68 1.30 2.47 0.68 1.97 0.49 0.66 0.75 1.85 1.64 1.20 0.37 1.23 2.60 0.82 0.54 1.36 0.39 0.81 1.32 1.68 0.77 1.60	494.65 86.58 10.26 1000.25 364.06 926.36 299.97 159.77 324.67 253.34 548.29 359.02 213.15 477.89 1463.48 898.82 597.81 1138.40 326.20 583.62 2085.35 383.45 367.02 517.44	349.48 96.46 126.28 200.71 299.08 621.89 186.65 188.70 317.87 229.74 476.61 493.77 104.10 1173.26 1750.39 675.12 749.90 963.34 457.16 385.60 829.76 325.00 415.95 411.00	59.40 62.19 95.01 51.93 273.23 451.88 25.16 6.99 173.62 14.26 107.47 0.00 40.19 280.81 406.79 37.73 6.99 205.90 15.37 55.20 199.00 231.94 73.37 56.11	258.54 128.65 341.52 1289.74 520.88 1141.20 117.52 79.32 547.43 208.33 437.36 43.09 42.11 729.98 661.69 285.97 36.23 450.77 50.90 173.39 731.92 523.07 84.40 389.79	33.72 102.39 82.98 599.01 208.75 391.96 8.80 8.31 156.74 132.26 140.16 0.00 0.49 184.31 177.33 10.75 0.00 125.05 4.40 33.72 104.79 82.98 77.62 169.95	160.91 71.92 108.16 69.50 193.10 431.75 32.50 25.57 13.38 215.12 265.21 14.15 0.76 280.51 204.54 136.48 0.00 226.84 9.94 50.82 237.31 132.61 38.36 293.61	7.26 12.71 46.38 63.94 18.93 194.28 0.78 0.00 14.78 21.03 22.82 0.00 0.00 93.14 66.89 1.30 0.00 5.45 0.00 1.82 85.53 34.04 12.71 83.61	29.58 56.37 77.61 69.55 122.09 214.92 11.25 8.04 6.57 103.52 188.15 0.00 0.00 203.98 297.81 7.07 0.00 129.35 0.96 28.13 176.10 218.48 15.09 251.94
07/01/99 07/07/99	1.53 0.81	1057.29 421.36	393.84 223.97	85.35 38.43	242.62 24.41	98.23 30.30	148.63 39.46	25.60 1.30	74.15 18.97
07/07/99 07/09/99 07/14/99	1.17 1.58	664.60 408.90	181.35 360.39	128.08 13.98	238.85 188.21	140.65 15.64	132.63 45.88	196.70 1.04	118.16 6.11
07/20/99	0.88	520.18	307.46	37.04	207.61	25.41	84.54	1.30	39.21
TOTALS	33.72	16952.17	13294.85	3233.42	10175.49	3146.68	3664.20	1013.32	2473.16

TOTAL COPPER - SU	MMARY S	TATISTI	CS -YEA	R ONE				
Total loads (mg/ac)	16952	13295	3233	10175	3147	3664	1013	2473
Average (two basins)(m	g/ac)	15124		6704		3405		1743
TOTAL RAIN MEASUREI	FOR YEAR	R (1998-99) 39.24 INC	CHES; TOTA	AL WQ SA	MPLED 33	.72 INCHE	S
mg/ac-yr	16952	13295	3233	10175	3147	3664	1013	2473
g/ac-yr	16.95	13.29	3.23	10.18	3.15	3.66	1.01	2.47
g/ha-yr	41.89	32.85	7.99	25.14	7.78	9.05	2.50	6.11
ADJUSTED FOR NORMA	L RAINFAL	L YEAR O	F 51 INCH	ES OF RAIN	J			
23% more (mg/ac-yr)	22015.80	17266.04	4199.25	13214.92	4086.60	4758.70	1316.00	3211.90
g/ac-yr	22.02	17.27	4.20	13.21	4.09	4.76	1.32	3.21
g/ha-yr	54.40	42.66	10.38	32.65	10.10	11.76	3.25	7.94
LOAD EFFICIENCY (% R	EDUCTION)	COMPAR	ED TO NO	T HAVING	A SWALE			
Even numbered basi	ns (0.26 a	cres)		23%		72%		81%
Odd numbered basir	ns w/ largei	r garden	81%		81%		94%	

Appendix Jb-7. Constituent loads measured for each storm event and summary data for the year

TOTAL COPPER - YEAR TWO

DATE	RAIN	ASPHALT \	WO/SWALE	ASPHALT	W/SWALE	CONCRETI	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 mg/ac	0.260 mg/ac	0.23 mg/ac	0.26 mg/ac	0.23 mg/ac	0.26 mg/ac	0.24 mg/ac	0.26 mg/ac
					,				
08/06/99	1.29	393	127	91	221	44	85	26	73
08/12/99	0.70	384	433	71	233	57	74	5	25
08/15/99	1.23	729	516	173	336	202	266	57	152
08/19/99	0.90	603	393	96	222	122	186	34	86
08/22/99	2.95	904	1017	243	1191	515	653	125	601
09/11/99	0.84	274	244	52	3	11	80	21	54
09/18/99	0.85	149	269	14	127	0	6	0	0
09/25/99	1.37	357	305	334	1253	209	199	47	160
10/03/99	1.22	314	156	144	353	91	162	14	73
10/04/99	0.98	92	86	11	74	9	79	0	0
11/01/99	1.63	813	606	265	1075	222	343	38	. 84
12/17/99	0.75	161	98	0	20	0	3	0	0
01/06/00	0.79	212	570	64	606	18	131	3	15
01/24/00	0.68	391	200	0	236	0	50	0	0
01/31/00	0.70	329	1084	11	587	0	49	0	0
06/13/00	1.29	3638	2406	146	530	100	442	18	148
06/22/00	0.39	304	201	2	75	0	3	1	0
06/***/00	1.39	210	430	10	158	1	96	4	1
06/29/00	0.71	319	382	43	632	21	110	9	17
07/01/00	0.81	187	455	88	209	10	154	9	10
07/04/00	1.95	1233	398	339	370	110	704	205	266
07/08/00	1.07	666	334	129	338	14	44	10	40
07/15/00	1.98	1233	1038	1036	982	232	378	129	203
07/26/00	1.24	282	249	79	305	13	131	4	27
07/31/00	2.69	1780	694	704	1078	1325	668	252	240
TOTALS	30.40	15957	12690	4147	11215	3325	5097	1013	2273

Total loads (mg/ac)	15957	12690	4147	11215	3325	5097	1013	2273
Average (two basins)(m	ng/ac)	14324		7681		4211		1643
OTAL RAIN MEASUREI	D FOR YEA	R (1999-200	00) 33.98 IN	ICHES; TOT	AL WITH V	VQ SAMPLI	ES 30.40NC	HES
mg/ac-yr	15957	12690	4147	11215	3325	5097	1013	2273
g/ac-yr	15.957	12.690	4.147	11.215	3.325	5.097	1.013	2.273
g/ha-yr	39.43	31.36	10.25	27.71	8.22	12.59	2.50	5.62
DJUSTED FOR NORMA	L RAINFA	LL YEAR O	F 51 INCHE	S OF RAIN				
33% more (mg/ac-yr	24177	19228	6283	16993	5038	7722	1535	3445
g/ac-yr	24.18	19.23	6.28	16.99	5.04	7.72	1.54	3.44
g/ha-yr	59.74	47.51	15.53	41.99	12.45	19.08	3.79	8.51
OAD EFFICIENCY (% R	EDUCTION) COMPARI	ED TO NOT	HAVING A	SWALE			
Even numbered basins (0.26 acres)		•		12%		60%		82%
Odd numbered basins w/ larger gardens		74%		79%		94%		

APPENDIX Ja-8 . Constituent loads measured for each storm event and summary data for the year TOTAL IRON - YEAR ONE

DATE	RAIN AMOUNT	ASPHALT V	vo/swale F2	ASPHALT F7	W/SWALE F8	CONCRETE F3	W/SWALE F4	POROUS F5	W/SWALE F6
Basın (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac
									<u>. </u>
08/05/98	0.57	17057	13616	1128	6211	459	5044	354	451
08/06/98	0.68	5772	5466	1181	4541	1596	1984	619	1348
08/07/98	1.30	10264	8640	2941	12537	2420	4807	1374	554
08/09/98	2.47	53205	15598	10906	30985	19967	12232	9591	6120
08/20/98	0.68	9982	7754	4696	8470	3328	3678	922	2078
09/03/97	1.97	46318	27322	14350	23464	7404	8733	5936	4375
09/17/98	0.49	10799	6666	478	2823	120	583	38	172
09/18/98	0.66	4407	2965	133	1906	113	968	0	123
09/19/98	0.75	8658	7178	3887	13151	735	2944	720	657
09/20/98	1.85	17052	10636	1240	7850	1443	5085	404	2329
09/26/98	1.64	18586	16498	2687	11775	618	3789	1112	1344
11/05/98	1.20	5129	9017	0	1035	0	254	0	0
12/13/98	0.37	3256	3406	1145	1012	7	14	0	0
01/03/99	1.23	21027	60076	6840	26071	2560	6181	2726	6299
01/23/99	2.60	67286	73121	11865	15659	11822	8015	6689	2920
03/14/99	0.82	36888	27492	717	8799	146	3211	63	108
04/17/99	0.54	17469	21140	133	870	0	0	0	0
05/21/99	1.36	85186	72901	6444	18313	2017	9422	265	2786
05/30/99	0.39	21839	25170	292	4280	60	178	0	15
06/09/99	0.81	33486	19280	1049	7505	459	1317	88	412
06/13/99	1.32	96323	37557	2948	25115	1310	3490	2767	2446
06/16/99	1.68	27389	17314	4349	12831	2766	4388	2979	2697
06/17/99	0.77	15802	20798	1394	2411	913	1180	619	838
06/18/99	1.60	17248	14964	4987	4242	1062	1694	2230	2542
07/01/99	1.53	30838	8893	2179	5735	460	587	233	957
07/07/99	0.81	9364	6649	730	1953	412	631	63	289
07/09/99	1.17	12149	2451	2135	3908	555	1206	6233	844
07/14/99	1.58	14980	16414	266	5082	213	408	51	93
07/20/99	0.88	12810	5788	704	4988	346	196	63	490
					awa 100		00010	*******	40000
TOTALS	33.72	730568	564771	91803	273520	63310	92219	46140	43286

IARY STA	TISTICS	-YEAR O	NE				
730568	564771	91803	273520	63310	92219	46140	43286
g/ac)	647670		182662		77765		44713
FOR YEAR	(1998-99)	39.24 INC	HES; TOTAL	_ WQ SAN	1PLED 33.7	2 INCHES	
730568	564771	91803	273520	63310	92219	46140	43286
731	565	92	274	63	92	46	43
1805	1396	227	676	156	228	114	107
L RAINFALI	_ YEAR OI	51 INCHE	S OF RAIN				
948790	733469	119225	355221	82220	119765	59923	56216
949	733	119	355	82	120	60	56
2344	1812	295	878	203	296	148	139
EDUCTION)	COMPARI	ED TO NOT	HAVING A	SWALE			
ins (0.26 a	cres)		52%		84%		92%
•	•	87%		91%		94%	
	730568 g/ac) FOR YEAR 730568 731 1805 L RAINFALI 948790 949 2344 EDUCTION) ins (0.26 a	730568 564771 g/ac) 647670 FOR YEAR (1998-99) 730568 564771 731 565 1805 1396 L RAINFALL YEAR OF 948790 733469 949 733 2344 1812	730568 564771 91803 g/ac) 647670 D FOR YEAR (1998-99) 39.24 INCI 730568 564771 91803 731 565 92 1805 1396 227 L RAINFALL YEAR OF 51 INCHE 948790 733469 119225 949 733 119 2344 1812 295 EDUCTION) COMPARED TO NOT ins (0.26 acres)	g/ac) 647670 182662 FOR YEAR (1998-99) 39.24 INCHES; TOTAL 730568 564771 91803 273520 731 565 92 274 1805 1396 227 676 L RAINFALL YEAR OF 51 INCHES OF RAIN 948790 733469 119225 355221 949 733 119 355 2344 1812 295 878 EDUCTION) COMPARED TO NOT HAVING A ins (0.26 acres) 52%	730568 564771 91803 273520 63310 g/ac) 647670 182662 FOR YEAR (1998-99) 39.24 INCHES; TOTAL WQ SAN 730568 564771 91803 273520 63310 731 565 92 274 63 1805 1396 227 676 156 L RAINFALL YEAR OF 51 INCHES OF RAIN 948790 733469 119225 355221 82220 949 733 119 355 82 2344 1812 295 878 203 EDUCTION) COMPARED TO NOT HAVING A SWALE ins (0.26 acres) 52%	730568 564771 91803 273520 63310 92219 g/ac) 647670 182662 77765 D FOR YEAR (1998-99) 39.24 INCHES; TOTAL WQ SAMPLED 33.7 730568 564771 91803 273520 63310 92219 731 565 92 274 63 92 1805 1396 227 676 156 228 L RAINFALL YEAR OF 51 INCHES OF RAIN 948790 733469 119225 355221 82220 119765 949 733 119 355 82 120 2344 1812 295 878 203 296 EDUCTION) COMPARED TO NOT HAVING A SWALE ins (0.26 acres) 52% 84%	730568 564771 91803 273520 63310 92219 46140 g/ac) 647670 182662 77765 FOR YEAR (1998-99) 39.24 INCHES; TOTAL WQ SAMPLED 33.72 INCHES 730568 564771 91803 273520 63310 92219 46140 731 565 92 274 63 92 46 1805 1396 227 676 156 228 114 L RAINFALL YEAR OF 51 INCHES OF RAIN 948790 733469 119225 355221 82220 119765 59923 949 733 119 355 82 120 60 2344 1812 295 878 203 296 148 EDUCTION) COMPARED TO NOT HAVING A SWALE ins (0.26 acres) 52% 84%

Appendix Jb-8. Constituent loads measured for each storm event and summary data for the year

TOTAL IRON - YEAR TWO

DATE	RAIN	ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.26 mg/ac	0.26 mg/ac	0.23 mg/ac	0.26 mg/ac	0.23 mg/ac	0.26 mg/ac	0.24 mg/ac	0.26 mg/ac
08/06/99	1.29	11128	4033	620	9595	277	423	87	252
08/12/99	0.70	11101	9119	1966	4061	123	271	17	105
08/15/99	1.23	23727	15822	1155	6494	701	664	224	527
08/19/99	0.90	18939	8341	1095	79507	424	553	113	357
08/22/99	2.95	16644	27827	7723	49866	2477	7347	5004	8779
09/11/99	0.84	8463	5637	1445	8156	117	902	466	1721
09/18/99	0.85	3115	7450	14	127	0	6	0	0
09/25/99	1.37	8522	7777	9480	35482	3346	4078	1064	2432
10/03/99	1.22	7680	3601	3041	9035	990	2707	302	1456
10/04/99	0.98	1719	1502	318	1002	98	746	0	0
11/01/99	1.63	9038	15579	7371	33761	331	622	420	858
12/17/99	0.75	3973	1754	0	658	0	40	0	0
01/06/00	0.79	12175	20279	1792	22199	191	2181	67	474
01/24/00	0.68	11524	4313	0	7807	0	1372	0	0
01/31/00	0.70	16763	9136	318	21926	0	1163	0	0
06/13/00	1.29	163955	111127	6871	37447	1285	6370	409	6100
06/22/00	0.39	10131	6762	58	2440	0	49	19	0
06/***/00	1.39	6862	14332	289	5305	12	1333	47	25
06/29/00	0.71	16354	19858	1185	12531	228	1549	322	882
07/01/00	0.81	11048	11861	2069	4880	105	1296	78	312
07/04/00	1.95	41111	26700	18450	21847	5486	8849	7059	5948
07/08/00	1.07	20281	8997	5959	12572	707	3080	906	2577
07/15/00	1.98	41111	26700	29166	34916	3705	9467	5276	7294
07/26/00	1.24	17488	6402	2197	14238	141	1350	86	534
07/31/00	2.69	57993	27237	18642	38328	14026	10383	8819	12842
TOTALS	30.40	550845	402144	121222	474178	34769	66801	30783	53473

TOTAL IRON - SUMMAR	RY STATIST	ICS - YEAR	R TWO					
Total loads (mg/ac)	550845	402144	121222	474178	34769	66801	30783	53473
Average (two basins)(r	ng/ac)	476495		297700		50785		42128
TOTAL RAIN MEASURE	D FOR YEA	AR (1999-20	000) 33.98 II	NCHES; TO	TAL WITH	WQ SAMPL	.ES 30.40N	CHES
mg/ac-yr	550845	402144	121222	474178	34769	66801	30783	53473
g/ac-yr	550.845	402.144	121.222	474.178	34.769	66.801	30.783	53.473
g/ha-yr	1361.14	993.70	299.54	1171.69	85.91	165.07	76.06	132.13
ADJUSTED FOR NORM	AL RAINFA	LL YEAR (OF 51 INCH	ES OF RAIN				
33% more (mg/ac-yr	834614	609310	183670	718452	52680	101213	46641	81020
g/ac-yr	834.61	609.31	183.67	718.45	52.68	101.21	46.64	81.02
g/ha-yr	2062.33	1505.60	453.85	1775.29	130.17	250.10	115.25	200.20
LOAD EFFICIENCY (% F	REDUCTION	N) COMPAR	RED TO NO	T HAVING A	SWALE			
Even numbered basins				-18%		83%		87%
Odd numbered basins w/ larger gardens		rdens	78%		94%		94%	

APPENDIX Ja-9 . Constituent loads measured for each storm event and summary data for the year TOTAL LEAD - YEAR ONE

DATE	RAIN AMOUNT	ASPHALT V	F2	F7	W/SWALE F8	F3	W/SWALE F4	F5	w/swale F6
Basin (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac
08/05/98	0.57	158	132	9	26	8	24	3	9
08/06/98	0.57	36	32	9	20 19	13	2 4 25	5	12
08/07/98	1.30	68	66	23	134	35	60	17	37
08/09/98	2.47	468	172	23 104	129	154	139	128	139
08/20/98	0.68	147	55	53	129	30	46	8	26
II .	1.97	1	204	61	107	87	98	54	77
09/03/97 09/17/98	0.49	291 117	20 4 91	4	107	2	96 8	0	3
NE .		i .		4 1		2	8 14	0	2
09/18/98	0.66	28	27	•	8	49	89	6	44
09/19/98	0.75	108	103	26	55				
09/20/98	1.85	132	43	16	30	24	39	8	26
09/26/98	1.64	93	92	27	129	41	76	10	45
11/05/98	1.20	43	43	0	4	0	4	0	0
12/13/98	0.37	43	14	14	4	0	0	0	0
01/03/99	1.23	268	735	101	333	51	114	45	93
01/23/99	2.60	1346	1383	186	331	286	158	56	86
03/14/99	0.82	400	355	6	106	2	36	1	2
04/17/99	0.54	167	238	1	4	0	0	0	0
05/21/99	1.36	736	723	80	211	20	35	2	20
05/30/99	0.39	160	213	2	40	1	3	0	0
06/09/99	0.81	445	280	8	148	8	60	1	16
06/13/99	1.32	1152	576	37	179	109	70	25	49
06/16/99	1.68	137	677	48	387	92	194	43	126
06/17/99	0.77	112	184	11	24	23	30	5	17
06/18/99	1.60	115	118	62	107	71	113	56	90
07/01/99	1.53	73	64	29	106	46	39	12	24
07/07/99	0.81	105	66	6	24	7	16	1	6
07/09/99	1.17	143	49	21	33	74	40	14	113
07/14/99	1.58	117	143	2	49	4	8	0	2
07/20/99	0.88	148	98	6	21	6	11	1	11
TOTALC	22.72	7055	6074	054	2000	4244	4E40	E04	4076
TOTALS	33.72	7355	6974	954	2888	1244	1548	501	1076

RY STAT	ISTICS -	YEAR ON	E				
7355	6974	954	2888	1244	1548	501	1076
ac)	7165		1921		1396		788
FOR YEAR	(1998-99)	39.24 INCH	ES; TOTAL	_ WQ SAM	PLED 33.7	2 INCHES	3
7355	6974	954	2888	1244	1548	501	1076
7	7	1	3	1	2	1	1
18	17	2	7	3	4	1	3
RAINFALL	YEAR OF	51 INCHES	OF RAIN				
9552	9057	1239	3751	1616	2011	651	1397
10	9	1	4	2	2	1	1
24	22	3	9	4	5	2	3
DUCTION) C	OMPARE	D TO NOT	HAVING A	SWALE			
			59%		78%		85%
w/ larger g	garden	87%		83%		93%	
	7355 ac) FOR YEAR 7355 7 18 RAINFALL 9552 10 24 DUCTION) C	7355 6974 ac) 7165 FOR YEAR (1998-99) 7355 6974 7 7 18 17 RAINFALL YEAR OF 9552 9057 10 9 24 22	7355 6974 954 ac) 7165 FOR YEAR (1998-99) 39.24 INCH 7355 6974 954 7 7 1 18 17 2 RAINFALL YEAR OF 51 INCHES 9552 9057 1239 10 9 1 24 22 3 DUCTION) COMPARED TO NOT is (0.26 acres)	ac) 7165 1921 FOR YEAR (1998-99) 39.24 INCHES; TOTAI 7355 6974 954 2888 7 7 1 3 18 17 2 7 RAINFALL YEAR OF 51 INCHES OF RAIN 9552 9057 1239 3751 10 9 1 4 24 22 3 9 DUCTION) COMPARED TO NOT HAVING A 5 (0.26 acres) 59%	7355 6974 954 2888 1244 ac) 7165 1921 FOR YEAR (1998-99) 39.24 INCHES; TOTAL WQ SAM 7355 6974 954 2888 1244 7 7 1 3 1 18 17 2 7 3 RAINFALL YEAR OF 51 INCHES OF RAIN 9552 9057 1239 3751 1616 10 9 1 4 2 24 22 3 9 4 DUCTION) COMPARED TO NOT HAVING A SWALE 5 (0.26 acres) 59%	7355 6974 954 2888 1244 1548 ac) 7165 1921 1396 FOR YEAR (1998-99) 39.24 INCHES; TOTAL WQ SAMPLED 33.7 7355 6974 954 2888 1244 1548 7 7 1 3 1 2 18 17 2 7 3 4 RAINFALL YEAR OF 51 INCHES OF RAIN 9552 9057 1239 3751 1616 2011 10 9 1 4 2 2 24 22 3 9 4 5 DUCTION) COMPARED TO NOT HAVING A SWALE 5 (0.26 acres) 59% 78%	7355 6974 954 2888 1244 1548 501 ac) 7165 1921 1396 FOR YEAR (1998-99) 39.24 INCHES; TOTAL WQ SAMPLED 33.72 INCHES 7355 6974 954 2888 1244 1548 501 7 7 1 3 1 2 1 18 17 2 7 3 4 1 RAINFALL YEAR OF 51 INCHES OF RAIN 9552 9057 1239 3751 1616 2011 651 10 9 1 4 2 2 1 24 22 3 9 4 5 2 DUCTION) COMPARED TO NOT HAVING A SWALE 5 (0.26 acres) 59% 78%

Appendix Jb-9. Constituent loads measured for each storm event and summary data for the year

TOTAL LEAD - SUMMARY STATISTICS - YEAR TWO

DATE	RAIN	ASPHALT \	WO/SWALE	ASPHALT	W/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 mg/ac	0.260 mg/ac	0.23 mg/ac	0.26 mg/ac	0.23 mg/ac	0.26 mg/ac	0.24 mg/ac	0.26 mg/ac
08/06/99	1.29	111	43	15	31	17	25	5	15
08/12/99	0.70	85	65	15	38	7	16	1	6
08/15/99	1.23	178	158	29	44	42	40	13	32
08/19/99	0.90	154	113	16	39	25	33	7	21
08/22/99	2.95	178	271	83	394	149	162	94	163
09/11/99	0.84	97	94	11	88	2	11	4	11
09/18/99	0.85	50	77	1	18	0	1	0	0
09/25/99	1.37	112	104	95	116	31	38	11	26
10/03/99	1.22	52	45	19	95	15	29	4	16
10/04/99	0.98	21	16	3	9	1	11	0	0
11/01/99	1.63	75	155	58	125	20	37	4	16
12/17/99	0.75	40	24	0	4	0	0	0	0
01/06/00	0.79	97	189	14	110	3	34	1	3
01/24/00	0.68	43	49	0	32	0	5	0	0
01/31/00	0.70	112	96	3	177	0	7	.0	0
06/13/00	1.29	1213	983	43	270	12	116	4	44
06/22/00	0.39	83	66	0	23	0	0	0	0
06/***/00	1.39	73	137	2	30	0	20	1	0
06/29/00	0.71	92	142	9	139	3	13	2	9
07/01/00	0.81	96	146	31	66	2	37	1	2
07/04/00	1.95	308	165	133	152	82	89	48	72
07/08/00	1.07	130	48	46	104	11	33	.8	15
07/15/00	1.98	308	266	330	214	69	71	36	64
07/26/00	1.24	131	64	17	120	2	14	1	3
07/31/00	2.69	360	179	155	280	117	92	7	111
TOTALS	30.40	4201	3696	1129	2718	611	937	251	629

TOTAL LEAD - SUMMAR	Y STATIST	ICS - YEAR	TWO					
Total loads (mg/ac)	4201	3696	1129	2718	611	937	251	629
Average (two basins)(m	g/ac)	3949		1924		774		440
TOTAL RAIN MEASURED	FOR YEAR	R (1999-200	00) 33.98 IN	CHES; TOT	TAL WITH V	VQ SAMPLI	ES 30.40NC	CHES
mg/ac-yr	4201	3696	1129	2718	611	937	251	629
g/ac-yr	4.201	3.696	1.129	2.718	0.611	0.937	0.251	0.629
g/ha-yr	10.38	9.13	2.79	6.72	1.51	2.32	0.62	1.55
ADJUSTED FOR NORMA	L RAINFAL	L YEAR O	51 INCHE	S OF RAIN				
33% more (mg/ac-yr	6366	5599	1711	4119	926	1420	380	953
g/ac-yr	6.37	5.60	1.71	4.12	0.93	1.42	0.38	0.95
- g/ha-yr	15.73	13.84	4.23	10.18	2.29	3.51	0.94	2.35
LOAD EFFICIENCY (% RI	EDUCTION	COMPARI	ED TO NOT	HAVING A	SWALE			
Even numbered basins	(0.26 acres))		26%		75%		83%
Odd numbered basins w	v/ larger gar	dens	73%		85%		94%	

APPENDIX Ja-10 . Constituent loads measured for each storm event and summary data for the year TOTAL MANGANESE - YEAR ONE

DATE	RAIN	ASPHALT V	NO/SWALE	ASPHALT	W/SWALE	CONCRETE	= W/SWALE	POROUS	W/SWALE
DAIL	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basın (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac
								_	
08/05/98	0.57	448	458	35	166	10	127	7	16
08/06/98	0.68	206	193	37	121	37	77	12	29
08/07/98	1.30	328	326	90	294	62	132	43	48
08/09/98	2.47	1149	459	322	826	384	222	281	167
08/20/98	0.68	341	305	179	229	73	3	19	52
09/03/97	1.97	966	693	385	512	200	236	135	115
09/17/98	0.49	297	208	15	75	3	26	1	6
09/18/98	0.66	149	167	4	51	2	28	0	4
09/19/98	0.75	346	354	137	351	44	129	15	48
09/20/98	1.85	409	272	36	187	31	102	9	52
09/26/98	1.64	418	412	75	280	12	76	22	36
11/05/98	1.20	368	451	0	28	0	11	0	0
12/13/98	0.37	209	108	38	27	0	1	0	0
01/03/99	1.23	535	1230	223	579	87	176	89	114
01/23/99	2.60	1295	1609	398	562	424	284	151	96
03/14/99	0.82	888	1023	22	882	3	702	1	4
04/17/99	0.54	503	843	4	23	0	0	0	0
05/21/99	1.36	1890	2011	206	1362	87	1124	5	99
05/30/99	0.39	724	963	9	325	1	8	0	1
06/09/99	0.81	564	438	33	367	10	188	2	12
06/13/99	1.32	1341	821	111	725	52	363	58	98
06/16/99	1.68	685	614	130	542	111	498	72	119
06/17/99	0.77	301	465	0	145	25	106	0	23
06/18/99	1.60	425	608	125	253	21	323	56	95
07/01/99	1.53	595	305	62	256	40	141	9	43
07/07/99	0.81	308	283	23	156	9	66	1	10
07/09/99	1.17	465	98	81	221	2	125	191	48
07/14/99	1.58	389	453	8	160	5	22	1	3
07/20/99	0.88	446	322	22	133	7	48	1	35
						•		·	
TOTALS	33.72	16987	16493	2811	9838	1743	5344	1182	1374

TOTAL MANGANESE	- SUMMA	RY STAT	ristics -	EAR ON	E			
Total loads (mg/ac)	16987	16493	2811	9838	1743	5344	1182	1374
Average (two basins)(mg		16740		6324		3544		1278
TOTAL RAIN MEASURED	FOR YEAR	(1998-99)	39.24 INCH	ES; TOTAL	WQ SAM	PLED 33.7	2 INCHES	
mg/ac-yr	16987	16493	2811	9838	1743	5344	1182	1374
g/ac-yr	17	16	3	10	2	5	1	1
g/ha-yr	42	41	7	24	4	13	3	3
ADJUSTED FOR NORMA	L RAINFALL	YEAR OF	51 INCHES	OF RAIN				
23% more (mg/ac-yr)	22062	21420	3650	12777	2264	6940	1534	1784
g/ac-yr	22	21	4	13	2	7	2	2
g/ha-yr	55	53	9	32	6	17	4	4
LOAD EFFICIENCY (% RE	DUCTION)	COMPARE	D TO NOT	HAVING A	SWALE			
Even numbered basi	ns (0.26 ac	res)		40%		68%		92%
Odd numbered basin	•	•	83%		90%		93%	

Appendix Jb-10. Constituent loads measured for each storm event and summary data for the year

TOTAL MANGANESE - SUMMARY STATISTICS - YEAR TWO

DATE	RAIN	ASPHALT \	NO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 mg/ac	0.260 mg/ac	0.23 mg/ac	0.26 mg/ac	0.23 mg/ac	0.26 mg/ac	0.24 mg/ac	0.26 mg/ac
08/06/99	1.29	340	213	41	242	11	95	8	10
08/12/99	0.70	278	316	52	195	14	61	3	13
08/15/99	1.23	593	434	96	319	28	133	29	42
08/19/99	0.90	400	286	59	408	17	97	5	29
08/22/99	2.95	642	1447	165	1226	99	301	63	109
09/11/99	0.84	298	259	38	307	5	47	13	35
09/18/99	0.85	96	221	9	121	0	6	0	0
09/25/99	1.37	277	272	293	1198	88	138	29	56
10/03/99	1.22	272	210	114	404	48	128	6	29
10/04/99	0.98	80	77	8	43	4	21	0	0
11/01/99	1.63	412	536	194	825	100	149	14	36
12/17/99	0.75	79	84	0	17	0	1	0	0
01/06/00	0.79	251	531	47	574	8	84	2	10
01/24/00	0.68	281	167	0	200	0	34	0	0
01/31/00	0.70	229	249	8	534	0	31	0	0
06/13/00	1.29	3040	2534	39	119	68	453	11	66
06/22/00	0.39	204	147	2	54	0 .	2	1	0
06/***/00	1.39	213	373	8	134	1	84	2	1
06/29/00	0.71	340	390	31	310	10	46	6	25
07/01/00	0.81	240	229	45	119	4	31	1	6
07/04/00	1.95	998	645	443	485	230	233	128	146
07/08/00	1.07	493	334	134	312	27	110	23	52
07/15/00	1.98	998	918	837	849	157	270	129	148
07/26/00	1.24	393	220	58	337	6	46	2	22
07/31/00	2.69	1260	836	559	1021	405	307	219	293
TOTALS	30.40	12707	11930	3283	10352	1330	2909	692	1127

TOTAL MANGANESE - S	UMMARY S	STATISTICS	- YEAR T	WO			•	
Total loads (mg/ac)	12707	11930	3283	10352	1330	2909	692	1127
Average (two basins)(m	ıg/ac)	12319		6818		2119		910
TOTAL RAIN MEASURE	FOR YEA	R (1999-200	10) 33.98 IN	ICHES; TOT	TAL WITH V	VQ SAMPLI	ES 30.40NC	HES
mg/ac-yr	12707	11930	3283	10352	1330	2909	692	1127
g/ac-yr	12.707	11.930	3.283	10.352	1.330	2.909	0.692	1.127
g/ha-yr	31.40	29.48	8.11	25.58	3.29	7.19	1.71	2.78
ADJUSTED FOR NORMA	L RAINFA	LL YEAR OI	51 INCHE	S OF RAIN				
33% more (mg/ac-yr	19254	18076	4974	15686	2015	4407	1049	1707
g/ac-yr	19.25	18.08	4.97	15.69	2.01	4.41	1.05	1.71
g/ha-yr	47.58	44.67	12.29	38.76	4.98	10.89	2.59	4.22
LOAD EFFICIENCY (% R	EDUCTION) COMPAR	ED TO NOT	HAVING A	SWALE			
Even numbered basins	(0.26 acres)		13%		76%		91%
Odd numbered basins v	w/ larger gai	rdens	74%		90%		95%	

APPENDIX Ja-11 . Constituent loads measured for each storm event and summary data for the year TOTAL ZINC - YEAR ONE

DATE	RAIN AMOUNT	ASPHALT V	vo/swale F2	ASPHALT F7	W/SWALE F8	CONCRETE F3	W/SWALE F4	POROUS F5	w/swale F6
Basın (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac	mg/ac
08/05/98	0.57	2132	1815	203	518	115	721	47	135
08/06/98	0.57	541	482	203	284	199	372	81	184
08/07/98	1.30	1026	1994	339	1297	519	901	258	554
08/09/98	2.47	6385	2409	1558	2582	4608	2085	1918	2087
08/20/98	0.68	1762	1662	854	635	908	690	121	390
	0.68 1.97	1762	3385	916	1600	1307	1472	810	
09/03/97	0.49	1985	800	916 86	235	307	1472		1151 51
09/17/98	0.49 0.66	413	800 404	86 24	235 159	28	207	5 0	37
09/18/98	0.66	1623	1538	389	1096	735	1338	95	657
09/19/98		731	638	233	453	361	587	121	388
09/20/98	1.85				453 841			i i	
09/26/98	1.64	1394	1375	403		618	1137	146	672
11/05/98	1.20	1710	2147 409	0 164	86 84	0 2	54 3	0	0
12/13/98	0.37	1036				The state of the s			
01/03/99	1.23	1434	4241	1440	2897	768	1426	341	1200
01/23/99	2.60	5046	8046	2542	4686	1478	1647	836	1288
03/14/99	0.82	4676	3480	129	1466	37	803	8	32
04/17/99	0.54	2523	2893	24	73	0	0	0	0
05/21/99	1.36	6970	5207	943	2348	303	1047	35	298
05/30/99	0.39	1935	2312	53	463	15	38	0	4
06/09/99	0.81	2870	1753	126	388	115	282	12	103
06/13/99	1.32	9930	3494	1106	2870	655	1047	755	1467
06/16/99	1.68	2054	1565	725	1475	1383	1450	638	1179
06/17/99	0.77	765	612	0	362	342	443	0	251
06/18/99	1.60	1725	1766	935	1603	1062	2823	836	1356
07/01/99	1.53	2937	953	545	1323	460	587	116	359
07/07/99	0.81	1561	1050	131	488	103	316	8	87
07/09/99	1.17	1429	735	640	869	555	804	693	563
07/14/99	1.58	1619	1427	48	565	53	204	7	28
07/20/99	0.88	1165	723	127	416	86	226	8	98
TOTALS	22 72	70577	50242	4.400.4	22464	16044	22024	7005	14624
TOTALS	33.72	70577	59313	14894	32161	16844	22834	7895	14621

TOTAL ZINC - SUMMA	NRY STAT	ISTICS -	YEAR ON	IE .				
Total loads (mg/ac)	70577	59313	14894	32161	16844	22834	7895	14621
Average (two basins)(mg/	ac)	64945		23527		19839		11258
TOTAL RAIN MEASURED	FOR YEAR	(1998-99)	39.24 INCF	IES; TOTAL	_ WQ SAM	IPLED 33.7	72 INCHES	i
mg/ac-yr	70577	59313	14894	32161	16844	22834	7895	14621
g/ac-yr	71	59	15	32	17	23	8	15
g/ha-yr	174	147	37	79	42	56	20	36
ADJUSTED FOR NORMAL	RAINFALL	. YEAR OF	51 INCHE	S OF RAIN				
23% more (mg/ac-yr)	91658	77030	19343	41767	21875	29655	10253	18988
g/ac-yr	92	77	19	42	22	30	10	19
g/ha-yr	226	190	48	103	54	73	25	47
LOAD EFFICIENCY (% RE	DUCTION)	COMPARI	ED TO NOT	HAVING A	SWALE			
Even numbered basir	ns (0.26 ac	cres)		46%		62%		75%
Odd numbered basins w/ larger garde			79%		76%		89%	

Appendix Jb-11. Constituent loads measured for each storm event and summary data for the year

TOTAL ZINC - Y	YEAR TW	O
----------------	---------	---

DATE	RAIN	ASPHALT I	NO/SWALE	ASPHALT	W/SWALE	CONCRETE	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 mg/ac	0.260 mg/ac	0.23 mg/ac	0.26 mg/ac	0.23 mg/ac	0.26 mg/ac	0.24 mg/ac	0.26 mg/ac
08/06/99	1.29	1309	1152	413	834	166	677	52	151
08/12/99	0.70	1281	1303	209	508	197	434	27	168
08/15/99	1.23	1695	1172	770	1181	421	399	134	316
08/19/99	0.90	2104	2383	438	1033	255	884	181	214
08/22/99	2.95	1783	2279	2207	4249	1486	2305	2502	2195
09/11/99	0.84	806	1503	154	1255	32	301	110	301
09/18/99	0.85	180	621	30	335	0	13	0	0
09/25/99	1.37	399	486	1354	4435	836	1019	304	695
10/03/99	1.22	524	450	507	1291	149	290	38	156
10/04/99	0.98	215	161	34	251	27	298	0	0
11/01/99	1.63	0	0	0	0	0	0	0	0
12/17/99	0.75	837	376	. 0	57	0	7	0	0
01/06/00	0.79	1235	2098	191	2245	52	503	16	83
01/24/00	0.68	1503	784	0	697	0	196	0	0 .
01/31/00	0.70	1176	1269	34	1727	0	194	0	0
06/13/00	1.29	11101	8794	701	2913	338	1873	96	871
06/22/00	0.39	713	634	6	196	0	13	4	0
06/***/00	1.39	172	250	31	456	3	83	5	4
06/29/00	0.71	839	1124	126	771	63	516	54	98
07/01/00	0.81	961	791	71	523	29	370	12	54
07/04/00	1.95	4405	1575	1476	2368	823	2381	481	555
07/08/00	1.07	1449	1285	467	867	106	880	75	149
07/15/00	1.98	4405	3993	3070	3501	1852	1895	959	972
07/26/00	1.24	1457	957	234	1124	39	145	20	114
07/31/00	2.69	5999	4202	777	1658	6234	4125	1520	16180
				·					
TOTALS	30.40	46548	39642	13299	34472	13108	19804	6591	23277

TOTAL ZINC - SUMMAR	Y STATISTI	CS - YEAR	TWO					
Total loads (mg/ac)	46548	39642	13299	34472	13108	19804	6591	23277
Average (two basins)(m	ig/ac)	43095		23886		16456		14934
TOTAL RAIN MEASURE	D FOR YEA	R (1999-20	00) 33.98 IN	ICHES; TOT	AL WITH	WQ SAMPLI	ES 30.40N	CHES
mg/ac-yr	46548	39642	13299	34472	13108	19804	6591	23277
g/ac-yr	46.548	39.642	13.299	34.472	13.108	19.804	6.591	23.277
g/ha-yr	115.02	97.95	32.86	85.18	32.39	48.94	16.29	57.52
ADJUSTED FOR NORMA	L RAINFAI	LL YEAR O	F 51 INCHE	S OF RAIN				
33% more (mg/ac-yr	70527	60063	20150	52231	19860	30007	9986	35268
g/ac-yr	70.53	60.06	20.15	52.23	19.86	30.01	9.99	35.27
g/ha-yr	174.27	148.42	49.79	129.06	49.07	74.15	24.68	87.15
LOAD EFFICIENCY (% R	EDUCTION) COMPAR	ED TO NOT	HAVING A	SWALE			
Even numbered basins	(0.26 acres)		13%		50%		41%
Odd numbered basins v	w/ larger gar	rdens	71%		72%		86%	

APPENDIX Ja-12 . Constituent loads measured for each storm event and summary data for the year TOTAL SUSPENDED SOLIDS - YEAR ONE

DATE	RAIN	ASPHALT W		ASPHALT '	–	CONCRETE		POROUS V	
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	==>	0.26	0.26	0.23	0.26	0.23	0.26	0.24	0.26
Units	inches	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac	g/ac
08/05/98	0.57	414	514	48	267	14	709	11	23
08/06/98	0.68	202	296	50	246	24	89	20	121
08/07/98	1.30	330	824	139	562	69	691	117	85
08/09/98	2.47	1319	1373	546	1330	703	398	624	150
08/20/98	0.68	355	325	150	596	83	164	29	78
09/03/97	1.97	865	190	417	1100	53	419	79	59
09/17/98	0.49	243	158	20	121	4	30	1	12
09/18/98	0.66	123	77	6	82	3	50	0	9
09/19/98	0.75	208	388	181	564	93	323	23	57
09/20/98	1.85	333	278	0	240	27	243	29	42
09/26/98	1.64	438	684	0	1533	22	367	35	84
11/05/98	1.20	561	375	0	44	0	13	0	0
12/13/98	0.37	114	116	12	43	0	1	0	0
01/03/99	1.23	1504	2318	129	1293	130	239	150	123
01/23/99	2.60	2520	5477	253	496	16	139	221	44
03/14/99	0.82	400	296	30	189	4	41	2	8
04/17/99	0.54	149	189	6	37	0	0	0	0
05/21/99	1.36	2810	3946	111	567	104	214	8	288
05/30/99	0.39	775	218	12	119	2	9	0	1
06/09/99	0.81	1102	557	44	208	14	76	3	25
06/13/99	1.32	2427	992	159	739	79 00	249	61	145
06/16/99	1.68	787	1029	188	896	92	182	89	135
06/17/99	0.77	414	748	59 705	187	25	45 145	20 119	65 151
06/18/99 07/01/99	1.60 1.53	614 692	530 221	705 96	320 251	123 75	145 106	28	132
07/01/99	0.81	298	291	96 31	281	12	57	20 2	21
07/07/99	1.17	370	228	31 77	201 179	22	94	50	167
07/14/99	1.58	314	786	11	161	6	20	2	7
07/14/99	0.88	475	296	30	214	10	54	2	35
07720799	0.00	475	290	30	214	10	34	2	55
TOTALS	33.72	21157	23719	3512	12867	1811	5166	1724	2069

TOTAL SUSPENDED S	SOLIDS - S	SUMMAR	Y STATIS	STICS -YE	AR ONE			
Total loads (g/ac)	21157	23719	3512	12867	1811	5166	1724	2069
Average (two basins)(g/ad	c)	22438		8190		3488		1896
TOTAL RAIN MEASURED	FOR YEAR	(1998-99)	39.24 INCF	IES; TOTAL	_ WQ SAM	PLED 33.7	2 INCHES	
g/ac-yr	21157	23719	3512	12867	1811	5166	1724	2069
kg/ac-yr	21	24	4	13	2	5	2	2
kg/ha-yr	52	59	9	32	4	13	4	5
ADJUSTED FOR NORMAL	RAINFALL	YEAR OF	51 INCHE	S OF RAIN				
23% more (g/ac-yr)	27477	30804	4561	16711	2351	6708	2239	2686
kg/ac-yr	27	31	5	17	2	7	2	3
kg/ha-yr	68	76	11	41	6	17	6	7
LOAD EFFICIENCY (% RE	DUCTION)	COMPARE	D TO NOT	HAVING A	SWALE			
Even numbered basin	is (0.26 aci	res)		46%		78%		91%
Odd numbered basins	•	•	83%		91%		92%	

Appendix Jb-12. Constituent loads measured for each storm event and summary data for the year

TOTAL SUSPENDED SOLIDS - - YEAR TWO

DATE	RAIN	ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRET	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 g/ac	0.260 g/ac	0.23 g/ac	0.26 g/ac	0.23 g/ac	0.26 g/ac	0.24 g/ac	0.26 g/ac
08/06/99	1.29	371.16	200.51	257.49	422.17	39.85	63.34	38.54	39.29
08/12/99	0.70	286.07	399.27	104.22	245.41	17.71	27.53	7.46	60.98
08/12/99	1.23	876.21	407.85	249.09	159.98	81.33	122.78	35.78	380.63
08/19/99	0.90	292.50	224.02	75.97	370.69	37.68	98.61	50.35	69.92
08/22/99	2.95	596.81	692.37	332.10	370.09	214.01	643.33	172.64	504.79
09/11/99	0.84	379.63	220.58	76.64	736.96	4.21	34.14	30.46	109.29
09/18/99	0.85	126.04	55.05	18.39	146.94	0.00	3.35	0.00	0.00
09/25/99	1.37	214.65	145.17	440.12	399.17	60.22	83.60	38.01	78.52
10/03/99	1.22	304.41	65.42	249.07	310.63	35.65	75.79	27.97	213.24
10/04/99	0.98	218.40	125.95	16.86	154.13	3.54	33.89	0.00	0.00
11/01/99	1.63	477.02	455.86	390.84	732.11	59.50	134.60	19.02	79.82
12/17/99	0.75	159.44	73.53	0.00	20.10	0.00	1.24	0.00	0.00
01/06/00	0.79	365.61	572.70	95.03	797.67	6.86	38.09	4.35	30.09
01/24/00	0.68	190.99	115.08	0.00	85.78	0.00	14.84	0.00	0.00
01/31/00	0.70	224.21	148.97	16.86	163.51	0.00	22.01	0.00	0.00
06/13/00	1.29	3626.43	3363.44	848.86	515.36	12.18	328.06	26.73	183.78
06/22/00	0.39	294.98	262.72	3.07	26.81	0.00	1.48	1.24	0.00
06/***/00	1.39	242.36	743.96	15.33	162.17	0.44	25.23	3.73	1.58
06/29/00	0.71	451.86	629.08	62.84	630.61	8.19	39.08	14.92	35.64
07/01/00	0.81	213.70	490.80	44.45	504.33	3.76	42.05	8.70	19.80
07/04/00	1.95	1119.39	1476.61	895.56	827.59	228.39	173.93	356.80	262.19
07/08/00	1.07	475.15	236.76	341.29	358.19	20.98	80.75	30.19	105.87
07/15/00	1.98	1119.39	781.30	1438.09	1393.83	109.99	386.62	245.14	584.17
07/26/00	1.24	343.84	187.33	116.49	824.31	5.09	43.78	5.59	27.72
07/31/00	2.69	2025.77	947.16	822.19	1286.61	428.56	384.02	496.35	1029.69
TOTALS	30.40	14996.00	13021.49	6910.84	14651.60	1378.14	2902.16	1613.98	3817.02

TOTAL SUSPENDED S	OLIDS - SU	MMARY ST	TATISTICS	- YEAR TWO	0			
Total loads (g/ac)	14996	13021	6911	14652	1378	2902	1614	3817
Average (two basins)(g/ac)	14009		10781		2140		2715
TOTAL RAIN MEASURI	ED FOR YE	AR (1999-2	000) 33.98	INCHES; TO	OTAL WITH	WQ SAMP	LES 30.40N	NCHES
g/ac-yr	14996	13021	6911	14652	1378	2902	1614	3817
kg/ac-yr	14.996	13.021	6.911	14.652	1.378	2.902	1.614	3.817
kg/ha-yr	37.06	32.18	17.08	36.20	3.41	7.17	3.99	9.43
ADJUSTED FOR NORM	IAL RAINF	ALL YEAR	OF 51 INCH	IES OF RAI	N			
33% more (g/ac-yr)	22721.21	19729.53	10470.97	22199.40	2088.10	4397.21	2445.42	5783.36
kg/ac-yr	22.72	19.73	10.47	22.20	2.09	4.40	2.45	5.78
kg/ha-yr	56.14	48.75	25.87	54.85	5.16	10.87	6.04	14.29
LOAD EFFICIENCY (%	REDUCTIO	N) COMPA	RED TO NO	T HAVING	A SWALE			
Even numbered basin	s (0.26 acre	s)		-13%		78%		71%
Odd numbered basins	•	•	54%		91%		89%	

Appendix J-3. Constituent loads measured for each storm event and summary data for the year

NITRITE - YEAR	TWC)
----------------	-----	---

DATE	RAIN	ASPHALT	WO/SWALE	ASPHALT	W/SWALE	CONCRETI	E W/SWALE	POROUS	W/SWALE
	AMOUNT	F1	F2	F7	F8	F3	F4	F5	F6
Basin (ac	inches	0.260 g/ac	0.260 g/ac	0.23 g/ac	0.26 g/ac	0.23 g/ac	0.26 g/ac	0.24 g/ac	0.26 g/ac
		<u> </u>	<u>9</u>	J		J	3	3	9
08/06/99	1.29	0.16	0.14	0.05	0.10	0.06	0.08	0.06	0.05
08/12/99	0.70	0.11	0.08	0.07	0.06	0.02	0.05	0.01	0.02
08/15/99	1.23	0.85	0.47	0.27	0.53	0.50	0.53	0.16	0.42
08/19/99	0.90	0.56	0.54	0.18	0.41	0.41	0.53	0.12	0.34
08/22/99	2.95	0.59	0.50	0.28	3.13	0.50	1.77	0.31	0.54
09/11/99	0.84	0.48	0.60	0.05	0.33	0.02	0.33	0.05	0.15
09/18/99	0.85	0.06	0.05	0.00	0.02	0.00	0.00	0.00	0.00
09/25/99	1.37	0.13	0.16	0.11	0.14	0.10	0.13	0.04	0.09
10/03/99	1.22	0.17	0.15	0.06	0.11	0.05	0.10	0.04	0.05
10/04/99	0.98	0.07	0.05	0.01	0.03	0.02	0.04	0.00	0.00
11/01/99	1.63	0.25	na	0.25	0.31	0.13	0.40	0.03	0.17
12/17/99	0.75	0.05	0.03	0.00	0.01	0.00	0.01	0.00	0.00
01/06/00	0.79	0.32	0.56	0.06	0.37	0.03	0.40	0.01	0.04
01/24/00	0.68	0.25	0.20	0.00	0.02	0.00	0.04	0.00	0.00
01/31/00	0.70	0.29	0.23	0.01	0.13	0.00	1.36	0.00	0.00
06/13/00	1.29	1.02	1.20	0.10	0.40	0.13	0.56	0.05	0.26
06/22/00	0.39	0.11	0.03	0.00	0.02	0.00	0.01	0.00	0.00
06/***/00	1.39	0.27	0.47	0.01	0.12	0.00	0.26	0.02	0.00
06/29/00	0.71	0.38	0.30	0.04	0.13	0.04	0.24	0.03	0.08
07/01/00	0.81	0.34	0.43	0.03	0.21	0.02	0.22	0.02	0.03
07/04/00	1.95	1.17	2.13	0.66	1.78	1.10	1.67	0.51	0.74
07/08/00	1.07	0.51	0.58	na	na	0.14	0.53	0.14	0.18
07/15/00	1.98	na	na	0.61	1.08	0.93	1.52	0.43	0.70
07/26/00	1.24	0.39	18.86	0.07	10.12	0.03	6.88	0.01	0.04
07/31/00	2.69	2.60	2.10	1.24	2.81	2.18	2.21	0.43	1.31
TOTALS	30.40	11.16	29.87	4.18	22.39	6.41	19.86	2.47	5.21

NITRITE - SUMMARY STA	ATISTICS - Y	EAR TWO						
Total loads (g/ac)	11.16	29.87	4.18	22.39	6.41	19.86	2.47	5.21
Average (two basins)(g/	ac)	20.51		13.28		13.13		3.84
TOTAL RAIN MEASURED	FOR YEAR	(1999-2000) 33.98 INC	HES; TOTA	L WITH WO	SAMPLES	30.40NCH	ES
g/ac-yr	11.16	29.87	4.18	22.39	6.41	19.86	2.47	5.21
kg/ac-yr	0.011	0.030	0.004	0.022	0.006	0.020	0.002	0.005
kg/ha-yr	0.03	0.07	0.01	0.06	0.02	0.05	0.01	0.01
ADJUSTED FOR NORMA	L RAINFALI	YEAR OF	51 INCHES	OF RAIN				
33% more (g/ac-yr)	16.91	45.25	6.33	33.92	9.71	30.09	3.75	7.90
kg/ac-yr	0.02	0.05	0.01	0.03	0.01	0.03	0.00	0.01
kg/ha-yr	0.04	0.11	0.02	80.0	0.02	0.07	0.01	0.02
LOAD EFFICIENCY (% RI	EDUCTION)	COMPARE	D TO NOT I	AVING A S	SWALE			
Even numbered basins	(0.26 acres)			25%		34%		83%
Odd numbered basins v	// larger gard	iens	63%		43%		78%	

APPENDIX K

SEDIMENT DATA FOR FLORIDA AQUARIUM PARKING LOT STUDY DATA ARE IN TABLE FORMAT

Appendix K-1. Sediment samples for basins in the parking lot paved with asphalt without swale (F1, F2) and asphalt with swale (F7, F8). Abbreviations include -1=first inch of sediments (or available sediment for F1 and F2), -4=4 to 5inch depth, B=sediments in drop box, D=duplicate sample

November 1998

November 1990												
CONSTITUENT		F1-1	F1-B	F2-1	F2-B	F7-1	F7-4	F7-B	F8-1	F8-1d	F8-4	F8-B
		1 1-1	11.0	12-1	, 2-0		,,,-	11.0	10-1	10-10	104	10-0
SEMI-VOLATILE OF POLLUTANTS - SEL												
Acenaphthene	ua/ka	-	— u	<u> </u>	_ u	_ u	68 I	— U	_ u	_ U	610 I	U
Anthracene	ug/kg	<u> </u>										U
Benzo(a)anthracene		670	— Ū		_ Ū	290	210 I	— Ū	540	770 I	1100 I	_ ŭ
Benzo(a)pyrene	ug/kg	900	— U	440 I	— U	380	280	— U	640	730 J	1700	U
Benzo(b)fluoranthen		2100	— U				470	_ U		1	700 I	— U
Benzo(k)fluoranthen		730	<u> </u>				140 I	U	450	440 I	<u> </u>	
Benzo(g,h,i)perylene		U					160 I	- U			<u> </u>	
Bis(2-ethylhexyl)phth		<u> </u>					<u></u> U		<u>u</u>			
Butyl benzyl phthalat Chrysene	ug/kg ug/kg	1300			7100 — U	77 I 470	230 I	_ U			1400 I	3100 — U
Di-n-octyl phthalate	ug/kg ug/kg	U					U					
Fluoranthene	ug/kg	1900	U		— U		330	_ U		1700	3000	980 I
Fluorene	ug/kg	- U						+				
Indeno(1,2,3-cd)pyrei		_ u			_ U		160 I	_ Ū			Ū	
Phenanthrene	ug/kg	770	_				150 I					— U
Pyrene	ug/kg	1900	<u> </u>	750 I	_ U	670	310	<u> </u>	1100	1200 I	2200	770 I
METALS, TOTAL RECOVERA SEDIMENT	ABLE -											
Aluminum_308	mg/kg	3590	1110	4300	2940	4650	1050 A	1650	3410	1610	1680	1870
Cadmium	mg/kg	1	0.24 1	0.6 1	0.56 I	2.2	0.24 I	0.46 I	0.59 I	0.48	0.47 I	0.48 I
Chromium	mg/kg	12.8	3.45	13.4	10	30	5.79 A		11.1	8.19	8.56	13.2
Copper	mg/kg	92.3	14.2	38.1	24.5	81.4	2.45 A		86.1	7.36	7.64	43.4
Iron_271	mg/kg	8940	2170	7970	6670	10500	658 A		6730	1170 *	1070 *	4330
Lead	mg/kg	21.8 J		17 J		28.8 J*			21.9 J*			16
Manganese	mg/kg	179	46.3	186	175	290	14.1 A		145	18.8	25.6	64.4
Nickel Zinc	mg/kg	12 248	2 U 57.6 J*		5.5 I 129 J*	8.3 258	2 U 30.4 J*		7.6 I	2 U 52.9 *	2.4 i 47.6 j*	7.2 I 131 J*
ZINC	mg/kg	240	37.6 3	200	129 J	256	30.4 3	71.3 3	171	52.9	47.0 3	131 3
ORGANONITROGE PHOSPHORUS PEST SEDIMENT												
Chlorpyrifos Ethyl	ug/kg	— U*	— U	— U*	6.7 I	— U*	— U	— U	— υ	— U	— U	U
Diazanon	ug/kg	— Ü*			41.0	— Ŭ*	_ ŭ		— Ū		— Ŭ	
Parathion Methyl	ug/kg	_ U*			— U	— U*	— U	<u> </u>	— U	_ U	U	
ORGANOCHLOR PESTICIDES-SC												
Aldrin	ug/kg	*	_ U	- *	— U	— U*	U	<u> </u>	*	26.0 N*	*	
Chlordane	ug/kg	16.0	— U		15.0	17.0 I			15.0 I		26.0 I	17.0 I
DDD-p,p'	ug/kg	U	- U	_ U	U	_ U	_ U	U	— U	— U	— U	— U
DDE-p,p'	ug/kg	1.0 l							0.7	1.7 I	— U	
DDT-p,p'	ug/kg	_ u				U			<u> </u>			
Dieldrin	ug/kg	<u> </u>		<u> </u>				7.8	U			3.3 J*
Endosulfan Sulfate	ug/kg	<u> </u>										
PCB-1248 PCB-1260	ug/kg	_ U	1				U			 		_ U
F 05-1200	ug/kg		<u> </u>		0		0		0	13.0 1	17.0	0
TOTAL KJELDA NITROGEN - SO	(ACCOMMONS)											
TKN	mg/kg	380.0	140.0	610.0	550.0	1600	190.0	860.0	440.0	940.0	780.0	580.0
TOTAL PHOSPHOR SOIL	ROUS -											
Total - P	mg/kg	420.0	240.0 *	410.0 *	490.0	550.0 J*	450.0 A	560.0	360.0 J*	980.0	580.0 *	340.0
			, =			, 555.5	,					

Key: A=Value reported is the mean of two or more determinations. I= Value reported is less than the minimum quantitation limit, and greater or equal to the minimum detection limit. J=Estimated value. N=Presumptive evidence of presence of material. U=Material analyzed but not detected. *=Had a laboratorycomment.

Appendix K-2. Sediment samples for basins in the parking lot pav ed with cement (F3 - F4) or permeable paving (F5 - F6). Other abbreviations include: -1=first inch of sediments, -4=4 to 5 inch depth, B =sediments in drop box, d=duplicate sample.

November 1998

November 1998	T				() () () () () () () () () ()	100 miles		7.77 (513)			TO THE TANK AND ADDRESS OF THE				
CONSTITUENT	F3-1		F3-4	F3-B	F4-1	F4-4	F4-B	F5-1	F5-4	5-4d	F5-B	F6-1	F6-4	6-4d	F6-B
											T				
SEMI-VOLATILE ORGANIC								1					1		
POLLUTANTS - SEDIMENT															
	 		ļ	-	<u> </u>	<u> </u>				-		1		ļ	
	+				1						 	-			1
Acenaphthene ug/kg		U	_ u	390 I	U	— U	480 1	- u	— U	_ u	_ U	— u	U	_ U	_ u
		Ü	<u> </u>		_ U	_ U		_ U		— U					
Anthracene ug/kg		퓻	730 I		710 I	400 I	1800	_ U		430 I	89 I	_ U		_ U	
Benzo(a)anthracene ug/kg		ř					1600	_ U				<u> </u>		<u> </u>	_
Benzo(a)pyrene ug/kg			670 I	1	700 I	430 I	2800	520 I	400 I 590 I	470 I 700 I	99 I 170 I	400 I	460 I	500 I	_ U
Benzo(b)fluoranthene ug/kg Benzo(k)fluoranthene ug/kg		Ü	360 I		420 I	U				400 I		400 I		380 I	<u>-</u>
		Ü	U			420 I	440 I	_ U		U	_ U			_ U	
		Ü	_			420 I	440 I — U	_ U		— U					
Bis(2-ethylhexyl)phthala ug/kg		U	U		_ U	_ U		_ u		_ U	— U			U	
Butyl benzyl phthalate ug/kg		*****					1800	_			·		<u> </u>		
Chrysene ug/kg		Ü	740 I		750 1	480 I		_ U		450 I	100 i	— U			_ U
Di-n-octyl phthalate ug/kg		Ü	U			U	U	_ U		_ U	U	U			
Fluoranthene ug/kg		U	1600	3000	1700	820 I	4400	580 I	670 I	780 1	170 I	<u> </u>		680 I	770 I
Fluorene ug/kg	+	U	U			_ U		_ U		- U	U	- U		_ U	_ U
Indeno(1,2,3-cd)pyrene ug/kg		Ü	_ U		_ U	340 I	510 I	<u> </u>	<u> </u>	_ U	_ U	_ U	U	U	U
Phenanthrene ug/kg		1	1300 I		1000 I	340 I		_ U		340 I	<u> </u>	+	360 I	420 I	<u> </u>
Pyrene ug/kg	620	ı	1200 I	2000	1300	760 I	3300	490 I	550 I	660 I	150 I	370 I	500 I	550 1	<u> </u>
				<u> </u>	<u> </u>				ļ					ļ	ļ
METH C TOTAL]									ļ		İ
METALS, TOTAL					ļ			İ							
RECOVERABLE - SEDIMENT										ĺ					
	 			-			 	_		<u> </u>	 	 	 		
Al 200	4050	_	4220	4440	4670	3310	2220	1450	2050	2900	1300	4670	2520	2430	2440
	1250		1330	1410	1670		2330					1670	2530		
Cadmium mg/kg	0.4		0.34 1	0.44 1	0.34 1	0.43 1	0.59 1	0.43 I	0.37 1	0.4 1	0.39 1	0.37 1	0.53 1	0.4	0.8
Chromium mg/kg	7.42		6.31	12.7	8.08	12.7	10.6	10.4	8.66	11.7	6.62	7.85	13.7	10.1	8.99
Copper mg/kg			5.53	19.7	17.4	6.22	27.1	22.6	6.29	5.39	7.29	11.7	14.4	5.75	22.2
Iron_271 mg/kg			1140	4960	1320	2660	3620	1400	1350	1550	1340	1430	7400	1790	4010
Lead mg/kg			14 J		12	16 J*	17 J*	16	21	20.8	11	16	23	23.9	15
Manganese mg/kg			21.1	53.8	21.5	23.1	99.1	28.2	25.7	25.1	38.7	31.2	49.3	20.4	79.6
Nickel mg/kg			2 U		2.1 I	2.3 I	4.5 I	4 1	2 1	2.2	2 U	2.2 1	4.6 1	2.6 I	5.3 I
Zinc mg/kg	76.4	J*	35.5	43.3	59.4 J*	39.9	121	115 J*	64.9 J*	47.6 J*	42.6 J*	80.4 J*	44.6 J*	43.3 J*	130 J*
ORGANONITROGEN AND PHOSPHORUS PESTICIDES - SEDIMENT															
Chlorpyrifos Ethyl ug/kg	 	U	— U	_ u	_ U	— U	8.3 N*	— U	_ u	— U	_ U	_ U	<u>υ</u>	_ U	— U
Diazanon ug/kg		Ü	U		_ U	_ U	12.0 N*	_ U	_ U	_ U	_ U	_ U	U	— U — U	25.0
Parathion Methyl ug/kg		Ü	_ U		<u>U</u>	_ U	_ U	_ U	_ U	_ U	_ U	_ U	_ U	<u> </u>	U
raratmon wetnyi ug/kg	!	U	_ 0	- 0										- 0	- 0
	 	-					-								
ORGANOCHLORINE PESTICIDES-SOIL															
Ataluia	ļ	*		—	-	*	*	— U					_ U		U
Aldrin ug/kg		_	*	 - *	+ - 				<u> </u>	<u> </u>	<u> </u>	_ U		<u> </u>	_
Chlordane ug/kg		U	U			<u> </u>		9.7 1	U	— U	U		U	U	
DDD-p,p' ug/kg		U	<u> </u>	•		_ U	U	1.2 1	7.1	4.7	_ U	<u> </u>	1.3 I	_ U	1.0 i
DDE-p,p' ug/kg			4.2	4.0	— U	— U		5.9	36.0	30.0	2.3 1	1.8 I	3.0 1	2.2 1	
DDT-p,p' ug/kg			4.7	— U						12.0	<u> </u>				— U
Dieldrin ug/kg		U	- U					— U			— U			<u> </u>	
Endosulfan Sulfate ug/kg		U	U								<u> </u>		<u> </u>	- U	
PCB-1248 ug/kg		U		81.0	U										
PCB-1260 ug/kg	16.0		16.0 I	16.0 I	— U	12.0 I	13.0 I	_ U	25.0 I	23.0 I	— U	— U	— U	— U	13.0 l
TOTAL KJELDAHL NITROGEN - SOIL															
TKN g/kg	2000		690	170	1300	750	550	2000	470	510	350	2200	680	700	520
TOTAL PHOSPHOROUS -								-							
	720		040	070	E40	GEO	000 **	700	570 *	800 J*	670 1	1700 1*	900 *	1200 J*	470
Total - P g/kg	730		910	870	540	650	900 J*	/00	570 *	OUU J	6/UJ	1700 J*	900	1200 J"	410

Key: A=Value reported is the mean of two or more determinations. I= Value reported is less than the minimum quantitation limit, and greater or equal to the minimum detection limit. J=Estimated value. N=Presumptive evidence of presence of material. U=Material

Appendix K-3. Sediment samples for the strand and pond used for additional treatment for parking lot runoff. See Appendix k-1 for abbreviations

November 1998

CONSTITUENT	3.4	S9-1		S9-4		S10-1		S10-4		S10-4d		P11-1	P11-4	•••••	P12-1		P12-1d	i i	P12-4	
CORDITION						0.0-1		5.53		J.5.50					, ;£"1		40			
SEMI-VOLATILE ORG	ANIC			l																
POLLUTANTS - SEDII		[1		İ									İ	
FOLLO IAITIO - OLDI	******					1													i	
													<u> </u>							_
Acenaphthene	ug/kg		U	_	U		U		Ü		U	<u> </u>		U		U	_=_	U		٠
Anthracene	ug/kg		U	_	U		Ų		Ü		ņ	— U		U		Ü		Ų		Ų
Benzo(a)anthracene	ug/kg		U		U	72	<u> </u>	1300	1	770	!	1100 I	420	1	180	1	280	<u> </u>		Ļ
Benzo(a)pyrene	ug/kg		U		U	84	<u> </u>	1300	i	760	<u>I</u>	1200 I	420	Ļ	220	1	380	<u> </u>		Ļ
Benzo(b)fluoranthene	ug/kg	190	<u></u>		U			2300		1200	1	3300	770	1	380	!	650	<u>.</u>	520	!
Benzo(k)fluoranthene	ug/kg		U		U		U	630	<u> </u>		1	990 I		U		U	220	<u> </u>		٠
Benzo(g,h,i)perylene	ug/kg		U	_	U		Ů	300	1		U	_ U		U		U	170	<u> </u>		ι
Bis(2-ethylhexyl)phthala			U		U				U		U	U		U		U		U		Ļ
Butyl benzyl phthalate	ug/kg	<u> </u>	U		U		U		U		U	_ U		U		U		U	_	L
Chrysene	ug/kg	<u> </u>	U		U	92		1400			1	1300 I		L	210	П	320	1		Ļ
Di-n-octyl phthalate	ug/kg		U		U		U	-	U		U	— U		U		U		U		L
Fluoranthene	ug/kg	<u> </u>	U	450	1	120	1	2600		1400		2800		L	400	Ц	580	1	460	ł
Fluorene	ug/kg	<u></u>	U		U		U		Ų		U	_ U		U		U		U	<u> </u>	U
Indeno(1,2,3-cd)pyrene	ug/kg		U	_	U	_	U	590	1		U	440 I		U		U		U	_	U
Phenanthrene	ug/kg		U		U		U	770			1	1700 I	820	1	200	4	340	1	_	U
Pyrene	ug/kg		U		U	110	1	2400		1200	ı	2100	800	ı	360	1	520		400	_!
		ļ						ļ		<u> </u>	_		1			_				
METALS, TOTAL																				
RECOVERABLE - SED		1			- 1					1		[1			ļ				
WEGGAEKWOFE . SER	strike (4 i	1	i		ĺ											İ				
			-								•		1							
Aluminum 308	mg/kg	9530		18900		8190	Α	3270		3730	Α	2990	2240		1780		2620		2260	
Cadmium	mg/kg	0.45	Т	0.41	1	0.39	î	0.72	Т		î	0.52 I	0.56	Т	0.38	1	0.6	1	0.56	ī
Chromium	mg/kg	41.7		45.1		40.8	Á	16.2			À	12.7	9.67	-	7.96		12.9	-	9.67	_
Copper	mg/kg	6.84		3.84	-	25.3	Â	17.4			Â	103	12.5		60.9	\dashv	9.45		11.1	
Iron 271	mg/kg	6560		5090	\dashv	5750	Â	4920			Â	3190	3130	-	1720		2420		2980	
Lead	mg/kg	12		11	J	8.9	Â	27.6	J*		<u></u>	22.8		J*	15	-	19	J*	20.6	j,
		16.8		16.4	-	17.9	Â	43.8	J		A	36.7	32.1	-	18.7	-	27.4	<u> </u>	28.1	
Manganese Niekal	mg/kg	2.5		2.6	-	2.2	^	3.6			_	36. <i>1</i>	2.4	ī	18.7	U	2.7	1	26.1	1
Nickel	mg/kg	20.9	+	33.1		41.4]*	54.3			I A	67.3 J*	52.4	1		ľ	38.5		49.2	
Zinc	mg/kg	20.9		33.1	-	41.4	J''	34.3		52.3	٨	01.3 J	32.4		30.0	•	36.5		43.2	
ORGANONITROGEN PHOSPHORUS PESTIC SEDIMENT																				
Chlorpyrifos Ethyl	ug/kg	<u> </u>	U		υ	_	U		U		U	_ U		Ü		U		U	_	U
Diazanon	ug/kg ug/kg	<u> </u>	Ü		U		Ü		Ü		Ü	_ U		Ü		Ü		Ü		Ü
			U	_	Ü		Ü	-	Ü		ü	_ U		N*		Ü		Ü		U
Parathion Methyl	ug/kg	H-	U		U		U	_	U		J	_ U	15.0	W."		U		U		U
		-			\dashv		_			L			 							
ORGANOCHLORIN PESTICIDES-SOII																				
Aldrin	ug/kg	-	U		U	_	U*		U*		u	U*	 _	U*	_	U		U*	_	U'
Chlordane	ug/kg	7.4	ĭ	6.5	ĭ		Ü	41.0		51.0	~	_ U		Ü	7.6	ī	7.6	Ť	8.2	Ť
DDD-p,p'	ug/kg	7.4	Ü		Ü		Ü	2.5	ī	4.6	-	_ U		Ü		ΰ	7.0	Ü		Ü
	ug/kg ug/kg	8.8	J	1.8	ı		U	17.0	•	15.0	\dashv			٠	4.6	٦		-	5 2	J
DDE-p,p'		5.7		3.1	H		U				-	7.7 J* — U	12.0	U		U	4.3	'	5.3	U
DDT-p,p' Dieldrin	ug/kg	5.7	U	3.1	Ü	_	U	17.0	U	20.0	U	_ U		Ü		υ		Ü		ü
	ug/kg	-					_				Ü							Ü		Ü
Endosulfan Sulfate PCB-1248	ug/kg	<u> </u>	Ü		U		U		U		Ü	— U		U U		U				Ü
	ug/kg	 -	IJ		U		U	22.0				U				U	17.0	U	12.0	
PCB-1260	ug/kg		U	_	U	_	U	23.0			U	17.0 I	13.0	<u> </u>	22.0	1	17.0	_	13.0	
TOTAL KJELDAHL NITR SOIL	OGEN -																			
TKN	mg/kg	350.0		250.0	_	590.0	Α	860.0		810.0	Α	500.0	240.0	4	480.0	\dashv	260.0	J*	220.0	
		—						 								-				
TOTAL PHOSPHOROUS	- SOIL				l						- 1									

Key: A=Value reported is the mean of two or more determinations. I= Value reported is less than the minimum quantitation limit, and greater or equal to the minimum detection limit. J=Estimated value. N=Presumptive evidence of presence of material. U=Material analyzed but not detected. *=See comment page at the end of this section.

Appendix K-4. Water quality samples taken at the same time as the sediment samples (Nov. 1998)

CONSTITUENT	UNITS	F1-B	F5-B	F5-Bd	F7-B	P11	P12	P12d
CADMIUM	ug/L (ppb)	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
COPPER	ug/L (ppb)	7.3	4.1	3.0	10.9	14.8	9.9	9.3
IRON	ug/L (ppb)	180	330	410	640	390	270	240
LEAD	ug/L (ppb)	2.9	<2	2.0	5.1	<2	<2	<2
MANGANESE	ug/L (ppb)	16.7	171.0	171.0	19.6	178.0	91.2	14.4
ZINC	mg/L (ppm	50	30	40	60	<30	<30	<30
TSS	mg/L	4.49	10.07	14.08	12.26	7.98	4.50	3.67
TOTAL PHOSPHORU	mg/L as P	0.12	0.17	0.02	0.13	0.11	0.13	0.12
ORTHO PHOSPHOR.	mg/L (ppm	0.08	0.15	0.14	0.07	0.01	0.04	0.06
NITROGEN, TOTAL	mg/L as N	0.8	1.6	1.4	0.7	1.9	2.0	1.6
AMMONIA	mg/L as N	<.01	0.08	0.01	<.01	<.01	<.01	<.01
NITRATE	mg/L as N	0.03	0.02	0.02	0.03	0.01	<.01	<.01
NITRITE	mg/L as N	0.01	<.01	<.01	0.01	<.01	<.01	<.01
ORG. NITROGEN								
CHLORIDE	mg/L (ppm	5.0	10.2	10.3	4.6	46.2	41.5	41.1
POTASSIUM	mg/L (ppm	3.3	10.7	10.7	2.9	28.8	27.7	27.2
SODIUM	mg/L (ppm	7.6	24.9	24.9	7.2	36.2	35.7	35.2
SULFATE	mg/L (ppm	22.3	67.7	67.5	18.6	274.0	269.0	266.0
CALCIUM	mg/L (ppm	35.60	90.50	89.50	33.20	107.00	110.00	108.00
MAGNESIUM	mg/L (ppm	2.19	11.40	11.60	1.99	15.00	14.80	14.40
HARDNESS	mg/L as C	97.90	272.97	271.25	91.10	328.95	335.62	328.98

Appendix K-5. Sediment samples for basins in the parking lot pav ed with asphalt without swale (F1, F2) and asphalt with swale (F7, F8). Abbreviations include -1=first inch of sediments (or av ailable sediment for F1 and F2), -4=4 to 5inch depth, B=sediments in drop box, D=duplicate sample

OCTOBER 2000

OCTOBER 2000												special contracts	
CONSTITUENT		F1-1		F2-1		F7-1		F7-4		F8-1		F8-4	
SEMI-VOLATILE ORGANIC	5			K.E									
Acenaphthene u	ıg/kg			 		_				_		110	
	ıg/kg	_		_		-		-		_		82	1
	ıg/kg	-				_		_		_		310	
	ıg/kg	-		1100	I	_		_		-		840	
	ıg/kg	-		1800	I	_		_		_		750	
Benzo(b)fluoranthene u	ıg/kg	_		3900		810	I	-		1200	I	1300	
Benzo(k)fluoranthene u	ıg/kg	_		1300	I	_		-		_		480.0	
Benzo(g,h,i)perylene u	ıg/kg	_		890	I	_				T -		300.0	
	ıg/kg	-		-				_		_		_	
Butyl benzyl phthalate u	ıg/kg	_		-		_		_		_		-	
Chrysene u	ıg/kg	_		2300	I	_		_		740	I	880	
Di-n-octyl phthalate u	ıg/kg	_		_		_		-		_		_	
Dibenzo(a,h)anthracene		_		· _ ·				_ ` .				97.0	I
Diethyl phthalate u	g/kg			-		_		_				-	
	g/kg	_		3800		-		_		1300	I	180	
Fluorene u	g/kg	_		_		_						150.0	I
Indeno(1,2,3-cd)pyrene u	g/kg	-		880	I	-		_		_		290.0	
Phenanthrene u	g/kg	-		1500	I	_		_		_		1300	
Pyrene u	g/kg	1		4000	I	790	J	-		1100	J	1700	J
METALS													
Aluminum_308 n	ng/kg	3600		6030		2210		953		3490		1750	A
Cadmium m	ng/kg	0.82		1.4		1.2		0.36	Ĭ	0.91		0.59	1
Chromium m	ng/kg	7.8		20.1		22.9		6.8		8.8		8.8	A
Copper n	ng/kg	41.5		94.1		54.7		9.7		47.7		8.9	A
lron_271 m	ng/kg	7130		10900		3840		919		7010		1450	A
Lead n	ng/kg	12.6		40.8		22.2		7.1		23		16.7	Α
Manganese m	ng/kg	174.0		319.0		104.0		22.9		195.0		26.2	A
	ng/kg	9.3		18.0		5.4	I	1.9	U	6.8	I	2.5	I
Zinc m	ng/kg	150.0		400.0		181.0		28.0	I	170.0		46.1	A
PESTICIDES													
Chlorpyrifos Ethyl u	g/kg	_		_		_				_		_	
	g/kg												
	g/kg					_		_		_		9.6	I
	g/kg	_		0.58	ī	0.67	ī	_		1.30	I	15.00	
-	g/kg	11.0	ī	34.0	-	35.0	ī	9.6		26.0	Ī	25.0	I
	g/kg	-	_	-		-		-					
	g/kg g/kg	0.8	I	2.2	I	1.6	I	_		1.4	I	2.9	1
	g/kg	1.5	Ī	_		4.1	4	_		2.5	i	2.0	ì
	g/kg	_	-	-		-		_				91.00	N
	g/kg	6.50	J	8.70	J	-		_		10.00	J	_	
	g/kg				Ť		4.7	11				1,100	7.77
	g/kg									- ''			-
	g/kg	_		_		-		_		_		_	
	g/kg			_		-		_		_		-	
TOTAL KJELDAHL N													
	ng/kg	200	J	1200	J	2300	J	750	j	2000	J	690	J
				<u> </u>									
TOTAL PHOSPHOROUS			_		_					46.5	_		_
Total - P m	ng/kg	390	J	1200	J	620	J	760	J	420	J	690	J

Key: A=Value reported is the mean of two or more determinations. I= Value reported is less than the minimum quantitation limit, and greater or equal to the minimum detection limit. J=Estimated value. N=Presumptive evidence of presence of material. U=Material analyzed but not detected. *=See comment page at the end of this section.

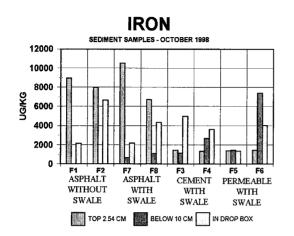
Appendix K-6. Sediment samples for basins in the parking lot paved with cement (F3 - F4) or permeable paving (F5 - F6). Other abbreviations include: -1=first inch of sediments, -4=4 to 5 inch depth, B=sediments in drop box, d=duplicate sample.

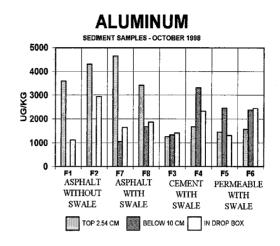
OCTOBER 2000		1						70.5			25.000										_
CONSTITUENT		F3-1		F3-4		F4-1		F4-4		F5-1		F5-4		F6-1		F6-1D		F6-4		F6-4d	
CONTROL																. U-12				, 0 - 10	
A																					_
Acenaphthene	ug/kg	-				<u> </u>		-				<u> </u>		-	-	-		-		 	
Acenaphthylene	ug/kg			-		340.0	ī			-,					\dashv				112		
Anthracene Benzo(a)anthracene	ug/kg ug/kg	340	ı	410	ı	780.0	i			750.0	1	520	I	_	\dashv	_		_		350.0	1
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	590	- <u>i</u>	380	I	660.0	- <u>†</u>			850.0	<u>, </u>	400		_	\dashv	_				330.0	
Benzo(b)fluoranthene	ug/kg	370	•	570	I	1000	<u> 1</u>	440.0	1	1600	i	640	<u> </u>	1	ī	510	I	400	I	480	1
Benzo(k)fluoranthene	ug/kg	<u> </u>		-		320.0	ī	-		1000	•	-		010	1		-	400		-	
Benzo(g,h,i)perylene	ug/kg	-	_	-		350.0	Ť	_		730.0	ī			_	ᅥ	_					_
Bis(2-ethylhexyl)phthala		_		-				4900	I	75010		_			-			٠		_	_
Butyl benzyl phthalate	ug/kg			 _ _		l _		_		_	•	_		_	T			_		_	_
Chrysene	ug/kg	440	1	450	I	720.0	ī			1300	I	540	ī	470.0	ĭ	390.0	ı	330	I	370	ı
Di-n-octyl phthalate	ug/kg	_		-		_		_		_		_		_	Ť	_	-	-		_	_
Dibenzo(a,h)anthracene	-39			_				_		_				_							_
Diethyl phthalate	ug/kg	_		320	I	_		_	-	_		_		-		-		_	-	_	
Fluoranthene	ug/kg	630	I	670	Ī	1500		450.0		1700		760	I	620.0	ī	510.0	I	420	I	610	I
Fluorene	ug/kg	-		-		-		-		-		-	_	-		-	_	-		-	<u>-</u>
Indeno(1,2,3-cd)pyrene	ug/kg	_		_		340.0	I	_		_	-	_		_						_	_
Phenanthrene	ug/kg	_		_		1300	_	_		720.0	I	360	I	_		_		_			
Pyrene	ug/kg	740	I	720	I	1400		430.0	I	1800	I	950	I	650	I	550	I	520	I	630	I
																					Ī
METALS															1						_
Aluminum_308	mg/kg	1130	J	1320	J	1620	ΑJ	2400	J	4060	J	1710	J	1560	J	2200	J	2600	J	1530	J
Cadmium	mg/kg	0.52	I	0.44	I	0.31	I	0.62	I	1		0.45	I	0.64	I	0.61	I	0.52	I	0.56	I
Chromium	mg/kg	7.3		6.6		8.9	A	9,1		45.9		10.7		15.6	T	13.5		10.3		7.2	
Copper	mg/kg	28.4		6.4		15.0	A	8.3		111.0		6.5		38.2		41.5		6.9		5.2	
Iron_271	mg/kg	2220		1610		1320	A	22500		4960		1430		1830		2040		1450		1430	
Lead	mg/kg	17	J	22.1	J	14	AJ	30.2	J	42.7	J	26.9	J	22.7	J	22.5	J	13.3	J	19.7	J
Manganese	mg/kg	35.1		33.4		22.4	A	36.3		94.0		28.0		50.3		52.4		20.4		21.0	
Nickel	mg/kg	2.5	I	1.9	U	2.2	I	1.8	U	13.9		2.4	I	3.8	1	4.4	I	1.9	U	1.9	U
Zinc	mg/kg	146.0	J	50.2	J	68.6	AJ	35.7	J	374.0	J	64.4	J	157.0	J	180.0	J	32.0	I	31.0	I
PESTICIDES																					_
Chlorpyrifos Ethyl	ug/kg	_		_		_		_		_		_		_	\dashv		\neg			_	_
Diazanon	ug/kg			_		_									+		\neg			_	_
Parathion Methyl	ug/kg	-		_						_		_		_	†	_		_		_	_
Aldrin	ug/kg	_		_	•	_		_		_		_		_	7	_				_	_
Chlordane	ug/kg	10.0	I	_		_		_		29.0	I			16.0	I	19.0	I	_		_	_
DDD-p,p'	ug/kg	1.8	Ī	3.2	I	_		_		_		4.8		-	\top	_				_	_
DDE-p,p'	ug/kg	5.9		9.9		-		1.7	I	4.5		27.0			I	2.3	I	0.9	I	1.6	I
DDT-p,p'	ug/kg	6.5		13		_		1.5	Ī	5.0	J	14.0			Ī	2.9	Ī	-		1.7	Ī
Dieldrin	ug/kg	_		_		_		_		_		_		_		_		-			
Endosulfan Sulfate	ug/kg	_		_		_		_		26.00	J	_		_	7	11.00	J			_	_
Endrin Aldehyde	ug/kg		e i i i		n vi	, lay			:										41.7		
Methoxychlor	ug/kg	1,524	y and			Dar S						Japan er		i italia		3			3 1		
PCB-1248	ug/kg	1		_		_		_				-		_				_		_	
PCB-1260	ug/kg	11	I	16	I					19.0	I	22.0	I			_		_			
Total Violdell M									_						4						
Total Kjeldahl - N		2000	_	250	4 7	2000	_	50 0	_	F100	_	260	_	F 400	+	5000	Ţ	022	_	500	_
TKN	mg/kg	3900	J	350	AJ	2000	J	700	J	5100	J	360	J	5400	J	5900	J	830	J	590	J
Total - Phosphorus															1						
Total - P		1000		1100		510									-		_			910	_

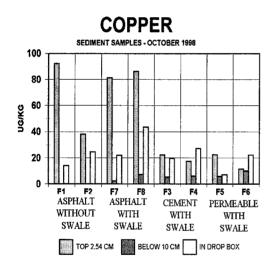
Key: A=Value reported is the mean of two or more determinations. I= Value reported is less than the minimum quantitation limit, and greater or equal to the minimum detection limit. J=Estimated value. N=Presumptive evidence of presence of material. U=Material analyzed but not detected.

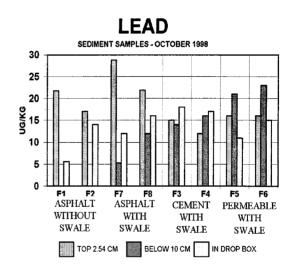
Appendix K-7. Sediment samples for the strand and pond used for additional treatment for parking lot runoff. In the repair of the the berm, the sediments in the strand and pond were altered see Table K-5 for abbreviations

OCTOBER 2000

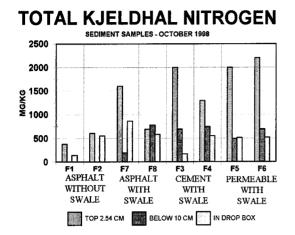

OCTOBER 2000																	
CONSTITUENT		S10-1		S10-4		P11-1		P11-4		P12-1		P12-4	138	P13-1		P13-4	<u> </u>
COMPUGE ATHE OR	eraniteri.																
SEMI-VOLATILE ORG	JANIC													ļ			
Acenaphthene	ug/kg	 _		-		_		_		_		_		-		-	
Acenaphthylene	ug/kg	_												_		_	
Anthracene	ug/kg	_		-		-		_		_		-		-		_	
Benzo(a)anthracene	ug/kg	_		_		_		280	I	_		430	I			180	I
Benzo(a)pyrene	ug/kg	_		-		-		250	I			370	I			150	I
Benzo(b)fluoranthene	ug/kg			-						_		590	Į	_		250	I
Benzo(k)fluoranthene	ug/kg					_		-				180.0	I				
Benzo(g,h,i)perylene	ug/kg			_		_			I			260.0	<u>I</u>	_			
Bis(2-ethylhexyl)phthala				-		-		-				_					
Butyl benzyl phthalate	ug/kg	-		390	I					-		-		-			
Chrysene	ug/kg			<u> </u>				310	I	-		440	I			190	I
Di-n-octyl phthalate	ug/kg			-		-	_	-				_		-		-	
Dibenzo(a,h)anthracene								-						 -		-	<u> </u>
Diethyl phthalate	ug/kg			_		- 21 -	-	610	1	-		550	I	 -		220	1
Fluoranthene Fluorene	ug/kg ug/kg	 -		-				- 010	1			220		 -		220	
Indeno(1,2,3-cd)pyrene	ug/kg ug/kg	_						190.0	I			250.0	I	-			
Phenanthrene	ug/kg							320	Ť	_		350	i	 -		_	
Pyrene	ug/kg	_						830		_		780	_			340	I
· y.o	ug, ng							000				700		1			
METALS															•		
Aluminum 308	mg/kg	3030	AJ	1070.0	J	4750.0		1800	J	5490		2940	_	1620	J	1290	J
Cadmium	mg/kg	-	U	-	Ü	0.84		0.67	<u> </u>	1.2		0.64		0.6	ı	0.39	ij
Chromium	mg/kg	1.5	A	2.10		17.10		8.3		23.6		8.9		8.6		5.9	
Copper	mg/kg	3.6	A	1.30	I	323.00		32.4		241.0		19.0		18.1		11.1	
iron 271	mg/kg	148	A	279.00		3840.0		3410		4870		2680		2340		1100	
Lead	mg/kg	107	I	2.20	I	37.10		18.1		51.3		29.2		20.5		15.8	
Manganese	mg/kg	3.8	A	2.50		52.30		33.8		46.0	J	37.7	J	69.2		15.6	
Nickel	mg/kg	_	U	_	U	4.50	J	2.2	I	6.4	I	2.0	I		U		U
Zinc	mg/kg		U	_	U	90.40	-	37.5		178.0		66.9		55.9		31.1	
PESTICIDES																	
Chlorpyrifos Ethyl	ug/kg	_		_		_		_				_		_		_	
Diazanon	ug/kg	_		_		_				<u> </u>		_				_	
Parathion Methyl	ug/kg			_		_		_		_		_		_		-	
Aldrin	ug/kg	_		_		_		_		_						_	
Chlordane	ug/kg	_		_		31.0	I	_		_		_		_			
DDD-p,p'	ug/kg	_		_		-				_							
DDE-p,p'	ug/kg	-		_		7.3		7.5				8.8		-			
DDT-p,p'	ug/kg	-		_		_						-				-	
Dieldrin	ug/kg	-												ļ			
Endosulfan Sulfate	ug/kg			0.8	N	7.6	N			_		-				-	
Endrin Aldehyde	ug/kg	-						-		2.90	N	-		-			
Methoxychlor	ug/kg	-				18.0	N	-		23.00	N	13.00	N				
PCB-1248	ug/kg	-		-			_									 -	
PCB-1260	ug/kg	_		_		_		-				-				-	
TOTAL KJELDAHL N																	
TKN	mg/kg	1600		570.0	A	3100.0		380		6000		370		1400		770	
TOTAL										-						 	
<i>PHOSPHOROUS</i> Total - P	mg/kg	120		110.0	A	2000.0	_	1200		2700		1600		1700		740	
(4) - 1	9,179	1 440		1 10.0	71	_ #UUUU.U		-200								1 1 10	

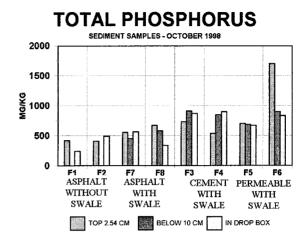

Key: A=Value reported is the mean of two or more determinations. I= Value reported is less than the minimum quantitation limit, and greater or equal to the minimum detection limit. J=Estimated value. N=Presumptive evidence of presence of material. U=Material analyzed but not detected.


Appendix K-8. Water quality samples taken at the same time as the sediment samples (October 2000).


CONSTITUENT	UNITS	F1	F3	F5	F6	F6D	F7	P11	
CADMIUM	ug/L (ppb)	0.15	0.15	0.15	0.50	0.40	0.15	0.3	
COPPER	ug/L (ppb)	1.0	23.9	1.0	53.7	26.3	2.5	49.10	
IRON	ug/L (ppb)	140	1120	90	4980	2020	130	1930.0	
LEAD	ug/L (ppb)	0.750	10.100	0.750	29.600	13.800	0.750	7.4	
MANGANESE	ug/L (ppb)	36.3	150.0	45.9	98.4	85.1	34.9	162.0	
ZINC	mg/L (ppm)	20.0	80.0	7.5	280.0	170.0	20.0	60	
TSS	mg/L (ppm)	4.32	21.04	0.16	102.00	45.31	1.96	274.67	
PHOSPHOROUS, TOTA	mg/L as P	0.131	0.234	0.128	1.060	1.010	0.139	1.40	
PHOSPHOROUS, ORTH	mg/L as P	0.117	0.113	0.131	0.344	0.410	0.113	0.11	
NITROGEN, TOTAL	mg/L as N	0.47	0.92	0.40	2.20	2.10	0.44	6.7	
AMMONIA	mg/L as N	0.156	0.051	0.059	2.130	3.430	0.158	0.57	
NITRATE	mg/L as N	0.028	0.003	0.113	0.009	0.022	0.031	0.002	
NITRITE	mg/L as N	0.0025	0.0025	0.0060	0.0280	0.0330	0.0025	0.016	
ORGANIC NITROGEN	mg/L as N	0.28	0.86	0.22	0.03	-1.39	0.25	6.11	
CHLORIDE	mg/L (ppm)	13.50	4.58	6.21	3.55	3.73	16.80	221.0	
POTASSIUM	mg/L (ppm)	2.60	4.35	5.09	4.22	4.04	2.60	29.7	
SODIUM	mg/L (ppm)	17.70	4.33	7.29	2.04	2.21	22.60	123.0	
SULFATE	mg/L (ppm)	54.70	12.30	18.40	3.76	3.92	69.20	18.3	
CALCIUM	mg/L (ppm)	62.30	92.60	73.90	65.30	62.20	69.20	147.00	
MAGNESIUM	mg/L (ppm)	3.20	4.52	4.57	1.74	1.47	3.82	14.70	
HARDNESS	mg/L as Ca	CO3						427.59	

APPENDIX L GRAPHS OF SEDIMENT DATA FOR 1998





Appendix L. Comparison of metals measured in the surface sediments for the top 2.5 cm, in the deeper sediments below 10 cm and the sediment residue in the drop box. There are no samples for the deeper sediments in the basins with no swales (F1, F2) snd surface sediments in these basins represent the residue collected in the asphalt depression.

Appendix L-2. Comparison of nutrients measured in the sediments for the top 2.5 cm, below 10 cm and the residue in the drop box. Asphalt with no swale has no sample for the deeper sediments.

Appendix L-3. The Polycyclic Aromatic Hydrocarbons (PAH'S) ug/kg and pesticides measured in the sediments. F1 through F8 represent basins in the parking lot and the other samples were collected in the strand and the pond. Abbreviations include: U=sediment was analyzed for but not detected, det=constituent was detected but was less than the minimum quantification limit. Data represent PAH's and pesticides found in the top 2.5 cm (1 inch) of sediments.

PESTICIDES	UNITS	- 1		Asphalt with swale		l .	cret swale	1	ous swale	Str	and	Po	ond
		F1_	F2	F7	F8_	F3	F4	F5	F6	S9	S10	P11	P12
Chlorpyrifos Ethyl Diazanon	ug/kg ug/kg	U U	U det	U	U U	U	U U	U	U U	U	U U	U	U U
Parathion Methyl Aldrin	ug/kg ug/kg	U U	U U	U	U U	U U	U U	U U	U U	U U	U U	U	U U
Chlordane	ug/kg	det	det	det	det	U	det	det	det	det	U	U	det
DDD-p,p'	ug/kg	U	U	U	U	U	U	det	U	U	U	U	U
DDE-p,p'	ug/kg	det	U	U	det	7.4	U	5.9	det	8.8	$egin{array}{c} \mathbf{U} \ \mathbf{U} \end{array}$	7.7	4.6
DDT-p,p'	ug/kg	U	U	U	U	6.0	U	det	det	5.7		U	U
Dieldrin	ug/kg	U	U	U	U	U	U	U	U	U	$f U \ U$	U	U
Endosulfan Sulfate	ug/kg	U	U	U	U	U	U	U	U	U		U	U
PCB-1248	ug/kg	U	U	U	det	U	U	U	U	U	U	U	U
PCB-1260	ug/kg	U	U	U	U	det	U	U	U	U	U	det	det

APPENDIX M STATISTICAL RESULTS

Appendix M-1. Florida Aquarium Parking Lot data for data used in SAS programs. A dot indicates missing data usually because not enough flow in that basin to collect data. (See Appendix M-2 for abbreviations).

											apprev			
					RA1				AVGI		FF1	FF2	FF3	
1	8	5	1998	yr1	0.56	123.8	1.25	0.510	0.448	0.57	391	417	61	
2	8	6	1998	yr1	0.67	22.50	1.25	0.660	0.536	0.68	331	310	110	
3	8	7	1998	yr1	1.30	20.00	5.50	0.300	0.236	1.30	638	610	281	
4	8	9	1998	vr1	2.43	21.75	1.50	1.470	1.620	2.47	1955	1535	1324	
5	8								0.447		539	509	254	
6	9		1998			33.25				1.97	1539	1239	744	
7	9		1998			229.8					276			
				_						0.49		246	17	
8	9		1998	-					0.101		266	248	16	
9	9		1998	-		13.75	3.00	0.260	0.177	0.75	281	274	51	
10	9	20	1998	yr1	1.85	•	•	•	•	1.85	1161	1064	474	
11	9	25	1998	yr1	1.36	3.75	8.50	0.240	0.160	1.64	959	949	337	
12	11	4	1998	yr1	1.20	921.3	20.5	0.200	0.059	1.20	395	400	0	
13	12	13	1998	yr1	0.37	588.3	2.75	0.290	0.135	0.37	137	125	1	
14	1		1999	-					0.542		877	649	181	
15	1		1999						0.484		1552	1299	833	
16	3		1999	_					0.246		476	320	20	
17	4			-					0.222		179		0	
			1999									204		
18	5		1999	_					0.596		718	598	164	
19	5		1999	-		215.0				0.39	254	236	8	
20	6		1999	-					0.463	0.81	439	401	63	
21	6	13	1999	yr1	1.20	96.75	1.25	1.200	0.960	1.32	911	802	405	
22	6	16	1999	yr1	1.64	18.00	4.75	1.090	0.345	1.68	1256	957	748	
23	6	17	1999	yr1	0.75	12.50	5.50	0.430	0.136	0.77	468	374	185	
24	6		1999	_		11.00				1.40	1286	1134	777	
25	7		1999	-		145.3				1.53	684	581	250	
26	7		1999	-		101.5				0.81	358	321	56	
27	7			-		40.00				1.17	657	450	344	
			1999	-										
28	7		1999	_		68.25				1.58	635	540	48	
29	7		1999	4		118.0				0.88	357	331	47	
30	8	6	1999	yr2		167.0				1.29	601	529	180	
31	8	12	1999	yr2	0.70	8.75	5.25	0.410	0.133	0.70	392	299	80	
32	8	14	1999	yr2	1.23	24.50	1.25	0.510	0.984	1.23	778	538	456	
33	8	19	1999	yr2	0.90	49.25	1.25	0.840	0.720	0.90	644	547	276	
34	8		1999	_		38.00	3.75	0.630	0.776	2.95	2183	1872	1611	
35	9		1999	-		105.3				0.84	370	345	49	
36	9		1999	-					0.344		220	190	0	
37	9			-		116.3				1.37	489	595	340	
			1999	-										
38			1999	_		190.3				1.22	641	551	161	
39			1999	-		24.25				0.98	263	197	16	
40			1999	_		293.0				1.63	922	713	215	
41	12	17	1999	yr2	0.43	88.25	12.0	0.100	0.036	0.75	192	115	0	
42	1	6	2000	yr2	0.79	461.5	5.00	0.640	0.160	0.79	162	321	31	
43	1	24	2000	yr2	0.68	318.0	11.3	0.240	0.140	0.68	230	180	0	
44	1	31	2000	vr2	0.62	166.0	6.50	0.260	0.120	0.70	270	233	0	
45	6		2000			147.5				1.29	784	734	55	
46	6		2000	-		38.25				0.39	131	97	0	
47	6		2000	-		28.75				1.39	210	306	2	
	6			_		63.75				0.71	385	344	37	
48			2000											
49	7		2000			40.75				0.81	441	363	17	
50	7		2000	-		79.25	2.75	1.910	0.709	1.95	1348	1222	892	
51	7		2000	-	1.07	•	•	•	•	1.07	665	590	115	
52	7	15	2000	yr2		45.25				1.98	1348	1222	753	
53	7	26	2000	yr2	1.24	51.75	2.50	0.140	0.496	1.24	446	293	23	
54	7		2000		2.69	114.8	1.00	1.990	1.990	2.69	1836	1286	1269	
55	8		2000			61.25				1.20	865	669	390	
56	9		2000			157.8				1.96	1398	1199	637	
57	9		2000			218.8				2.05	1461	1309	428	
58				-		113.8				1.16	656	623	258	
	9		2000											
59	ΤŢ	25	2000	yr3	1.42	372.8	3.50	0.930	0.930	1.42	900	759	126	

Obs	FF4	FF5	FF6	FF7	FF8	NHR	NH1	NH2	ин3	NH4	NH5
1	221	25	83	75		0.005					0.054
2	228	44	112	80		0.005					•
3	554	141	338	191		0.218					
4	1545	1059	1366	934	1351	0.296	0.265	0.204	0.098	0.079	0.207
5	481	66	260	189	458	0.079	0.062	0.044	0.028	0.013	•
6	1064	442	742	538	890	0.051	0.044	0.013	0.005	0.008	0.028
7	77	3	32	33	107	0.024	0.040	0.005	•		•
8	127	0	23	9		0.017				0.005	
9	171	0	51	30	112	0.005	0.005	0.008	0.005	0.005	•
10	1012	119	595	320							0.087
11	711	79	419	250	540			0.005	0.005	0.005	•
12	34	0	0	10		0.005			•	•	•
13	3	0	0	20		0.077			•	•	•
14	436	185	276	306		0.050					
15	1047	454	788	754		0.032					0.039
16	106	4	20	48		0.128				0.293	•
17	1	0	0	8		0.127				. •	•
18	321	19	183	164		0.496				0.237	•
19	23	0	3	18		0.357				. •	
20	172	6	64	72		0.040				0.005	
21	640	207	449	314		0.183					
22	887	359	694	457		0.096					0.039
23	268	44	154	95		0.102					
24	887	460	696	529		0.113					
25	377	63	218	160		0.223					
26	145	5	53	49		0.149				0.019	
27	369	113	258	180		0.067					
28	192	4	28	45		0.080				0.011	•
29	138	4	44	47		0.184				0.018	
30	311	62	185	168		0.005					
31	199	12	77	68		0.164					
32	488	160	387	313		0.310					
33	406	81	262	178				0.030			
34	2006	1119	2015	897		0.110					
35	138	19	23	50		0.212				0.064	
36	16	0	0	12		0.121					
37	468	136	319	367		0.047					
38	355	45	191	206		0.184					
39	137	0	107	11		0.013				0.059	0.051
40	457 5	47	197 0	255 0		0.032					0.051
41 42	154	0 7	38	62		0.178				0.175	
43	60	ó	0	0		0.099				0.205	•
44	89	0	0	11		0.099					•
45	344	43	160	57		0.293					•
46	6	2	0	2		0.174					•
47	102	6	2	10		0.095					0.291
48	158	24	45	41		0.046					0.058
49	170	14	25	29		0.111				0.072	
50	1093	574	680	600		0.151					
51	404	90	182	11		0.320					
5 <u>1</u>	870	429	585	624		0.103				0.094	
53	177	9	35	76	172		0.130			0.039	
54	1125	272	856	1251		0.222					
55	491	163	256	276		0.267					
56	782	373	500	486		0.155					
57	838	225	487	425		0.157		0.079		0.082	
58	374	193	249	425		0.761					0.242
59	218	68	88	178		0.121					
							-		- -		

Obs	NH6	NH7	NH8	NOR	NO1	NO2	NO3	NO4	NO5	NO6	NO7	NO8
1	•	•	•	0.162	0.262	0.264	•	0.337	0.177		•	0.311
2	0.005		0.005	0.374	0.343	0.334	0.284	0.372		0.298	•	0.311
3	0.010	0.111	0.195	0.235	0.218	0.214	0.215	0.231	0.249	0.203	0.161	0.191
5	0.005	0.032	0.005	0.190	0.142	0.136	0.137	0.161		0.115	0.134	0.125
6	0.017	0.025	0.028	0.039	0.099	0.152	0.145	0.051	0.099	0.043	0.032	0.026
7				0.057 0.017	0.093	0.215						•
8		•		0.017	0.039	0.040		0.005				
9	0.005	0.005		0.030	0.016	0.017	0.005	0.011		0.005	0.011	
10	0.012	0.014	0.046	0.081	0.074	0.080	0.034	0.045	0.048	0.049	0.038	0.062
11	0.005	0.005	0.005		0.085	0.031	0.010	0.005		0.005	0.005	0.005
12				0.005	0.093	0.068						•
13		0.005	•	0.005 0.105	0.163	•					0.056	
14	0.005	0.048	0.045	0.045	0.056	0.051	0.135	0.202	0.103	0.134	0.219	0.151
15	0.015	0.018	0 031	0 034	0 044	0 046	0.082	0 099	0 119	0 090	0 090	0 064
16	•		0.351	0.069	0.128	0.123		0.325			•	0.230
17	•			0.316	0.403	0.376	•			•		0.230
18	0.163	0.482	0.475	0.502	0.532	0.529	0.641	0.237		0.585	0.710	0.718
19		•	0.320	0.331	0.449	0.467						0.354 0.227
20	0.011	•	0.019	0.270	0.226	0.214		0.278		0.212		0.227
21	0.023	0.100	0.090	0.118	0.122	0.097	0.107	0.123	0.065	0.159	0.111	0.214
				0.111								
23	0.021		0.152	0.068	0.059	0.059	0.044	0.350		0.038		0.039
				0.111								
				0.292								
				0.365								
27	0.018	0.054	0.037		0.125	0.101	0.109	0.126	0.150	0.101	0.113	0.106
28			0.078	0.620	0.572	0.571		0.381				0.259
29	0.096			0.620 0.763	0.742	0.740		0.683		0.672		
30	0.005	0.005	0.005	0.063	0.055	0.060	0.132	0.159	0.168	0.086	0.081	0.100
				0.304								
				0.552								
33	0.021	0.056	0.018	•	0.308	0.371	0.296	0.298	0.314	0.282	0.298	0.317
34	0.040	0.005	0.023	0.005	0.005	0.005	0.005	0.005	0.040	0.027	0.005	0.005
35	•		0.245	0.069 0.084	0.062	0.052	•	0.099	•	•		0.005
				0.132								
38	0.036	0.070	0.068	0.086	0.068	0.079	0.057	0.105	0.129	0.036	0.101	0.077
39	•	•	0.107	0.080	0.078	0.078	•	0.030				0.039
40	0.047	•	0.069	0.073	0.087		0.144	0.222	0.204	0.209	•	0.238
41	•	•	•	0.087	0.043	0.054	•		•	•	•	0.039 0.238 0.257 0.091 0.172 0.998
42	•	•	0.163	0.259	0.220	0.244	•	0.441	•	•	•	0.257
43	•	•	0.080	0.182	0.110	0.092	•	0.331	•	•	•	0.091
44	•	•	0.112	0.074	0.095	0.066	•	0.196	•	•	•	0.172
45	0.345	0.412	0.410	0.386	0.487	0.481	0.826	0.782	•	0.659	0.754	0.998
47	•	•		0.351	0.341	0.338	•	0.457	0.327		•	0.190
48	0.022	•	0.065	0.186	0.218	0.191	•	0.281	0.164	0.274		0.190
49		0.288	0.102	0.161	0.188	0.182					0.215	0.130
												0.344
				0.535								
52	0.061	0.043	0.050	0.310		•	U.197	0.191	0.259	U.227	0.190	0.212
				0.199								
				0.232								
				0.418								
57	0.085		0.067	0.061 1.530	•	0.067		0.129		0.109		0.119
59	•	0.167	•	0.084	0.142	υ.156	U.560	0.531	0.508	•	0.502	•

FLORIDA AQUARIUM PARKING LOT STUDY											
Obs TNF	t TN1	TN2	TN3	TN4	TN5	TN6	TN7	TN8	OPR	OP1	OP2
1 0.17	0.54	0.65	•	0.73	0.62				0.005	0.036	0.027
2 0.38	0.40	0.39		0.56		0.43		0.46	0.011	0.025	0.022
3 0.57	0.60	0.71	0.53	0.60	0.66		0.65				
4 0.82	0.45	0.50	0.35	0.36		0.33				0.017	
5 0.32		0.22		0.36			0.40				
6 0.12		0.19	0.23	0.15			0.18				
7 0.10		0.22	•		•	•	•	•	0.005	0.037	
8 0.04		0.04		0.38	•		•	•	0.005	0.018	
9 0.40 10 0.25		0.03	0.07				0.08 0.09				
10 0.25		0.21 0.08	0.12 0.07	0.08 0.09		0.13				0.005	
12 0.10			0.07	0.05	•	0.17		0.13	0.005	0.035	0.023
13 0.32							0.84 0.74		0.005	0.012	
14 0.15		0.17	0.42	0.63	0.52	0.52	0.74	0.45	0.005	0.016	0.022
15 0.11		0.10		0.39			0.35				
16 0.29	0.59	0.57			•	•	•	1.30	0.013	0.089	0.401
17 0.50		1.60	•	1.70		•	•		0.017	0.135	0.349
18 0.98		1.30	1.40	1.70	•	1.60	1.80			0.070	
19 0.72		0.93	•		•	•		0.82		0.065	
20 0.40		0.25	•	0.53						0.031	
21 0.38		0.57		0.74			0.91			0.035	
22 0.40 23 0.22		0.16 0.16	0.30 0.25	0.43 0.43		0.58				0.036	
24 0.23		0.30	0.25	0.36			0.39				
25 0.60		0.37		0.58			0.57				
26 0.97		0.70					•			0.042	
27 .		0.23		0.36	0.23	0.35	0.26				
28 0.80	0.82	0.75		0.54			•	0.74	0.016	0.040	0.041
29 0.96		0.93	•	1.00	•	0.99	•		0.019	0.039	0.022
30 0.08		0.50		0.73		0.53				0.018	
31 0.52		0.52	0.53	0.52						0.016	
32 0.87		0.59	0.53	0.50		0.51				0.022	
33 . 34 0.16		0.41 0.19	0.32 0.19	0.43 0.11	0.37	0.33				0.023	
35 0.74		0.19		0.66						0.022	
36 0.35		0.23	0.89	0.72	:	0.95				0.021	
37 0.82		0.52	0.63	0.79	0.49					0.030	
38 0.37	0.21	0.22	0.25	0.32	0.28		0.28	0.20	0.043	0.026	0.023
39 0.08	0.15	0.14	•	0.29			•	0.23	0.005	0.016	0.016
40 .		•	•	•	•		•	•	0.041	0.033	•
41 0.15		•	•	•	•	•	•		0.005	0.026	0.035
42 0.38		0.64 0.03	•	0.54	•	•	•	0.41	0.005	0.690	0.077
43 0.00			•	0.48	•	•	•	1.10	0.005	0.034	0.038
44 0.27 45 0.82		0.25 1.20	2.50	0.29 1.90	•	1 90	2.40			0.016	
46 0.53		1.10			•					0.040	
47 0.27		0.41	•	1.10		•	_			0.040	
48 0.29		0.40	•	0.88	0.40	0.98	•			0.030	
49 0.07	0.19	0.19		0.48				0.33	0.005	0.028	0.031
50 0.30	•	0.53	0.36	0.66	0.62	0.60	0.34		0.028		
51 1.90	1.60	1.80	1.90	2.00	1.80	1.00	1.20			0.025	0.023
52 0.69		•	0.69	0.97	0.72	0.74	0.50		0.005		•
53 .				1.60			. 71		0.036		
54 0.52		0.39	0.60	0.63	0.64 1.30	0.68	0.71 1.00			0.022	
55 0.47 56 0.56		0.77 0.59	0.94 0.64	0.88 0.74	0.86	0.65 0.61	0.61			0.023	
57 0.17		0.39		0.74		0.46			0.005		0.022
58 2.20		2.10	2.00	1.90	1.80	2.40	1.80			•	
59 0.34		0.47	1.40	1.30	1.20	•	1.40			0.030	

AQUARIUM PARKING LOT STUDY

Obs	OP3	OP4	OP5	OP6	OP7	OP8	TPR	TP1	TP2	TP3	TP4	TP5
1	•	0.116	0.066				0.025	0.061	0.059		0.158	0.091
2	0.135	0.098	•	0.054		0.040	0.019	0.027	0.031	0.170	0.116	
3	0.107	0.072	0.040	0.055	0.054	0.049	0.018	0.038	0.040	0.123	0.104	0.058
				0.024								
5	0.115	0.065	•	0.046	0.094	0.056	0.005	0.033	0.026	0.129	0.086	
				0.012								
7	•			•		•	0.005	0.972	0.041		•	
8	•	0.085	•	0.038			0.005	0.033	0.032		0.114	•
												0.041
	0.037	0.036	•	0.048	0.040	0.037	•	0.018	0.104	0.098	0.066	•
12		•	•	•	•	•	0.018	0.054	0.057	•	•	•
	•	•	•					0.118				
												0.085
15	0.175	0.392	0.033	0.464	0.147	0.155	0.005	0.048	0.078	0.198	0.134	0.059
16	•	1.780	•		•	1.900	0.005	0.170	0.513	•	2.190	•
17		. •	•	0.596	•	•	0.015	0.212	0.460	•		•
18	0.413	0.605	•	0.596	0.244	0.596	0.072	0.146	0.312	0.512	0.761	•
19	•		•	0.311	•	0.394	0.020	0.127	0.240	•	•	•
				0.360								
				0.276								
				0.216								
				0.121								
				0.183								
20	0 124	0.125	0.063	0.146	0 000	0.092	0.037	0.067	0.101	٠ ١ ع	0.160	0 006
27	0.134	0.119	0.062	0.140	0.055	0.036	0.012	0.062	0.040	0.165	0.133	0.000
29	•	0.033	•	0.073	•	0.075	0.022	0.000	0.073	•	0.000	•
				0.145								
				0.094								
				0.105								
				0.120								
				0.055								
				•								
				0.198								
37	0.155	0.108	0.069	0.169	0.129	0.069	0.072	0.095	0.087	0.237	0.325	0.114
38	0.192	0.113	0.045	0.181	0.110	0.061	0.058	0.024	0.028	0.213	0.128	0.061
39		0.102				0.056	0.014	0.036	0.027		0.140	
40	0.353	0.316	0.119	0.292		0.213	0.049	0.071		0.429	0.388	0.286
41		•	•	•	•		0.005	0.046	•	•	•	
	•	0.220	•	•	•	0.089	0.019	0.099	0.138	•	0.296	•
43	•	0.330	•	•	•	0.327	0.022	0.103 0.048	0.060	•	0.385	•
44					. •	0.177	0.024	0.048	0.064		0.267	•
	0.603	0739	•	0.922	0.263	0.557	0.016				1.040	•
46	•		•	•	•	•	0.025	0.120	0.177	•		0.269
	•	0.288	0.207		•	0 100	0.037	0.073	0.092	•	0.335	0.269
48	•	0.274	0.047	0.403	. 110	0.192	0.023	0.078	0.077	•	0.358	0.069
		0.230		0.403	0.119	0.131	0.015	0.040	0.050	0 343	0.334	0 102
E.J ⊃T	0.153	0.123	0.104	0.245 0.155	0.03/	0.123	0.014	0.054	0.026	0.171	0.200	
	0.151	0.106		0.155		0.147	0.028	0.053	•	0.1/1	0.200	
				0.163								
				0.103								
				0.166								
		0.102									0.134	
				0.242								
59	0.220	0.135	0.127		0.173		0.032	0.069	0.073	0.331	0.235	0.235
		,		-		-						

Obs	TP6	TP7	TP8	CUR	CU:	1 CU	2 CU3	CU4	CU5	CU6	CU7	CU8
1	_		_	1.4	11.0	5 7.	7.	6.7	3.3			•
2	0.070	•	0.046	4.8			0 7.7					6.8
		0.068									4.2	6.8 7.9
		0.051				7 1.				0.2	0.2	
5	0.066	0.114	0.087	4.00	6.2	2 5.	4 6.9	4.2		4.7	12.8	12.3
6		0.110				6.	4 6.9 1 4.5	4.4	3.6	2.8	7.4	10.7
7	•	•	•	11.40	10.0	7.	0 .					
8	•	•	•	8.40	5.8	3 7.	υ.	•	•	•	•	•
9	0.054	0.083		2.20	3.0	3.	1 3.2 4 5.5	0.2	•	0.2	6.7	
		0.046		- 4	5.5	9 5.7	2 3.4	3.5		4.2	4.0	7.8
12	•	0.191	•	2.40	8.4	4 TT.;	5.			•	17.0	
14	0 167	0.235	0 180	1 00) 14.4	16		5.9	4 1	6 ،	7.8	
		0.186			8.5		4 1 9	1.9	1 2	3.5	7.0 4 8	5.8
							4 .					15.6
				5.90	30.8	3 33.	7.		•			
		0.394	0.734	2.20	14.7	7 14.8	8 6.2	6.5	•	6.5	13.1	9.6
												4.4
20	0.397		0.429	1.40	12.2	8.8	B . B .	2.7	•	4.1	•	6.7
		0.192						3.4	3.4	3.6	5.4	10.2
		0.154								2.8	4.8	5.3
23	0.274		0.336	2.30	7.2	2 10.3	2 3.4	1.3		0.9	•	3.5
24	0.168	0.105	0.191	0.15	4.5	3.	5 2.4	2.6	1.5	2.8 3.1	0.9	3.6
			0.190	12.90	14.4	6.2	2 3.2	3.8	3.3	3.1	4.7	5.5
			0.138	6.20	10.8	3 6.4	4 .			. • .		1.0
27	0.193	0.142	0.129	3.00	9.3	3.	7 3.8			4.2		5.5
28	. 117	•	0.095	6.70	10.1	10.	1.				•	10.0
30	0.117	0.192	0 133	1 00	1 2 . 4		5. 2.2.0			3.6	, ,	5.3
												9.2
		0.124										5.7
		0.134			8.6	8.8 6.6	3.6		3.8	3.0	4.4	4.3
		0.072				5.0		3.0	1.0		2.2	5.3
					6.8	6.5	5.	5.3				
		0.165								3.8	9.5	15.2
		0.172				7 4.		3.9	3.1	4.6	7.4 5.7	22.6
38	0.244	0.156	0.098	19.20	4.5	2.6	5 4.6		2.7	3.5	5.7	8.2
39	•	•	0.088	13.30	3.2	2 4.0) . 8.4	5.3	7.3	•	•	5.9 17.2
40	0.305	•	0.340	13.10	8.1	L .	8.4	6.9	7.3	3.9	•	17.2
41	•	•		1.00	7.7	7 7.8	3.		•	•	•	•
42	•	•	0.267	7.80	12.0	16.	3 . 3 . 2 .	7.8	•	•	•	24.3
43	•	•	0.342	1.00	11.2	42.	٤. 7	7.7 5.1	•	•	•	33.8 44.2
		0.347								8.5	20.8	
46												34.2
	•			2.60								
48	0.540		0.285	1.00	7.6	10.2				3.5	•	32.8
49		0.145									24.6	
50		0.157				3.0					4.6	
51	0.251	0.116	0.135	1.00			2 1.0			2.0	11.0	7.8
		0.121				•		4.0			13.5	9.1
	0.321		0.232	•	5.8		•	6.8		7.1		16.3
		0.163					8.5	5.5	8.3	2.6		7.7
		0.195			8.4		4.6		6.1			13.1
		0.153			5.7	6.8	6.8	4.4	7.5	3.9		11.9
		. 100			•	2.3		4.2				46.9
		0.190				23.2		6.3				23.5
59	•	0.272	•	3.7	16.6	19.6	15.1	16.1	18.7	•	12.8	•

1	Obs	FER	FE1	FE2	FE3	FE4	FE5	FE6	FE7	FE8	PBR	PB1	PB2
2 380.0 160 170 120 80 . 110 . 240 1.00 1.0 <td< td=""><td>1</td><td>40.0</td><td>400</td><td>300</td><td></td><td>210</td><td>80</td><td></td><td></td><td></td><td>1.00</td><td>3.7</td><td>2.9</td></td<>	1	40.0	400	300		210	80				1.00	3.7	2.9
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	2	380.0						110	•				
6 110.0 350 268 85 89 110 57 235 220 1.00 2.5 2.0 7 90.0 360 250 .						80		15	130	290	1.00		1.0
6 110.0 350 268 85 89 110 57 235 220 1.00 2.2 2.0 8 15.0 160 110 . 70 . . . 1.00 1.9 3.4 8 15.0 160 110 . 70 . . . 1.00 1.0 1.0 10 70.0 350 250 60 130 50 90 80 260 1.00 1.0 11 . 200 180 15 50 .													
7 90.0 360 250 .<													
8 15.0 160 110 . 70 . . . 1.0							110						
9 15.0 80 70 15 33 . 15 150 . 1.00 1.0 1							•						
10 70.0 350 250 60 130 50 90 80 260 1.00 2.7 1.0 11 200 180 15 50 30 100 210 1.00 1.0 1.0 1.0 1.2 40.0 120 210						33	•						
11 . 200 180 15 50 1.00 1.00 1.0 1.0 13 15.0 220 . <td></td> <td></td> <td></td> <td></td> <td></td> <td>130</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						130							
12 40.0 120 210													
13 15.0 220 850 50 130 120 210 190 450 1.00 2.8 10.4 15.0 20.0 850 50 130 120 210 190 450 1.00 2.8 10.4 15 15.0 400 518 120 73 120 34 140 137 1.00 8.0 9.8 16 50.0 710 790 . 280													
14 15.0 220 850 50 130 120 210 190 450 1.00 2.8 10.4 15 15.0 400 518 120 73 120 34 140 137 1.00 8.0 9.8 10.2 17 100.0 900 950 480 1.00 7.7 10.2 17 100.0 900 950 .<	13	15.0	220	•				•					
16 50.0 710 790 . 280 . <td< td=""><td>14</td><td>15.0</td><td>220</td><td>850</td><td>50</td><td></td><td></td><td></td><td>190</td><td>450</td><td>1.00</td><td>2.8</td><td>10.4</td></td<>	14	15.0	220	850	50				190	450	1.00	2.8	10.4
17 100.0 900 950	15	15.0	400	518	120	73	120			137	1.00	8.0	9.8
17 100.0 900 950						280	•						
19 10 0 790 980 							•		•				
20					100	270	•						
21 100.0 970 430 30 50 110 50 80 350 5.20 11.6 6.6 22 90.0 200 166 30 45 70 34 90 131 1.00 1.0 6.5 24 40.0 150 127 15 15 40 28 80 40 1.00 1.0 1.0 25 230.0 420 140 15 15 30 40 120 130 1.00 1.0 1.0 26 90.0 240 190 . 40 . . . 80 1.00 1.0 1.0 27 80.0 170 50 15 30 450 30 100 90 1.00 2.7 1.9 28 100.0 370 460 . 450 30 100 90 1.00 2.0 1.0 28 130.0 330 160 . 15 . 100 . . 2.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td></td></t<>							•		•				
22 90.0 200 166 30 45 70 34 90 131 1.00 1.0 6.5 23 330.0 310 510 40 40 . 50 . 100 1.00 2.2 4.5 24 40.0 150 127 15 15 40 28 80 40 1.00 1.0 1.0 25 90.0 240 190 . 40 . . . 80 1.00 2.7 1.9 27 80.0 170 50 15 30 450 30 100 90 1.00 2.7 1.9 28 100.0 330 160 . 15 . 100 . . 2.0 1.0 1.0 . 2.0 1.0 1.0 . 2.0 1.0 1.0 1.0 . 2.0 1.0 1.0 1.0 1.0 1.0													
23 330.0 310 510 40 40 40 28 80 40 1.00 1.0 1.0 25 230.0 420 140 15 15 40 28 80 40 1.00 1.0 1.0 26 90.0 240 190 . 40 . . . 80 1.00 2.7 1.9 27 80.0 170 50 15 30 450 30 100 90 1.00 2.0 1.0 28 100.0 370 460 . 40 . . . 2.70 1.80 2.9 4.0 29 130.0 330 160 . 15 . 100 . . 2.70 3.8 2.7 30 110.0 170 70 13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
25 230.0 420 140 15 15 30 40 120 130 1.00 1.0 1.0 26 90.0 240 190 . 40 . . . 80 1.00 2.7 1.9 28 100.0 370 460 . 40 . . . 270 1.80 2.9 4.0 29 130.0 330 160 . 15 . 100 . . 2.70 3.8 2.7 30 110.0 170 70 13 13 13 30 230 0.75 1.7 0.8 31 30.0 260 280 13 13 13 13 30 110 0.75 2.0 2.0 32 12.5 280 270 13 13 13 13 30 110 0.75 2.1 2.7 33 3. 270 140 13 13 13 13 30 100 0.75 0.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						40							
25 230.0 420 140 15 15 30 40 120 130 1.00 1.0 1.0 26 90.0 240 190 . 40 . . . 80 1.00 2.7 1.9 28 100.0 370 460 . 40 . . . 270 1.80 2.9 4.0 29 130.0 330 160 . 15 . 100 . . 2.70 3.8 2.7 30 110.0 170 70 13 13 13 30 230 0.75 1.7 0.8 31 30.0 260 280 13 13 13 13 30 110 0.75 2.0 2.0 32 12.5 280 270 13 13 13 13 30 110 0.75 2.1 2.7 33 3. 270 140 13 13 13 13 30 100 0.75 0.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td>40</td> <td>28</td> <td>80 80</td> <td>4.0</td> <td></td> <td></td> <td></td>						15	40	28	80 80	4.0			
26 90.0 240 190 . 40 . . . 80 1.00 2.7 1.9 27 80.0 170 50 15 30 450 30 100 90 1.00 2.0 1.00 28 100.0 370 460 2.70 1.80 2.9 4.0 29 130.0 330 160 . 15 . 100 . . 2.70 3.8 2.7 30 110.0 170 70 13 10 0.75 2.1 2.7 33 . 270 140 13 13 13 13 13 13 13 13 13													
28 80.0 170 50 15 30 450 30 100 90 1.00 2.0 1.0 28 100.0 370 460 . 40 . . . 270 1.80 2.9 4.0 39 130.0 130 160 . 15 . 100 . . 2.70 3.8 2.7 30 110.0 170 70 13 13 13 13 30 230 0.75 1.7 0.8 31 30.0 260 280 13 13 13 13 13 160 0.75 2.0 2.0 32 12.5 280 270 13 13 13 13 50 1540 . 2.2 1.9 34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 . . . 390 2.40													
28 100.0 370 460 . 40 . . . 270 1.80 2.9 4.0 29 130.0 330 160 . 15 . 100 . . 2.70 3.8 2.7 30 110.0 170 70 13 13 13 13 30 230 0.75 1.7 0.8 31 30.0 260 280 13 13 13 13 . 160 0.75 2.0 2.0 32 12.5 280 270 13 13 13 30 110 0.75 2.1 2.7 33 . 270 140 13 13 13 50 1540 . 2.2 1.9 34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 . . . 390 2.40 2.4 2.5 36 50.0 130 360 60 4 . 4 10 15 0.75										90	1.00		
30 110.0 170 70 13 13 13 13 13 30 230 0.75 1.7 0.8 31 30.0 260 280 13 13 13 13 13 1.60 0.75 2.0 2.0 32 12.5 280 270 13 13 13 13 30 110 0.75 2.1 2.7 33 . 270 140 13 13 13 13 50 1540 . 2.2 1.9 34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 390 2.40 2.4 2.5 36 50.0 130 360 60 4 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 39 50.0 60 70 50 80 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 12.5 190 140 0.75 1.9 1.9 42 110.0 690 580 . 130 890 0.75 5.5 5.4 43 12.5 460 220 . 210 1120 0.75 1.7 2.5 44 12.5 570 360 . 120 1650 0.75 3.8 3.8 45 160.0 1920 1390 190 170 . 350 980 1800 1.60 14.2 12.3 46 140.0 710 640	28	100.0	370									2.9	4.0
30 110.0 170 70 13 13 13 13 13 30 230 0.75 1.7 0.8 31 30.0 260 280 13 13 13 13 13 1.60 0.75 2.0 2.0 32 12.5 280 270 13 13 13 13 30 110 0.75 2.1 2.7 33 . 270 140 13 13 13 13 50 1540 . 2.2 1.9 34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 390 2.40 2.4 2.5 36 50.0 130 360 60 4 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 39 50.0 60 70 50 80 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 12.5 190 140 0.75 1.9 1.9 42 110.0 690 580 . 130 890 0.75 5.5 5.4 43 12.5 460 220 . 210 1120 0.75 1.7 2.5 44 12.5 570 360 . 120 1650 0.75 3.8 3.8 45 160.0 1920 1390 190 170 . 350 980 1800 1.60 14.2 12.3 46 140.0 710 640	29	130.0	330	160		15		100			2.70	3.8	2.7
32 12.5 280 270 13 13 13 13 30 110 0.75 2.1 2.7 33 . 270 140 13 13 13 50 1540 . 2.2 1.9 34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 . . . 390 2.40 2.4 2.5 36 50.0 130 360 60 4 . 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 . 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 . . 80 0.75 0.8 0	30	110.0	170	70	13	13			30	230	0.75	1.7	0.8
33 . 270 140 13 13 13 13 50 1540 . 2.2 1.9 34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 . . . 390 2.40 2.4 2.5 36 50.0 130 360 60 4 . 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 1	31		260		13	13	13	13	•	160	0.75		
34 30.0 70 136 13 34 40 40 70 223 0.75 0.8 1.3 35 50.0 210 150 . 60 . . . 390 2.40 2.4 2.5 36 50.0 130 360 60 4 . 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 12.5 190 140 0.75 1.9 1.9 1.9 42 110.0 690 580 . 130 <													
35 50.0 210 150 . 60 . . . 390 2.40 2.4 2.5 36 50.0 130 360 60 4 . 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 12.5 190 140 .						13	13	13	50				
36 50.0 130 360 60 4 . 4 10 15 0.75 0.8 3.7 37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 39 50.0 60 70 . 50 . . . 80 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 12.5 190 140 0.75 1.9 1.9 1.9 42 110.0 690 580 . 130 . . . 80 0.75 5.5 5.4 43 12.5 460 220 . 210 . . . 1120 0.75 <													
37 110.0 160 120 80 80 70 70 210 640 1.50 2.1 1.6 38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 39 50.0 60 70 . 50 . . 80 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 0.8 41 12.5 190 140 0.75 1.9 1.9 42 110.0 690 580 . 130 . . . 890 0.75 5.5 5.4 43 12.5 460 220 . 210 . . 1120 0.75 3.8 3.8 45 160.0 1920 1390 190 170 . 350 980 1800 1.60 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
38 100.0 110 60 50 70 60 70 120 210 0.75 0.8 0.8 39 50.0 60 70 . 50 . . . 80 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 . 41 12.5 190 140 0.75 1.9 1.9 42 110.0 690 580 . 130 . . . 890 0.75 5.5 5.4 43 12.5 460 220 . 210 . . . 1650 0.75 1.7 2.5 44 12.5 570 360 . 120 . . . 1650 0.75 3.8 3.8 45 160.0 1920 1390 190 170 . 350 980 1800 1.60 14.2 12.3 46 140.0 710 640 . . . </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
39 50.0 60 70 . 50 . . . 80 0.75 0.8 0.8 40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 . 41 12.5 190 140 0.75 1.9 1.9 42 110.0 690 580 . 130 1.9 1.9 43 12.5 460 220 . <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
40 100.0 90 . 13 13 80 40 . 540 0.75 0.8 . 41 12.5 190 140 0.75 1.9 1.9 42 110.0 690 580 . 130 . . . 890 0.75 5.5 5.4 43 12.5 460 220 . 210 . . . 1120 0.75 1.7 2.5 44 12.5 570 360 . 120 . . . 1650 0.75 3.8 3.8 45 160.0 1920 1390 190 170 . 350 980 1800 1.60 14.2 12.3 46 140.0 710 640 .				70									
41 12.5 190 140 .								40	•	540			
42 110.0 690 580 . 130													
43 12.5 460 220 . 210 1120 0.75 1.7 2.5 44 12.5 570 360 . 120 .								•					5.4
44 12.5 570 360 . 120 . . . 1650 0.75 3.8 3.8 45 160.0 1920 1390 190 170 . 350 980 1800 1.60 14.2 12.3 46 140.0 710 640 1120 2.70 5.8 6.2 47 70.0 300 430 . 120 70 . . . 0.75 3.2 4.1 48 80.0 390 530 . 90 120 180 . 650 0.75 2.2 3.8 49 40.0 230 300 . 70 50 . 580 280 0.75 2.0 3.7 50 330.0 . 201 50 74 110 80 250 185 1.80 . 1.2 51 60.0 280 140 50 70 90 130 510 290	43	12.5	460	220						1120	0.75	1.7	2.5
46 140.0 710 640 1120 2.70 5.8 6.2 47 70.0 300 430 . 120 70 . . . 0.75 3.2 4.1 48 80.0 390 530 . 90 120 180 . 650 0.75 2.2 3.8 49 40.0 230 300 . 70 50 . 580 280 0.75 2.0 3.7 50 330.0 . 201 50 74 110 80 250 185 1.80 . 1.2 51 60.0 280 140 50 70 90 130 510 290 1.60 1.8 0.8 52 50 . . 40 100 110 114 380 323 0.75 . . 53 . 360 . . 70 . 140 . 760 . <td< td=""><td>44</td><td>12.5</td><td>570</td><td></td><td></td><td>120</td><td></td><td>•</td><td></td><td></td><td></td><td>3.8</td><td>3.8</td></td<>	44	12.5	570			120		•				3.8	3.8
47 70.0 300 430 . 120 70 . . . 0.75 3.2 4.1 48 80.0 390 530 . 90 120 180 . 650 0.75 2.2 3.8 49 40.0 230 300 . 70 50 . 580 280 0.75 2.0 3.7 50 330.0 . 201 50 74 110 80 250 185 1.80 . 1.2 51 60.0 280 140 50 70 90 130 510 290 1.60 1.8 0.8 52 50 . . 40 100 110 114 380 323 0.75 . . 53 . 360 . . 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75			1920		190	170	•	350	980			14.2	
48 80.0 390 530 . 90 120 180 . 650 0.75 2.2 3.8 49 40.0 230 300 . 70 50 . 580 280 0.75 2.0 3.7 50 330.0 . 201 50 74 110 80 250 185 1.80 . 1.2 51 60.0 280 140 50 70 90 130 510 290 1.60 1.8 0.8 52 50 . . 40 100 110 114 380 323 0.75 . . 53 . 360 . . 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>					•			•	•				
49 40.0 230 300 . 70 50 . 580 280 0.75 2.0 3.7 50 330.0 . 201 50 74 110 80 250 185 1.80 . 1.2 51 60.0 280 140 50 70 90 130 510 290 1.60 1.8 0.8 52 50 . . 40 100 110 114 380 323 0.75 . . 53 . 360 . . 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					•								
50 330.0 . 201 50 74 110 80 250 185 1.80 . 1.2 51 60.0 280 140 50 70 90 130 510 290 1.60 1.8 0.8 52 50 40 100 110 114 380 323 0.75 . 53 . 360 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
51 60.0 280 140 50 70 90 130 510 290 1.60 1.8 0.8 52 50 . . 40 100 110 114 380 323 0.75 . . 53 . 360 . . 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
52 50 . . 40 100 110 114 380 323 0.75 . . 53 . 360 . . 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
53 . 360 . . 70 . 140 . 760 . 2.7 . 54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
54 120 290 194 90 85 290 138 180 273 0.75 1.8 1.3 55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
55 210 380 105 140 224 250 205 670 420 0.75 2.3 0.8 56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
56 50 290 154 40 50 150 153 220 415 0.75 2.2 1.3 57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
57 50 . 136 . 125 . 140 . 767 0.75 . 0.8 58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
58 180 . 400 90 100 180 300 690 480 4.50 . 3.1													
	58					100		300	690				3.1
	59	40	450	420	370	250	550	•	300	•	0.75	4.0	4.1

Obs	PB3	PB4	PB5	PB6	PB7	PB8	ZNR	ZN1	ZN2	ZN3	ZN4	ZN5
1		1.0	1.1		•		15.0	50.0	40.0		30.0	15.0
2	1.0	1.0		1.0		1.0	15.0	15.0				
3	1.0	1.0	1.0	1.0	1.0	3.1	15.0	15.0	30.0	15.0	15.0	15.0
4	1.0	1.0		1.0		•			21.0	30.0	15.0	15.0
5	1.0	1.0	•	1.0 1.0	2.5	3.0	15.0	30.0	30.0	30.0	15.0	
6	1.0	1.0		1.0			40.0				15.0	15.0
7	•	•	•	•	•		70.0	40.0		•	•	•
8		1.0	•			•						•
9	1.0			1.0			15.0				15.0	
10	1.0	1.0	1.0	1.0		1.0	15.0				15.0	
11 12		1.0	•			2.3	15.0	15.0			15.0	
13	•	•		•	5.9	•	15.0 110.0	40.0			•	
14		2.4	2.0	3 1	2.8				60.0	15 0	30.0	15.0
15	2.9	1.4	1 0	1 0	2.0	2 9			57.0		15.0	
16		3.1		1.0	2.2	5.8			100.0			
17	•								130.0	•		:
18	1.0		•	1.0		4.5	70.0	90.0	80.0		30.0	
19		•					15.0					
20	•	3.2	•	2.4	•	5.7	15.0	60.0	40.0		15.0	
21			1.0	1.0	1.0	2.5	15.0 110.0	100.0	40.0		15.0	
22	1.0	1.0	1.0	1.6	1.0	3.9	15.0	15.0	15.0	15.0	15.0	15.0
23		1.0	•	1.0	•		15.0					•
24			1.0	1.0			15.0					
25	1.5	1.0	1.5				15.0					15.0
26		1.0					40.0				20.0	
27		1.0	1.0				60.0					50.0
28	•	0.8	•	•	•		40.0			•	20.0	•
29 30	0.8	0.8 0.8		2.3 0.8	0.8		30.0 7.5			7.5	15.0	7.5
31		0.8	•				40.0			20.0	20.0	7.5
32			0.8				180.0				7.5	7 5
		0.8	0.8	0.8	0.8	0.8			40.0	7.5	20.0	
		0.7	0.8				7.5		11.2	7.5	10.6	
35		0.0					40.0					
36	0.8	0.8	•	0.8	0.8	2.1	20.0		30.0	7.5	7.5	•
37			0.8		2.1	2.1	7.5	7.5	7.5	20.0	20.0	20.0
38	0.8	0.8	0.8	0.8	0.8	2.2	20.0	7.5	7.5	7.5	7.5	7.5
39		0.8	•		•	0.8	7.5	7.5	7.5		20.0	
40	0.8	0.8	0.8			2.0	7.5	•			•	•
41	•	•	•	•	•	•	7.5 20.0	40.0	30.0	•	•	•
42	•		•	•	•	4.4	20.0	70.0	60.0	•	30.0	•
43	•	0.8	•	•	•		7.5		40.0	•	30.0	•
		0.8			٠.		7.5				20.0	
45	1.8	3.1	•	2.5		13.0		50.0	110.0			•
46 47	•	1.8	0.8	•	•	10.6					7.5	7.5
48		0.8	0.8	1.8	•	7.2	20.0			•	30.0	20.0
49	•	2.0	0.8			3.8	7.5	20.0	20.0	•	20.0	7.5
50	0.8	0.8	0.8	1.0	1.8	1.3				7.5	20.0	7.5
51	0.8	0.8	0.8	0.8	3.9	2.4	20.0	20.0	20.0	7.5	20.0	7.5
52	0.8	0.8	0.8	1.0	4.3	2.0	7.5		•		20.0	20.0
53	•	0.8		0.8	•	6.4	•				7.5	
54	0.8	0.7	0.2	1.2	1.5	2.0	20.0	30.0	30.0	40.0	33.7	50.0
55	0.8	1.9	1.9	2.1	4.6	3.5	30.0	40.0	22.3	20.0	28.1	30.0
56	0.8	0.8	0.8	1.3	1.9	3.7		30.0	24.1	20.0	16.2	20.0
57	•	0.8	. • _	1.0	_ • _	4.9	7.5	•	14.9		20.0	
58	0.8	0.8	1.8	3.1	7.3	4.1	30.0	•	40.0		20.0	20.0
59	3.4	2.4	4.6	•	3.2	-	30.0	50.0	60.0	60.0	50.0	60.0

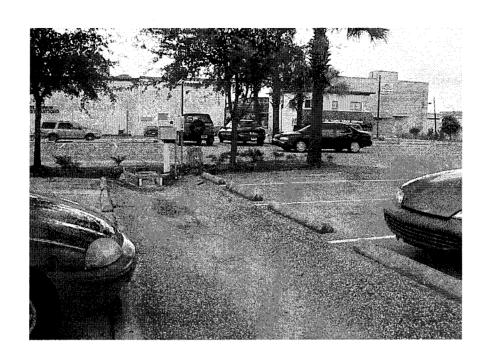
Obs	ZN6	zn7	ZN8	SS1	SS2	ss3	SS4	SS5	SS6	SS7	SS8
1	•			9.7	11.3		29.5	4.4			
2	15.0	•	15.0	5.6	9.2		•	6.8 4.9	9.9	•	13.0
3	15.0	15.0	30.0	4.8	12.4	2.0	11.5	6.8	2.3	6.2	13.0
4	15.0	15.0	•	6.2 6.0	12.0	4.6	2.9 3.6	4.9		5.3	
5	15.0			6.0	5.9	2.8	3.6		3.0	7.1	
6		15.0	15.0	6.5			4.3		0.8	6.8	10.3
7 8	•	•	•	8.1 4.5	5.9 2.9	•	•	•	•	•	•
9	15.0	15.0	•		2.9	1.9	3 6	•	1.3	7.0	•
10	15.0		15.0	1.9 6.8	3.8 6.5	1.1	6.2		1.6		7.9
11	15.0		15.0		7.5		4.8				
12				13.1	8.7	•			•		
13	•	70.0	•						4	_	_
14	40.0	40.0	50.0	15.7	32.8	2.5	5.0 1.3	6.6	4.1	3.6 3.0	22.3
15			41.0	15.0	38.8	0.2	1.3	4.0	0.5	3.0	4.3
16	•	•	80.0	•	•	•	•	•		•	•
17						_ • _		•		_•_	
18	15.0		50.0			5.2				7.1	
19	15.0	15.0	40.0 15.0	28.1	12.7	•	4.0	•	•	•	8.0
20 21	30.0	30.0		23.0 24.4	11.4	1.8	2.0	2.4		4.3	8.0
22	15.0	15.0		5.7		1.0	3.6 1.9	2.1	1.7	3.9	9.1
23	15.0		15.0	8.1	18.3	1.1	1.5	2	3.9		
24	15.0	15.0				1.7	1.3	2.1	1.7		
25		30.0	30.0	5.3 9.4	4.5 3.5	1.7 2.4	1.3 2.7	•	5.5		
26	•				8.3	•	•		•		11.5
27	20.0		20.0	5.2	4.7	0.6	2.3	•	5.9	3.6	4.1
28			30.0	5.2 7.8	22.0	•	2.0		•		8.6
29	20.0		•	12.2	8.2 3.5	•	1.9	•	7.2	•	
30		20.0		5.7	3.5	•			2.0	•	
31	20.0			6.7	12.3	•	1.3	2.0		•	9.7
32	7.5	20.0		10.3	7.0 3.8	1.5	2.3	2.0	9.0	6.5	2.7
33	7.5	20.0				1.1	2.2		2.5	3.5	
34	10.0	20.0	19.0	2.5 9.4	3.4 5.9	1.1	2.,		2.5	3.0	15.1 35.2
35 36	7.5	20.0	60.0 40.0		2.7	•	1.9		•	•	
37	20.0	30.0	80.0	4 0	2.7	1.4	1.5	2.5	2.3		
38	7.5	20.0	30.0	4.0 4.4	1.1	1.8	1.6 2.0	2.5	10.3	9.8	7.2
39									_		
40		•	•	4.8	•	2.3	2.7	3.6	3.7	•	11.7
41					•						
42		•	90.0	20.7	16.4		•	•	•	•	32.0
43	•		90.0 100.0 130.0	•	•	•	•	•	•	•	•
44	•	•	130.0	•		•	•	•			
45	50.0	100.0	140.0	42.5	42.1	•	8.8			121.1	
46	•				24.9	•	•		•	•	
47 48	20.0	•	40.0	10.6 10.8	22.3 16.8		•	•	•		32.7
49	20.0	20.0	30.0	4.4	12 4			•	•		
50	7.5		20.0		11.1	2.1	1.5	5.6	3.5	12.1	7.0
51			20.0			1.5					
52	15.3	40.0	32.4		•	1.2	4.1		9.2		
53	30.0	•	60.0	7.1	_	_				•	44.0
	173.5	7.5	11.8	10.1	6.8 2.8	2.8	3.1	16.3	11.0	7.9	9.2
55	28.3	60.0		8.4	2.8	6.1	7.4	14.2	15.3	16.9	
56	23.0	30.0		8.2		2.3		7.9	6.6	12.5	11.3
57	23.0	•	62.9	•	5.3	_ •	3.2 4.5		12.4		77.0
58	40.0		40.0								36.2
59	•	50.0	•	19.1	11.2	21.9	22.7	41.6	•	51.7	•

Appendix M-2 Tests for significant differences between years using the parametric Duncan's Multiple Range Test and the non-parametric Kruskal-Wallis Test. Means and medians with the same letter are not significantly different.

Abbreviation & Identity	Duncan	Mean	N	SET	Kruskal -Wallis	Median Pr>Chi- Square
RA1 Rainfall	(in)					
	A	1.1214	29	yr1	С	1.17
	A	1.1544	25	yr2	C	1.15
FF1 Flow from	Basin 1 (C	ubic feet)				
	A	688.8	29	yr1	C	539
	A	638.0	25	yr2	C	621
FF2 Flow from			00		~	4 50 0
	A A	590.4 547.3	29 25	yr1	C C	450
FF3 Flow from			25	yr2	C	543
113 1100 11000	A	268.9	29	yr1	С	164
	A	263.1	25	yr2	Ċ	121
FF4 Flow from	Basin 4 (C			2	_	
	A	421.9	29	yr1	C	268
	A	389.5	25	yr2	C	328
FF5 Flow from	Basin 5 (C	ubic feet)				
	A	134.66	29	yr1	С	44
	A	126.04	25	yr2	С	46
FF6 Flow from					a	7.54
	A	274.1 250.6	29	yr1	C	154
FF7 Flow from	A Bacin 7 (C		25	yr2	С	171
FF/ FIOW ITOM	A A	204.30	29	yr1	С	95
	A	211.96	25	yr2	Ċ	122
FF8 Flow from	Basin 8 (Ct			1	_	
	A	414.7	29	yr1	С	297
	A	408.3	25	yr2	C	293
ANTE Inter-Eve	ent dry per:	iod (hrs)				
	A	163.50	28	yr1	С	82.63
	Α	117.78	24	yr2	С	105.25
DURA Duration	-	•	0.0			0.05
	A	4.098	28	yr1	C	2.25
MAXI Maximum 1	A Intensity (:	4.708	24	yr2	С	3.50
MAXI MAXIMUM I	A	0.6411	28	yr1	С	0.50
	A	0.7021	24	yr2	Ċ	0.64
NHR Ammonia in				1	-	
	A	0.11689	28	yr1	C	0.08
	A	0.13622	23	yr2	С	0.14
NOR Nitrate in	n rainfall	(mg/L)				
	A	0.20615	27	yr1	С	0.12
	A	0.21917	23	yr2	С	0.18
TNR Total nit	_					
	A	0.4185	27	yr1	C	0.38
ODD Onthe pho	A mahata in m	0.4627	22	yr2	С	0.37
OPR Ortho-phos	A	0.01836	/ ⊔) 28	yr1	С	0.005
	A	0.02165	23	yr2	Ċ	0.005
TPR Total phos			g/L)	1	C	
Tare Trans Error	-	0.017140	28	yr1	С	0.012 0.001
		0.033435	23	yr2	D	0.022
CUR Total copy				-		
	A	4.193	28	yr1	С	3.20
	A	6.800	23	yr2	С	3.40

Abbreviation	Duncan	Mean	N	SET	Kruskal -Wallis	Median	Pr>Chi- Square
FER Total iron	in rainfal	1 (ng/L)					
The rocar from	A	95.89	28	yr1	С	90	
	A	80.00	23	yr2	Ċ	55	
PBR Total lead	in rainfal	.1 (ug/L)		1			
	A	1.3483	29	yr1	C	BD	
	A	1.0587	23	yr2	C	BD	
ZNR Total zinc	in rainfal	1 (ug/L)					
	A	33.276	29	yr1	C	15.0	
	A	24.773	22	yr2	С	20.0	
NH1 Ammonia in			_	_	_		
		.11403	29	yr1	C	0.070	
NOT Mitable in		0.11275	24	yr2	С	0.130	
NO1 Nitrate in				**** 1	a	0 140	
		0.21397	29	yr1	C C	0.142	
TM1 Total mitm		0.20357	23	yr2	C	0.182	
TN1 Total nitro	A	0.4467	29	yr1	С	0.40	
	A	0.5114	22	yr2	C	0.44	
OP1 Ortho-Phos					C	0.44	
OFT OTCHO-FROS		.03510	29	yr1	С	0.031	
		.05609	23	yr2	Ċ	0.031	
TP1 Total phos					C	0.020	
iri rocar phos		.09714	29	yr1	С	0.054	
		.06404	23	yr2	Č	0.050	
CU1 Total Coppe					•	0.000	
	A	9.612	29	yr1	C	8.70	
	A	9.848	23	yr2	Č	8.25	
FE1 Total iron	in runoff		1 (uq,				
	A	377.59	29	yr1	C	310	
	A	356.52	23	yr2	C	280	
PB1 Total lead	in runoff	from Basin	1 (ug,	/L)			
	A	3.6552	29	yr1	C	2.70	
	A	2.7326	23	yr2	C	2.10	
ZN1 Total zinc	in runoff	from Basin	1 (ug,	/L)			
	A	40.172	29	yrı	С	30.00	
	A	30.682	22	yr2	С	30.00	
NH2 Ammonia in							
		.10879	28	yr1	C	0.055	
		.10783	22	yr2	С	0.028	
NO2 Nitrate in			_	_	_		
		.21525	28	yr1	C	0.153	
maro makal mikan		.21818	22	yr2	С	0.191	
TN2 Total nitro					a	0 27	
	A N	0.4484 0.5150	28 21	yr1	C C	0.27 0.49	
ODO Ostho shore				yr2	C	0.49	
OP2 Ortho-phos		.06032	28	yr1	С	0.027	
		.03645	22	yr2	C	0.027	
TP2 Total phos				-	Č	0.023	
irz iocai phos		.10054	28	yr1	С	0.057	
		.06577	21	yr2	č	0.044	
CU2 Total coppe				- .	_		
	A	8.920	28	yr1	С	7.00	
	A	10.933	22	yr2	Ċ	7.80	
FE2 Total iron					-		
	A	360.54	28	yr1	С	310	
		308.25	22	yr2	C	280	
PB2 Total lead				.=			
	A	4.0674	28	yr1	C	2.70	
	A	2.9521	22	yr2	C	2.00	

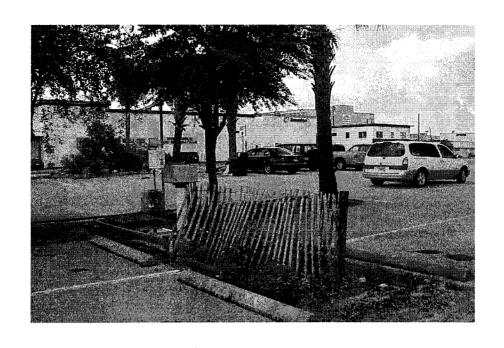
Abbreviation	Duncan	Mean	N	SET	Kruskal -Wallis	Median	Pr>Chi- Square
ZN2 Total zinc	: in runof	f from Basin	2 (ug	/L)			
	A	38.257	28	yr1	C	30.00	
	A	31.500	22	yr2	C	30.00	
NH3 Ammonia in	runoff f	rom Basin 3	(mg/L)				
	A	0.03153	17	yr1	C	0.018	
	A	0.06929	14	yr2	C	0.028	
NO3 Nitrate in	runoff f	rom Basin 3	(mg/L)				
	A	0.14729	17	yr1	C	0.109	
_	A	0.23514	14	yr2	C	0.264	
TN3 Total nitr	ogen in r		asin 3				
	A	0.3859	17	Yr1	С	0.31	0.02
	. A	0.7585	14	Yr2	D	0.63	
OP3 Ortho-phos	_			-			
	A	0.15353	17	yr1	С	0.135	0.05
	, A	0.22786	14	yr2	D	0.171	
TP3 Total Phos				_	_		
	A	0.18618	17	yr1	C	0.170	0.05
0770 m-4-1	A	0.26557	14	yr2	D	0.208	
CU3 Total copp							
	A	3.835	17	yr1	C	3.40	
	Α	4.857	14	yr2	С	4.60	
FE3 Total iron			-		_		
	A	60.00	17	yr1	C	50	
nno metal load	A	48.93	14	yr2	С	50	
PB3 Total lead		1.2882		1	a	h d	
	A B		17	yr1	C C	bd bd	
ZN3 Total zinc		0.8250	14	yr2	C	bd	
ZN3 TOCAL ZINC	A	16.765	3 (ug)		С	15.0	
	A	16.154	13	yr1	C		
NH4 Ammonia in				yr2	C	20.0	
MII AMMOIITA III	A	0.04311	24	yr1	С	0.019	0.001
	В	0.09351	23	yr2	D	0.019	0.001
NO4 Nitrate in				YIZ	Б	0.000	
NOT NICIACE III	A	0.20519	24	yr1	С	0.189	
	A	0.24768	22	yr2	Ċ	0.222	
TN4 Total nitr					•	0.222	
1111 10001 11101	A	0.5419	24	yr1	С	0.48	
	A	0.7546	22	yr2	Ċ	0.65	
OP4 Ortho-phos					J	0.00	
p	A	0.22217	24	yr1	С	0.122	
	A	0.20116	23	yr2	C	0.140	
TP4 Total phos	phorus in			•	_		
•	A	0.25399	24	yr1	С	0.149	0.05
	A	0.24367	23	yr2	D .	0.189	
CU4 Total copp							
	A	3.7624	23	yr1	С	3.40	0.01
	В	5.4803	23	yr2	D	5.30	
FE4 Total iron	in runof	from Basin	4 (ug/	/L)			
	A	84.31	24	yr1	C	70	
	A	72.55	23	yr2	С	80	
PB4 Total lead	in runof	f from Basin	4 (ug/				
	A	1.2350	24	yr1	C	bd	
	A	1.0061	23	yr2	C	bd	
ZN4 Total zinc	in runofi	f from Basin	4 (ug/	/L)			
	A	20.208	24	yr1	C	15.0	
	A	20.078	22	yr2	C	20.0	
NH5 Ammonia in	runoff fi	com Basin 5	(mg/L)				
	A	0.07158	12	yr1	C	0.042	
	A	0.07123	13	yr2	С	0.084	


Abbreviation	Duncan	Mean	N	SET	Kruskal -Wallis	Median	Pr>Chi- Square
NO5 Nitrate in	runoff fro	om Basin 5	(mq/L)				
		0.11575	12	yr1	C	0.101	0.006
		0.24646	13	yr2	D	0.259	
TN5 Total nitro				-	_		
	A	0.4575	12	yr1	C	0.41	
OP5 Ortho-phos	A phorus in a	0.6383	12 Bagin	yr2 5 (mg/L)	С	0.62	
ors oreno phos		0.05492	12	yr1	С	0.051	0.06
		0.08546	13	yr2	Č	0.086	0.00
TP5 Total phos					_		
		0.07525	12	yr1	C	0.068	0.06
		0.13469	13	yr2	D	0.116	
CU5 Total coppe				ug/L)			
	A	3.404	12	yr1	C	2.70	
DDE Motel load	A	3.936	14	yr2	C	3.80	
PB5 Total lead		l.13000	5 (ug,		a	hal	
		od	14	yr1 yr2	C C	bd bd	
FE5 Total iron		•			C	bu	
120 10002 22011	A	111.25	12	yr1	С	80	
	A	76.00	15	yr2	Ċ	97	
ZN5 Total zinc	in runoff	from Basin	5 (ug,	/L)			
	A	19.167	12	yr1	C	15.0	
	A	15.577	13	yr2	C	20.0	
NH6 Ammonia in			-		_		
		0.03022	19	yr1	C	0.017	
O6 Nitrate in 1		0.05962	16 ~~ /T \	yr2	С	0.043	
Ob Nittate in i		.16994	19 19	1rr1	С	0.115	
		0.23165	15	yr1 yr2	c	0.209	
TN6 Total nitro					Č	0.205	
	A	0.5151	19	yr1	С	0.46	
	A	0.6962	14	yr2	C	0.62	
OP6 Ortho-phosp	phorus in r	unoff from	Basin	6 (mg/L)			
		.16745	19	yr1	C	0.121	
		.23663	16	yr2	С	0.168	
TP6 Total phosp					~	0 100	
).18452).27819	19 16	yr1	C D	0.120 0.214	0.04
CU6 Total coppe				yr2 1g/L)	ם	0.214	
coo rocar coppe	A	3.6281	19	yr1	С	3.60	
	A	3.8871	16	yr2	Ċ	3.60	
FE6 Total iron	in runoff	from Basin	6 (ug/				
	A	64.08	19	yr1	C	50	
	A	87.89	16	yr2	С	97	
PB6 Total lead							
	A	1.4422	19	yr1	C	bd	
ZN6 Total zinc	A in runoff	0.9819	16	yr2	С	bđ	
ZN6 TOTAL ZINC	A TUNOTT	17.632	6 (ug/	yr1	С	15.0	
		26.086	15	yr2	C	20.0	
NH7 Ammonia in				1	Č	20.0	
		.07563	16	yr1	C	0.041	0.056
,	A 0	.10600	13	yr2	C	0.105	
NO7 Nitrate in	runoff fro	m Basin 7	(mg/L)				
		.14100	16	yr1	C	0.109	
		.24300	13 _	yr2	С	0.230	
TN7 Total nitro					=	0 45	
	A	0.5288	16	yr1	C	0.40	
	A	0.6775	12	yr2	С	0.56	

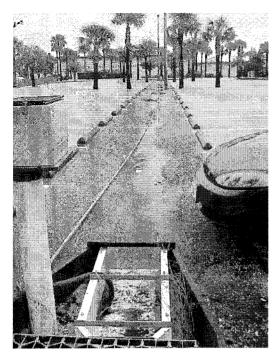
Abbreviation	Duncan	Mean	N	SET	Krusk -Walli		S edian	Pr>Chi- Square
OP7 Ortho-phos	phorus in ru	noff from	ı Basir	17 (mg/L)	•			_
		0113	16	yr1		С	0.097	
		1523	13	yr2		C	0.110	
TP7 Total phos	•				1		0 100	
		4444 5877	16 13	yr1 yr2		C C	0.128 0.157	
CU7 Total copp						C	0.157	
TO STATE OFF		.304	16	yr1		С	5.10	
		.185	13	yr2		C	7.40	
FE7 Total iron	in runoff f	rom Basin	. 7 (ug	1/L)				
		0.00	16	yr1		C	125	
DD7 Metal load		1.50	13	yr2		C	220	
PB7 Total lead		rom Basin 8813	16 (ug	ʃ/L) .vr1		C	bd	
			13	yr1 yr2		C	1.90	
ZN7 Total zinc				(/L)		ŭ	1.70	
		.353	17	yr1		С	15.0	
	A 29	.038	13	yr2		C	20.0	
NH8 Ammonia in	runoff from	Basin 8	(mg/L)					
			20	yr1		С	0.049	
2700 2715			23	yr2		C	0.083	
NO8 Nitrate in						С	0.171	
				yr1 yr2		C	0.171	
TN8 Total runo				1.2		·	0.23	
		_	20	yr1		С	0.46	
	A 0.	7661	20	yr2		C	0.60	
OP8 Ortho-phos			Basin	18 (mg/L)				
				yr1		C	0.137	
mpo mata 1 2				yr2		С	0.109	
TP8 Total phos	_			-		a	0 161	
				yr1 yr2		C C	0.161 0.180	
CU8 Total iron				/L)		C	0.100	
			_	Yr1		С	6.85	0.07
	A 0.	10670	23	Yr2		С	12.00	
FE8 Total iron				/L)				
				yr1		С	230	0.03
DDO Motel load				yr2		D	415	
PB8 Total lead				/L) yr1		С	2.55	
				yr2		C	2.40	
ZN8 Total zinc				/L)				
				yr1		С	20.0	0.03
				yr2		D	37.3	
SS1 Total susp					(mg/L)			
				yr1		C	7.69	
000 Mahal				yr2	(mm/T)	С	7.62	
SS2 Total susp			1 110m 25	yr1	(mg/L)	С	8.73	
				yr2		C	5.87	
SS3 Total suspe					(mq/L)	_		
				yr1	5	C	1.77	
				yr2		C	1.94	
SS4 Total susp					(mg/L)		_	
			19	yr1		C	3.56	0.05
CCE Total aver-			15 f from	yr2 Bagin 5	(mcr/T.)	D	2.29	
SS5 Total suspe		.863		yr1	/mg/ n/	С	3.18	
		.937	8	yr2		C	5.34	
	_			•				

Abbreviation	Duncan	Mean	N	SET	Kruskal -Wallis	Median	Pr>Chi- Square
SS6 Total sus	spended solids	s in runoff	from	Basin 6	(mg/L)		
	_ A	3.883 1	.8	yr1	C	2.63	
	A 5	5.966 1	.2	yr2	С	7.83	
SS7 Total sus	pended solids	s in runoff	from	Basin 7	(mg/L)		
	_	5.311 1		yr1	C	5.26	0.03
	A 22	2.162 1	0	yr2	D	12.30	
SS8 Total sus	pended solids	s in runoff	from	Basin 8	(mg/L)		
	A 10).719 1	.7	yr1	C	9.12	
	A 17	7.020 1	.9	yr2	С	11.71	

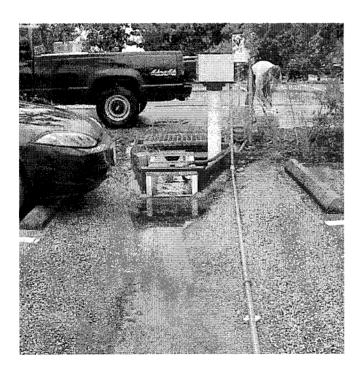
APPENDIX N


PICTURES

ASPHALT PAVEMENT WITH NO PLANTED SWALE

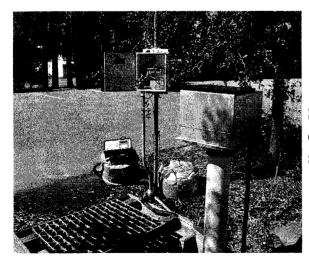

CONCRETE WITH PLANTED SWALE

POROUS PAVEMENT WITH PLANTED SWALE IN POOR CONDITIONS BECAUSE PEOPLE HAVE REMOVED THE FENCE AND TAKEN SHORT CUTS ACROSS THE SWALE


STRAND THAT RECEIVES RUNOFF FROM SWALES

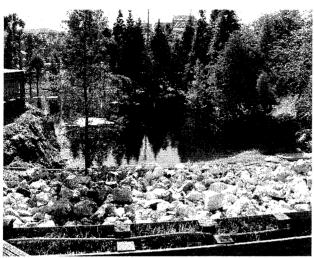
CLOSE UP BASIN WITHOUT SWALE

ASPHALT BASIN WITHOUT PLANTED SWALE


ASPHALT BASIN WITHOUT PLANTED SWALE SHOWS SAMPLING EQUIPMENT

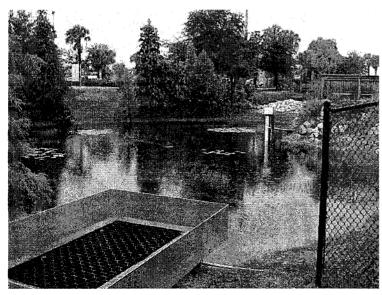
Small Garden Area and sampling equipment

Large Garden Area with planted swale in background



Sampling Equipment showing shaft encoder, data logger and automatic water quality sampler

THE STRAND AFTER THE BERM REPAIRS SHOWING NEW SIDE BANK FILTER



THE POND SHOWING WEIR STRUCTURES


INFLOW

INFLOW

OUTFLOW

HUNK OF CONCRETE LEFT FROM PREVIOUS INDUSTRIAL ACTIVITY

YBOR CHANNEL