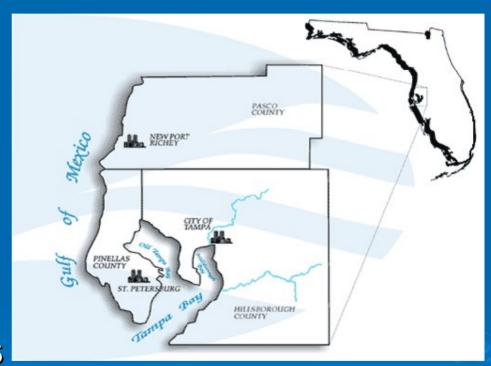


Tampa Bay Water Section 21 Wellfield Restoration Project:

Evaluating Potential Health Risks Associated with Wetland Restoration Using Storm Water and Reclaimed Water


Deborah Daigle, P.G HDR Engineering, Inc.

Tampa Bay Water

- Florida's Largest Wholesale Water Supplier
- Created by Interlocal Agreement
- > Six Member Govt's

Groundwater Facilities

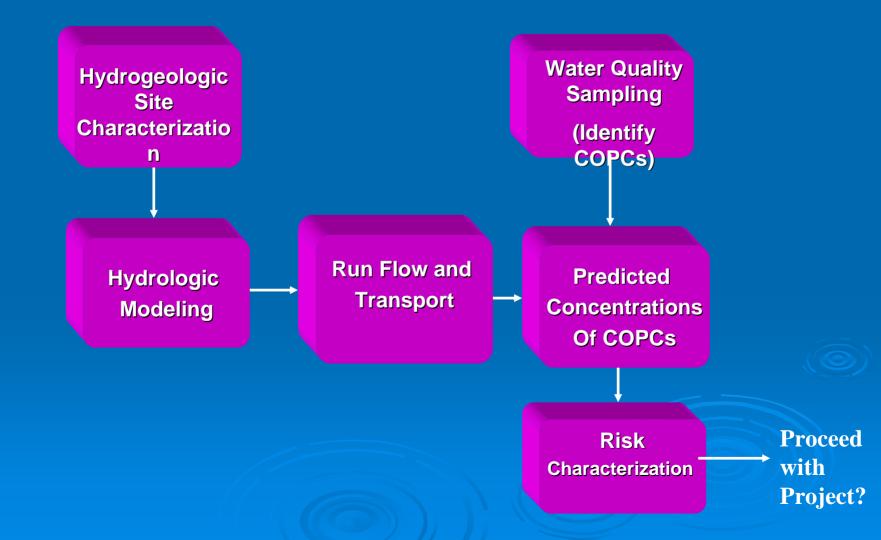
- > 11 Wellfields
- Regulated by SWFWMD
- City of St. Petersburg owns the Section 21 Wellfield
- Property leased to
 Hillsborough County for use
 as a public park
- Tampa Bay Water owns 1 acre parcels surrounding the well heads

- Impacts to Wetlands and Lakes
- Permit Requirements
 - Pumpage Reductions
 - Lake and Wetland Restoration Program for all Wellfields
- CSES, Phase I and II Mitigation Plans

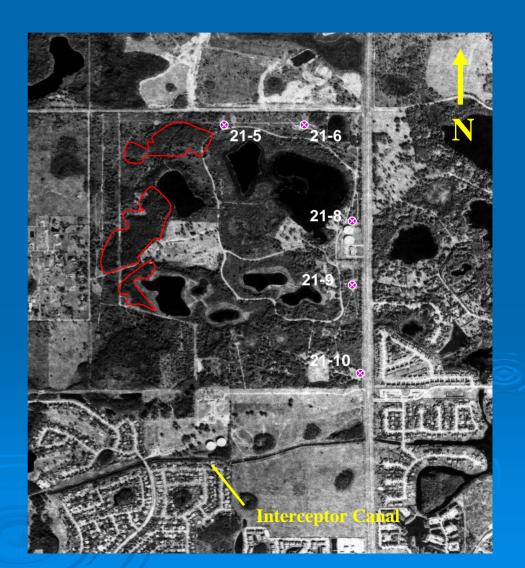
- Groundwater Augmentation
- Reclaimed Water Augmentation
- Drainage Modifications
- > Surface/Stormwater Diversion

Section 21 Wellfield Restoration Project

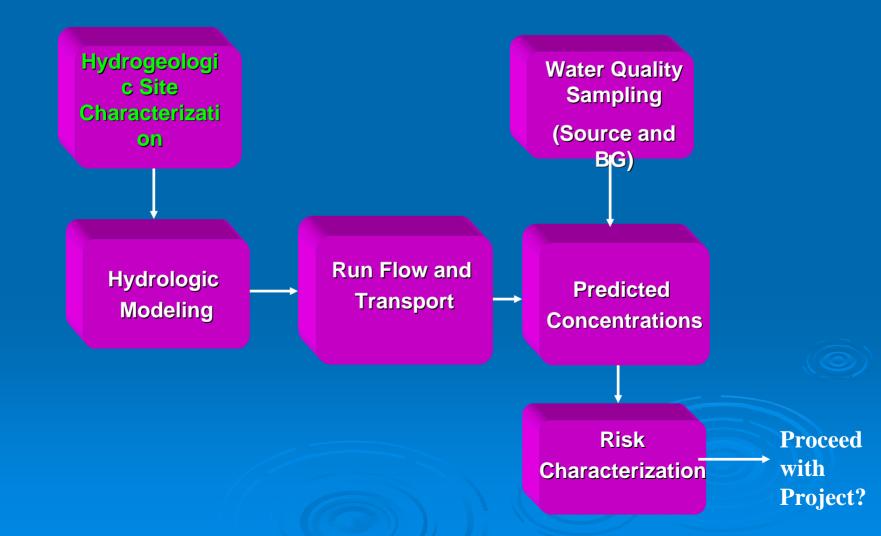
- Divert Storm Water and/or Reclaimed Water to Wetlands on Wellfield.
- Investigate the Potential Public Health Risks
- Develop and Utilize a Scientific Process for Evaluating Potential Impact to Public Health



Co-Funded by SWFWMD and EPA

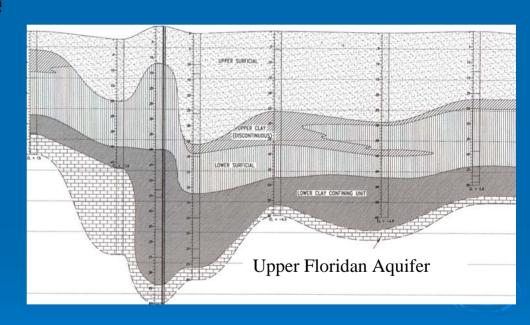

Site Map

Active Production Well

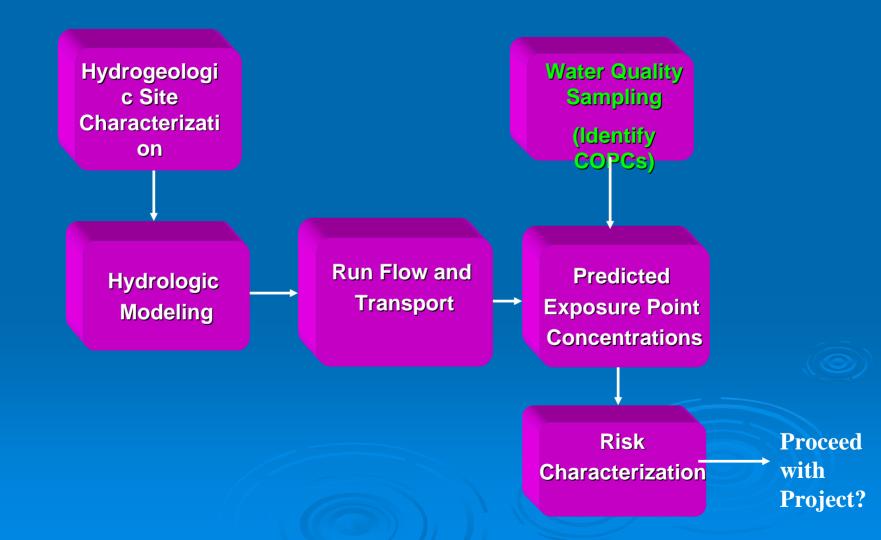

Restoration Site

Hydrogeologic Site Characterization

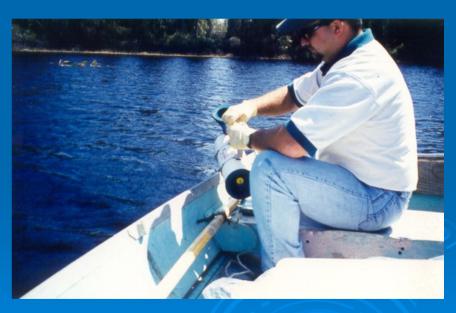
- Required for Model Input
- Ground Penetrating Radar
- 29 Soil Borings
- Laboratory Testing-Soils
- 24 Monitoring Wells
- Aquifer Performance Tests
- Tracer Tests



Site Hydrogeology


- Shallow Water Table Aquifer
- Confining Layer of Variable Thickness
- Floridan Aquifer Source of Drinking Water
- High Occurrence of GPR Anomalies

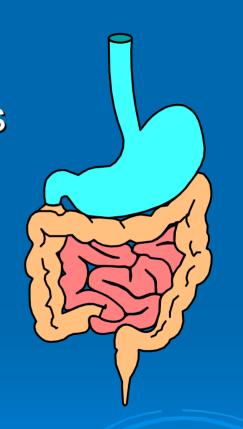
Section 21 Risk Assessment Process



Background and Source Water Characterization

- Sampling for Chemical and Microbial Constituents
 - Production Wells
 - Lakes
 - Wetland
 - Interceptor Canal
 - Reclaimed Water (DMAWWTP)

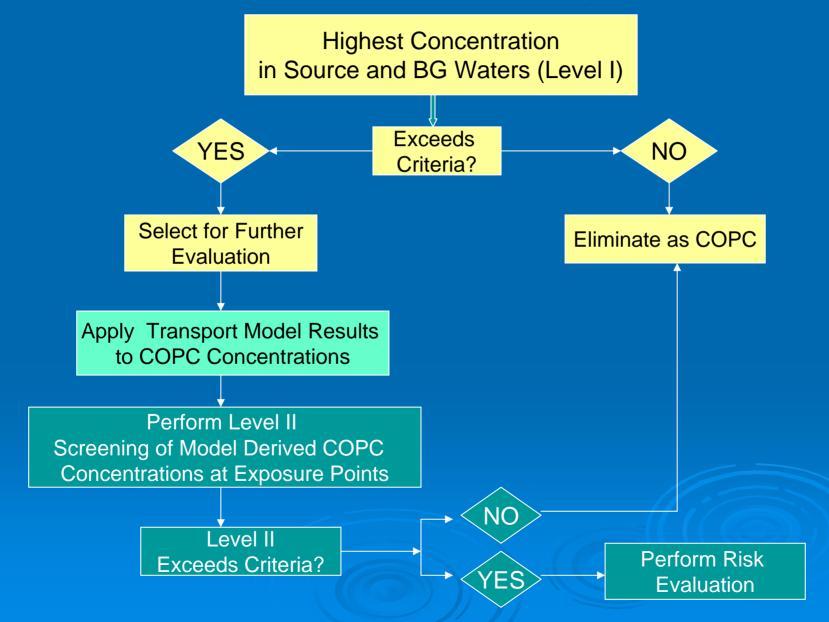
Water Quality Sampling


- > Chemical and Indicator Parameters
 - Field Parameters
 - Primary and Secondary Drinking Water Parameters (62-550 FAC)
 - Disinfection By-Products
 - Nutrients

Water Quality Sampling

- > Microbiological Parameters
 - Human Enteroviruses
 - Protozoan Parasites
 - Cryptosporidium
 - Giardia

Risk Assessment Process


- Chemical Parameters US EPA Risk Assessment Guidance for Superfund
 - Screening Process to Identify Constituents of Potential Concern (COPCs) to Human Health

Microbiological Parameters— Quantitative Microbial Risk Assessment (QMRA)

Identify Chemical Constituents of Potential Concern (COPCs): Screening Process

Identify Constituents of Potential Concern (COPCs): Level I Screening Process

- Parameters that do not comply with the following Florida Administrative Codes:
 - 62-550 Drinking Water MCLs, and
 - 62-777 Groundwater Cleanup Target Levels.
 - 62-302 Class III Fresh Surface Water Quality Criteria
 - Federal (if no State guidance)

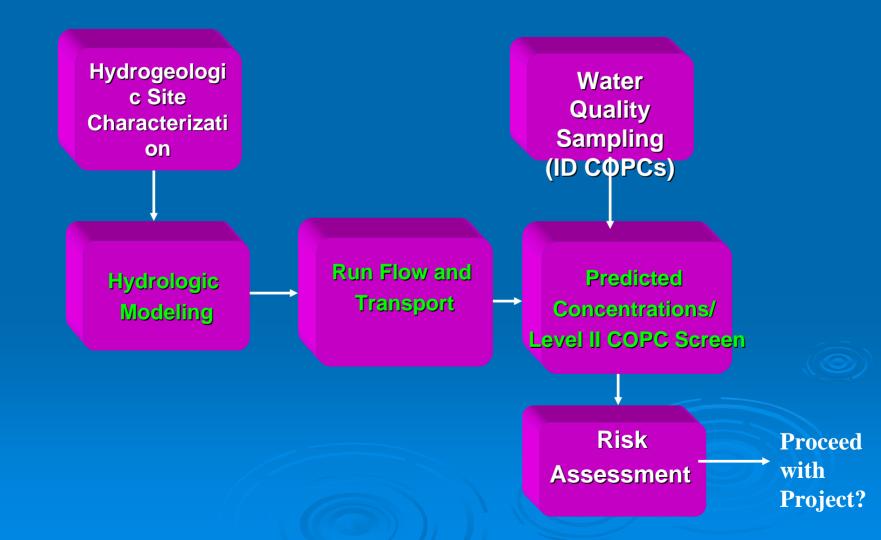
Level I Screening Process

Parameters that are significantly different (statistically) for the restoration source waters when compared to the background waters

Level I Screening to Identify COPCs

 Dale Mabry AWWTP

Doesn't meet FAC	Statistically Different from Background	Health Risk
Conductivity TDS Odor TTHM Chloroform Bromodichloromethane Dibromochloromethane	Conductivity TDS TTHM Chloroform Bromodichloromethane Dibromochloromethane	Chloroform Bromodichloromethane Dibromochloromethane

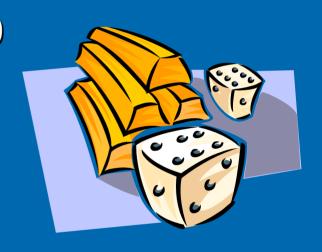

Interceptor Canal

Doesn't meet FAC	Statistically Different from Background	Health Risk
DO	Color	None
Odor		
Color		

Risk Assessment Process

Hydrologic Modeling

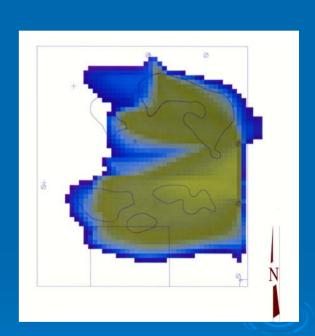
- Steady-State and Transient Flow and Transport Models
 - MODFLOW
 - MT3D
- Simulate Restoration
 - Source Water Migration Paths and Travel Time to Production Wells
 - COPC Concentration at Production Wells and Lakes/Wetlands



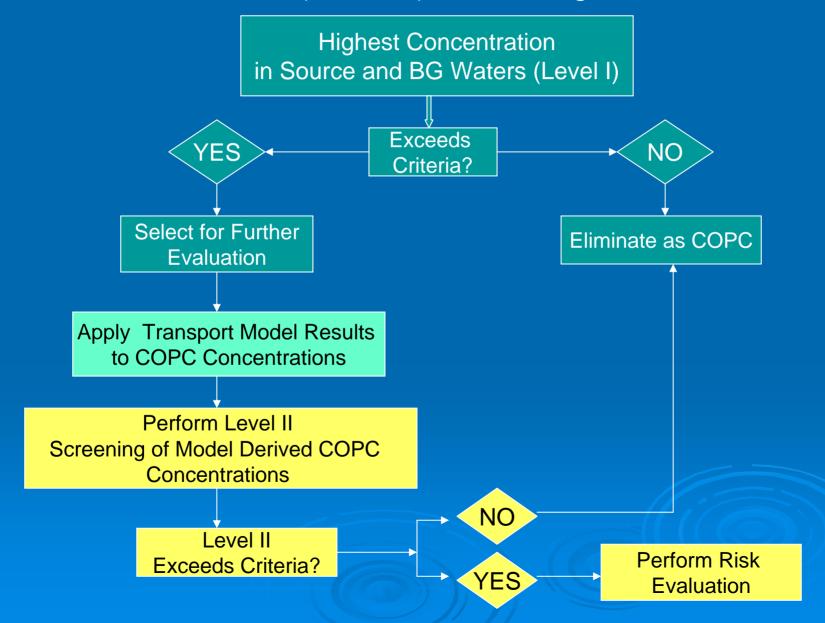
Hydrologic Modeling

Starting Concentration of 1000 in Transport Model

Transient Model Period of 20 Years



Model Results

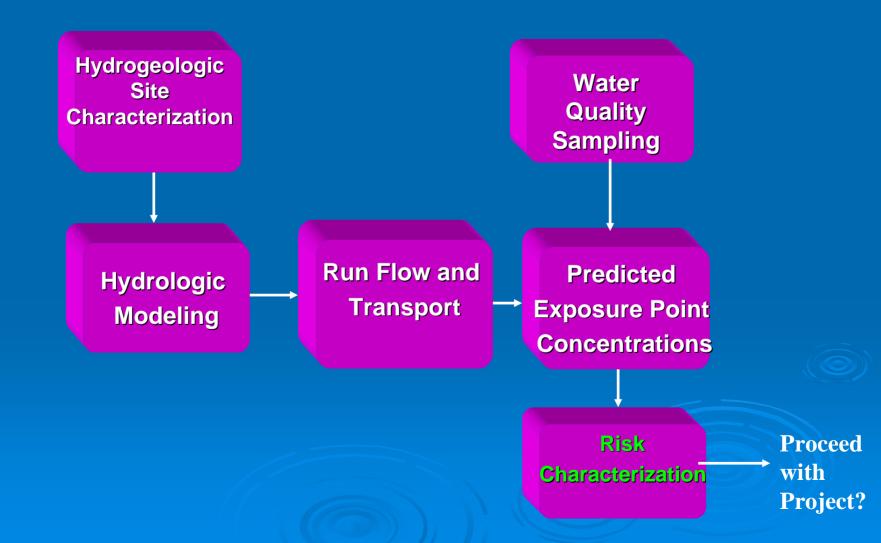

- First Arrival to First Production Well: ~ 3 Months
- Transport Model
 - Peak Concentration at Production Wells: 0.3% to 5% of Source Water Concentration
 - Lakes: 26% to 98%
 - Wetlands: 5% to 56%

Identify Chemical Constituents of Potential Concern (COPCs): Screening Process

Level II Identification of COPCs

- Calculated concentrations of constituents (identified in Level I) at the each Production well, Lake, and wetland as predicted from site – specific flow and transport modeling.
- Model derived concentrations are compared to State Maximum Contaminant Levels and/or EPA Region 9 Preliminary Remediation Goals (PRGs) –Tap water, EPA WQ Criteria for Human Health Clean Water Act or SDWA requirements

Level II Identification of COPCs


DMAWWTP

- > Bromodichloromethane
- > Dibromochloromethane
- > Exceed Criteria for Wetlands and Lakes

Risk Assessment Tasks

Identify Potentially Exposed Populations (Receptors)

- > How will Humans be Exposed?
- Based on Land Use, Activities on the Park, Groundwater Use
 - Resident
 - Park Visitor
 - Worker
 - Trespasser
- Means to which Receptors Exposed

Exposure Pathways and Receptors

Exposure Medium	Exposure Point	Potential Receptor	Age	Exposure Route	On- Site/Off- Site	Selected for Further Analysis
Potable Water	Well	Resident	Adult and Child	Ingestion Dermal Inhalation	Off	No
Incidental Contact	Well	Worker	Adult	Dermal Inhalation	On	Yes
Incidental Contact	Lakes/Wet lands	Worker	Adult	Dermal Inhalation	On	Yes
Swimming	Lakes	Trespasser or Visitor	Adult and Child	Ingestion Dermal Inhalation	On	Yes

Chemical Risk Assessment Results

- Performed Risk
 Calculations for Selected
 Exposure Pathways and
 Receptors for COPCs
- No Human Health RiskAssociated with aChemical Exposure

Microbial Risk Assessment

QMRA Step	Approach
Selection of pathogens	Cryptosporidium, Giardia, and enteric viruses
Determination of pathogen profile	Maximum and average values from monthly samples over 24 month period
Estimate of pathogen survival	First order die-off as function of time and temperature
Determination of exposure pathways	Ingestion, contact and non-contact recreation
Estimate of pathogen dose-response in humans	Exponential (protozoa), beta-Poisson (virus) models derived from human infectivity studies
Characterization of risk from pathogens	Independent action, based on single and multiple exposures

^{*}Developed by Dr Joan Rose, others

Assumptions Made to Calculate Microbial Risks

- 100% recovery of pathogens by the analytical methods
- 100% viability of the pathogens detected by the analytical methods
- No retardation of pathogens due to transport in aquifer

Assumptions Made to Calculate Microbial Risks

Inactivation of pathogens by treatment was not considered in the risk calculation

Variations in water temperature were not considered. Risk calculations were based on a yearly average surface water and aquifer temperature of 26°C

MATER Microbiological Water Quality HDR Results

- > Wetland
 - Cryptosporidium detected in 1 of 22 samples
- Lake Jackson
 - Cryptosporidium in 2 of 24 Samples
- Interceptor Canal
 - Cryptosporidium in 1 of 24 Samples
 - Giardia in 1 of 24 Samples
- > DMAWWTP
 - Giardia in 22 of 24 Samples
 - Cryptosporidium in 20 of 24 Samples
 - Enteroviruses in 2 of 24 Samples

Exposure Pathway

Pathway	Exposure	Frequency
Ingestion	2 liter/day	365 days/year
Contact Recreational	100 mL/visit	45 days/year
Non-Contact Recreational	1 mL/visit	45 days/year

QMRA

Ingestion, Contact, and Non-Contact Recreation Risk Calculated for both Existing and Restored Condition

Compared to Determine Increase or Decrease

QMRA Conclusions - Ingestion

- Interceptor Canal Compared to Existing Condition
 - Similar yearly risk for Giardia
 - Reduced yearly risk for Cryptosporidium
- DMAWWTP effluent Compared to Existing Condition
 - Increases yearly risk for Giardia
 - Similar yearly risk for Cryptosporidium
- The yearly viral risk is negligible for the existing and restored condition no matter which source water is used for restoration.

QMRA Conclusions — Contact and Non-contact Recreational Activities

- ➤ Interceptor Canal Compared to existing condition
 - Similar recreational risk with respect to Cryptosporidium and enterovirus
 - Increased recreational risk from Giardia-controlled through restricted access.

DMAWWTP effluent - Compared to existing condition

Increased recreational risk for Cryptosporidium,
 Giardia and enterovirus

— controlled through restricted access

Conclusions

- No significant risks with respect to chemical constituents.
- Use of reclaimed water/storm/surface water presents a comparable or decreasing risk profile for ingestion as compared to the background risk with respect to microbiological constituents.
- Use of reclaimed water/storm/surface water presents varying risk profiles for recreational activities as compared to the background risk with respect to microbiological constituents.