Using Anurans to Measure Wetland Health on a Central Florida Wellfield

Introduction

- * Two-year SWFWMD-funded study
- * Part of a M.S. in Zoology
 - Henry Mushinsky and Earl McCoy are the Principle Investigators and Co-Advisors
- * Field study during 2001 and 2002
- * Thesis to be completed Spring 2004
- Future publications to follow

Background

- Groundwater pumping affects hydroperiod of wetlands (Brown 1984)
- The State of Florida is charged with considering effects on flora and fauna in permitting decisions (Chapter 40D-2.301 FAC)
- Vegetation and soils monitoring is conducted twice yearly on all wellfields (Rochow 1994)
- * We propose an alternative monitoring method
 - Biological indicators are species or groups of species whose presence or abundance or condition are indicative of a specific set of environmental conditions (Adamus 1996).
 - Amphibians are considered sensitive to environmental perturbations and excellent barometers of ecosystem health (Vitt et al. 1990, Wake 1998, Blaustein et al. 1994).

Questions

- Can the reproductive success of anurans be used to predict health of wetland systems?
- Do the vegetation observations of wetland health mirror the reproductive success of the anurans on the site?
- What environmental factors can be used to predict the reproductive success of anurans?

Pieces of the Puzzle

- Site Selection
- Collection Methods
- * Wetland (Sampling Unit) Selection
- ***** Expected Species

1 Caller

17.200

Typical Habitat

Data Collection Methods

* Call Census

- 3 minute observations
- Expanded sample size
- Tadpole Census
 - Funnel traps
 - Dip nets
- Environmental Factors
 - Temperature and pH
 - Water level

Wetland Selection

- Wetlands Chosen with SWFWMD
 Based on Vegetative Health Rating (VHR)
 - Five "Blue" Wetlands
 - Five "Green" Wetlands
 - Two "Red" Wetlands

Blue Wetlands

- Do not show signs of impact from wellfield pumping
 - Healthy trees
 - Normal "zonation"
 - Hydrophytic vegetation
 - Signifies normal water
 level fluctuation
 (hydroperied)

Green Wetlands

- Show moderate signs of impact from wellfield pumping
 - Tree stress and falling
 - Changes in "zonation"
 - Mix of hydrophytic and upland/transitional vegetation
 - Signifies changes in hydroperiod.

Red Wetlands

- Show severe signs of impact from wellfield pumping
 - Major treefall
 - Extreme soil degradation
 - Abnormal "zonation"
 - Upland vegetation throughout
 - Signifies long term and severe changes in hydroperiod

Expected Species

- Bufonids
 - oak toad
 - southern toad
- Ranids
 - bullfrog
 - pig frog
 - southern leopard frog
 - Florida gopher frog

- Hylids
 - pinewoods treefrog
 - green treefrog
 - squirrel treefrog
 - barking treefrog
 - southern cricket frog
 - little grass frog
 - southern chorus frog
- * Others
 - eastern narrowmouth toad
 - eastern spadefoot

southern toad (Bufo terrestris)

11)

1 10

oak toad (Bufo quercicus)

11)

10

pinewoods treefrog

11)

(Hyla femoralis)

barking treefrog (Hyla gratiosa)

M

barking treefrog (Hyla gratiosa)

M,

little grass frog (*Pseudacris ocularis*)

11)

h# 1.2 m

The

11)

southern leopard frog (Rana uticularia)

11.

Florida gopher frog (Rana capito)

Florida gopher frog (Rana capito)

M,

11:07.20

eastern spadefoot (Scaphiopus holbrookii)

11)

Overview

* Call Surveys

*26 wetlands sampled for calling males

- *12 sampling events
- *14 species represented
- * Tadpole Sampling
 - *12 wetlands sampled over two years
 - *13 sampling events
 - *4,000 tadpoles captured
 - *13 species represented

* Three years vegetation information used

Statistics

- Nonmetric Multidimensional Scaling
 - Vegetative variables
 - * Wetland Assessment Procedure Variables
 - Tadpole and predator variables used
 - * Individuals per unit effort
 - * Taxa per event
 - * Taxa per year
- * Nonparametric correlation
 - Hydroperiod variables, calling males and tadpole species

NMDS plot created using average quantitative vegetation variables and a Euclidean distance dissimilarity matrix. (440 iterations Stress 0.028, Alienation 0.048, D-Hat: Raw stress 0.112, D-Star: Raw Stress 0.333).

NMDS plot created using nine anuran and anuran predator variables and a Euclidean distance dissimilarity matrix. (329 iterations, Stress .0199, Alienation .0321, D-Hat Raw Stress .0576, D-Star Raw Stress .1476).

NMDS plot created using seven anuran variables and a Euclidean distance dissimilarity matrix. (Stress .0166, Alienation .0287, D-Hat Raw Stress .0396, D-Star Raw Stress .1188).

Spearman Rank Correlation between average length of inundation in 2001 and 2002 and number of tadpole species captured each year in 2001 and 2002 (Spearman r = .70, p < .05).

Spearman Rank Correlation between average Julian Date of inundation in 2001 and 2002 and number of tadpole species captured each year in 2001 and 2002 (Spearman r = .78, p < .01).

Average Julian Date of Inundation

Spearman Rank Correlation between average number of species heard calling and the average number of tadpole species captured in 2001 and 2002 (Spearman r = .87, p < .001).

Discussion

- We determined through statistical analysis that it is possible to distinguish differences in wetland health based upon frog reproductive success.
- * We found that there was overlap between the vegetative measures and the frog measures.
- We see that there is variation between years in reproductive success among wetlands.
- We established that it is possible to measure reproductive success by documenting frog calls or tadpole captures.
- * We identified two important factors in the reproductive success of the frogs.

Further Discussion

- What are the implications of the study on wellfield management?
 - Two group or three groups of wetland categories?
- * Does this study bring up further questions?
 - Combination of anuran and vegetative variables?
 - How can we separate natural variation from anthropogenic change?

Acknowledgements

- Southwest Florida
 Water Management
 District
- * Berryman & Heniger
- Biological Research Associates
- * Cognocarta GIS
- Pasco County Staff
- Graduate Committee

- Ted Rochow
- Diane Willis
- Dan Schmutz
- Brian Halstead
- Neal Halstead
- Kris Raymond
- * Pablo Delis
- Lee Walton
- Jason Lancaster
- Lou Anne Perkins
- Jennifer Gonzalez
- * Ronn Altig
- * J. Steve Godley
- Doug Durbin

Questions?

10:07.20

