Wetland Classification and Basin Characterization Study Preliminary Results

CHRISTINA URANOWSKI, M.S., P.W.S. SENIOR ENVIRONMENTAL SCIENTIST

Acknowledgements

District Staff

Marty Kelly, Director Ecologic Evaluation, PRJ David Carr, Ecologic Evaluation Al Karlin, Operations Jim Owens, Operations Adam Munson, Ecologic Evaluation Doug Leeper, Ecologic Evaluation Courtney James, Ecologic Evaluation Mike Hancock, Hydrologic Evaluation

Jones Edmunds, Inc. Joe Sullivan, Project Scientist BJ Bukata, GIS Analyst Mark Nelson, Engineer

Project Supports: Evaluation of Minimum Flows and Levels Methodologies for Wetlands

Rules of Chapter 40D-8, Florida Administrative Code

- Establishment of new methodologies and programs
- Assist to characterize water regimes
- Provide measures for prevention of significant harm
- May reflect seasonal variations
- Can assist in withdrawal management OROP

Southwest Florida Water Management District

Project Goals:

- Functional Classification of Wetlands TYPES OF WETLANDS?
 - Connected or Isolated Degree?
 - Clay Beds Create Locally Confined Conditions
 - Shallow or Deep
 - Landscape Position
 - Species Composition
 - Determine ANNUAL "Hydropattern"
 - Frequency, Depth and Duration
 - WHAT % OF THE WETLAND AREA IS FLOODED

Project Components

- Light Detection And Ranging (LIDAR)
 Wetland Bathymetry
- Hydric Soils Interface
- Soils Characterization
- Wetland Classification & Characterization

LIDAR Overview

Uses Light to measure distances

Airborne laser-scanning technology Accurate 3-D Measurements of Objects

Attachments to scanner Inertial Measurement Unit GPS

Millions of data points recorded

Up to 100,000 pulses of light/sec

Applications including FEMA Maps

Airborne Laser Scanning Technology

LIDAR and the Canopy

Many beams find a way through the foliage to the ground

Source: Airsurvey.com/lidar

How does it work?

Airborne Laser-Scanning

Method of analyzing

lase	r rav	v data	
East			
551001 630	168916 990	520, 900	
551007.280	168921.990	522.940	
551047.900	168946.030	521.690	
551002.070	168975.660	525.700	
551038.280	168922.590	520.100	
551037.470	168923.490	520.170	
551035.490	168924.130	520.300	
551034.420	168925.330	520.250	
551074.600	168912.830	518.160	
551093.410	168943.010	520.420	
551094.720	168943.490	520.500	
551091.810	168947.240	520.550	
551092.780	168945.960	520.420	
551052.440	168900.370	518.300	
551055.890	168942.290	520.760	
551054.910	168943.710	521.440	
551058.210	168967.050	521.910	
551080.930	168916.260	518.290	
551039.300	160900.470	519.030	
551050.020	168903 580	519.130	
551050.330	168901 360	518 490	
551049.530	168903.360	518,910	
551034.950	168921.310	519.480	
551035.380	168922.850	519.610	
551036.350	168921.550	519.480	
551087.450	168944.330	520.530	
551074.270	168911.130	518.360	
551075.590	168911.590	518.320	
551052 210	160061 020	521 950	

GRID

🖈 TIN

Contour lines

From:Thomas Hohl

Triangular Irregular Network (TIN)

Source: Airsurvey.com/lidar

BARE EARTH FILTERING

Software filtering leaves Bare Earth points Technique removes shrub and tree points **Field Verify Points** Layer LIDAR ground points over shapefiles \bigcirc Four Feature Classes of Data Established Suitable Marginal Sparse Unsuitable Southwest Florida Water Management Dist

Suitable Coverage

• Well Distributed Ground Points

• Adequate Number of Points

•Successful Modeling Expected

Marginal Class

• Well Distributed

• Evidence of Inundation

- May not find lowest point
- May be no alternative

Sparse

- Low number of points
- Poorly distributed
- Wetland Contours not represented adequately

- Large gaps indicating inundation
- Lowest points not likely

Unsuitable

• Inundation nearly complete

• Ground Points only on periphery

• No data available

115 Categorized Wetlands

*	Suitable	55
*	Marginal	21
*	Sparse	11

* Unsuitable 28

66% Usable

USGS Ground Elevation Surveys Basis to measure success criteria

- Bathymetry and Vegetation in Isolated Marsh and Cypress
 Wetlands in the Northern
 Tampa Bay Area, 2000-2004
- Kim Haag
- Terrie Lee
- Donald Herndon

Cooperative Study funded by: SWFWMD, TBW and Pinellas County

PILOT STUDY COMPARISON ANALYSIS

- LIDAR vs. USGS SURVEYED WETLANDS
- District Analysis
- Jones Edmunds Analysis
 - **Chosen Sites:**
 - **Three Forested Sites**
 - One Marsh Site
 - Two sites in Starkey Wellfield
 - Two sites in Green Swamp
 - Analyzed:
 - Vertical Accuracy
 Stage Area/Volume
 Methodology/Techniques

Study Area

District Analysis

Vertical Accuracy

- Surveyed the Four Sites
- Verified benchmark elevations NAVD88
- Compared Actual Survey Points with LiDAR Points
- Verified Accuracy Standards : 6/10 foot

Guidelines: American Society for Photogrammetry and Remote Sensing (ASPRS 2004)

Green Swamp #5 Survey Points

Green Swamp #5 Benchmarks

Recording Well SID# 17600

Reference Point Bench Mark "S 0541

Well SID# 17598-

Primary Control Station "STA 0541"

Reference Point Bench Mark "S 0541 B"

Staff SID# 17599

Results

¹0.9

Wetland GS302 (LiDAR heights* - Survey heights) Mean Difference = 0.65' St.Dev. = +/- 0.45'

100

150

200 Feet differences indicate LiDAR is "digging into" surface
 + differences indicate LiDAR is hitting ABOVE ground

0.9 0.3

* LiDAR heights = height determined on the derived LiDAR surface

Southwest Florida Water Management District

Green Swamp Marsh

Wetland GS304 (LiDAR heights* - Survey heights) Mean Difference = 0.68' St.Dev. = +/- 0.38'

100

150

200

differences indicate LiDAR is "digging into" surface
 differences indicate LiDAR is hitting ABOVE ground

* LiDAR heights = height determined on the derived LiDAR surface

Southwest Florida Water Management District

Starkey S63 Augmented Cypress

Starkey DD Cypress Dome

Southwest Florida Water Management District

Wetland Classification & Characterization

What Goes into the Mix?

Classification Scheme for District Wetlands

Classification Provides:

Hydrologic Characteristics for Each Wetland Type

ANNUAL WATER LEVELS

Supports Wildlife Life Cycles Supports all Trophic Levels of Wildlife Greater Resolution of Wetland Health

> Southwest Florida Water Management District

Qualitative descriptions:

Karen Gruenhagen From 2008 DEP SLERP Conference

Green Swamp Wetlands

Each wetland type has a unique hydrologic signature

Green Swamp Wet Prairie, 2005 water level

Karen Gruenhagen From 2008 DEP SLERP Conference

Composite Water Level Green Swamp Marsh, 2.00 1.50 water depth, feet 1.00 water level 0.50 SHW NP (SF) 0.00 NP (MFL) Green Swamp Marsh, 2005 water level 1.40 1.20 water depth, feet 1.00 0.80 0.60 10/27/2005 10/27/2006 10/27/2004 10/27/2007 0/27/2003 0.40 0.20 0.00 2/18/2005 3/18/2005 4/18/2005 5/18/2005 7/18/2005 8/18/2005 9/18/2005 11/18/2005 1/18/2005 12/18/2005 6/18/2005 10/18/2005 Karen Gruenhagen From 2008 DEP SLERP Conference

JONES EDMUNDS® ENGINEERS | ARCHITECTS | SCIENTISTS

Preliminary Results

PILOT PROJECT RESULTS BJ BUKATA MARK NELSON

Hydric Non-Hydric Soils Soils Characterization JOE SULLIVAN

