

Well Construction and Water Quality at the ROMP TR 19-3A – Heather Well Site in Hernando County, Florida

Southwest Florida Water Management District Geohydrologic Data Section

Cover Photo: Permanent monitor wells at the ROMP TR 19-3A – Heather well site in Hernando County, Florida in order from left to right: ROMP TR 19-3A Saltwater Interface Monitor, ROMP TR 19-3A U Fldn Aq Monitor, ROMP TR 19-3A Surf Aq Monitor. Photograph by Joel Durkee.

Well Construction and Water Quality at the ROMP TR 19-3A – Heather Well Site in Hernando County, Florida

By Kristina D. Mallams

January 2023

Southwest Florida Water Management District Geohydrologic Data Section

Southwest Florida Water Management District

Operations, Lands and Resource Monitoring Division Brian Starford, P.G., Director

Data Collection Bureau

Sandie Will, P.G., Chief

Geohydrologic Data Section

M. Ted Gates, P.G., Manager

Southwest Florida Water Management District 2379 Broad Street Brooksville, FL 34604-6899

For ordering information:

World Wide Web: http://www.watermatters.org/documents

Telephone: 1-800-423-1476

For more information on the Southwest Florida Water Management District and its mission to manage and protect water and related resources:

World Wide Web: http://www.watermatters.org

Telephone: 1-800-423-1476

The Southwest Florida Water Management District (District) does not discriminate on the basis of disability. This nondiscrimination policy involves every aspect of the District's functions, including access to and participation in the District's programs, services and activities. Anyone requiring reasonable accommodation, or who would like information as to the existence and location of accessible services, activities, and facilities, as provided for in the Americans with Disabilities Act, should contact the Human Resources Office Chief, at 2379 Broad St., Brooks-ville, FL 34604-6899; telephone (352) 796-7211 or 1-800-423-1476 (FL only), ext. 4747; or email *ADACoordinator@WaterMatters.org*. If you are hearing or speech impaired, please contact the agency using the Florida Relay Service, 1-800-955-8771 (TDD) or 1-800-955-8770 (Voice). If requested, appropriate auxiliary aids and services will be provided at any public meeting, forum, or event of the District. In the event of a complaint, please follow the grievance procedure located at *WaterMatters.org/ADA*.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the Southwest Florida Water Management District.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Suggested citation:

Mallams, K.D., 2023, Well Construction and Water Quality at the ROMP TR 19-3A – Heather Well Site in Hernando County, Florida: Southwest Florida Water Management District, 140 p.

The hydrogeologic evaluations and interpretations contained in Well Construction and Water Quality at the ROMP TR 19-3A - Well Site in Hernando County, Florida have been prepared by or approved by a licensed Professional Geologist in the State of Florida, in accordance with Chapter 492, Florida Statutes.

No. PG 2922 * PROFESS/ ST TE OF Kristina D. Mallams **Professional Geologist** State of Florida License No. PG 2922

3 02 Date:

Foreword

The Geohydrologic Data Section (GEO) administers the Regional Observation and Monitor-well Program (ROMP) at the Southwest Florida Water Management District (District). The ROMP was started in 1974 in response to the need for hydrogeologic information by the District. The focus of the ROMP is to quantify the flow characteristics and water quality of the groundwater systems that serve as the primary source of water supply within southwest Florida. The original design of the ROMP consisted of an inland 10-mile grid network composed of 122 well sites and a coastal transect network composed of 24 coastal monitor transects of two to three well sites each. The number of wells at a well site varies with specific regional needs; usually two to five permanent monitor wells are constructed at each site. The numbering system for both networks generally increases from south to north with ROMP-labeled wells representing the inland grid network and TR-labeled wells representing the coastal transect network.

In addition to the ROMP, the GEO section oversees construction of monitor wells and performs aquifer testing activities for other District programs and projects. The broad objectives at each well site are to determine the hydro-geology, water quality, and hydraulic properties of the units present, and to install wells for long-term monitoring. Site activities include exploratory coring and testing, well construction, and aquifer performance testing. These activities provide data for the hydrogeologic and groundwater quality characterization of the well sites. These characterizations are used to ensure the monitor wells are properly designed for intended hydrologic targets. At the completion of each well site, a summary report is generated and can be found at the District's website at www.watermatters.org/data. The monitor wells form the backbone of the District's regional models, hydrologic conditions reporting, and regulatory water use permitting.

M. Ted Gates

Manager

Contents

Foreword	iv
Introduction	.1
Acknowledgments	.1
Site Location	.1
Methods	.2
Lithologic Sampling	.5
Hydraulic Testing	
Water Quality Sampling	
Geophysical Logging	
Well Construction	
Drilling Water Supply	.7
Core Hole 1	
Core Hole 2	
Surficial Aquifer Monitor Well	
Upper Floridan Aquifer Monitor Well	
Saltwater Interface Monitor Well	
Geology	
Avon Park Formation (Middle Eocene)	
Ocala Limestone (Late Eocene)	
Suwannee Limestone (Oligocene)	
Undifferentiated Hawthorn Group (Miocene)	
Undifferentiated Sand and Clay (Pliocene-Holocene)	
Hydrogeology	
Upper Floridan aquifer (unconfined)	
Middle Confining Unit II	
Groundwater Quality	
Summary	
Selected References	
Appendix A. Geophysical Log Suites for the ROMP TR 19-3A Well Site in Hernando	
County, Florida	22
Appendix B. Well As-built Diagrams for the ROMP TR 19-3A Well Site in Hernando	
County, Florida2	
Appendix C. Lithologic Logs for the Samples Collected at the ROMP TR 19-3A Well Site in Hernando County, Florida	35
Appendix D. Digital Photographs of Core Samples Retrieved from the ROMP TR 19-3 Well Site in Hernando County, Florida	
Appendix E. Correlation Charts	
Appendix F. Daily Water Levels Recorded During Exploratory Core Drilling and Testin at the ROMP TR 19-3A Well Site in Hernando County, Florida	g
Appendix G. Water Quality Sample Data Acquisition Forms for the ROMP TR 19-3A Well Site in Hernando County, Florida	
Appendix H. Water Quality Data for the Groundwater Samples Collected at the ROMF TR 19-3A Well Site in Hernando County, Florida	Ρ

Figures

1.	Northern District Drill Plan well sites with NDWRAP boundary2
2.	Location of the ROMP TR 19-3A – Heather well site in Hernando County, Florida
3.	Well site layout for the ROMP TR 19-3A – Heather well site in Hernando County, Florida
4.	Stratigraphic column detailing the hydrogeologic setting at the ROMP TR 19-3A – Heather well site in Hernando County, Florida
5.	Hydrograph of the permanent monitor wells at the ROMP TR 19-3A – Heather well site in Hernando County, Florida12
6.	Discharge rates and water levels collected during exploratory coring and testing at the ROMP TR 19-3A - Heather well site in Hernando County, Florida14
7.	Select cations and anions, and total dissolved solid concentrations for ground- water quality samples collected at the ROMP TR 19-3A – Heather well site in Hernando County, Florida
8.	Select molar ratios with depth for groundwater quality samples collected at the ROMP TR 19-3A – Heather well site in Hernando County, Florida
9.	Piper Diagram of groundwater quality samples collected at the ROMP TR 19-3A – Heather well site in Hernando County, Florida

Tables

1.	Summary of geophysical logs collected at the ROMP TR 19-3A – Heather well	
	site in Hernando County, Florida	6
2.	Summary of well construction details at the ROMP TR 19-3A – Heather well site in Hernando County, Florida	.8
	,	-

Conversion Factors and Datums

Multiply	Ву	To obtain		
	Length			
inch (in.)	2.54	centimeter (cm)		
foot (ft)	0.3048	meter (m)		
mile (mi)	1.609	kilometer (km)		
	Area			
acre	4,047	square meter (m ²)		
square foot (ft ²)	0.09290	square meter (m ²)		
square mile (mi ²)	2.590	square kilometer (km ²)		
	Volume			
gallon (gal)	3.785	liter (L)		
cubic foot (ft ³)	0.02832	cubic meter (m ³)		
	Flow rate			
foot per day (ft/d)	0.3048	meter per day (m/d)		
cubic foot per day (ft ³ /d)	0.02832	cubic meter per day (m^3/d)		
gallon per minute (gal/min)	0.06309	liter per second (L/s)		
gallon per day (gal/d)	0.003785	cubic meter per day (m^3/d)		
	Specific capacity			
gallon per minute per foot	0.2070	liter per second per meter [(L/s)/m]		
[(gal/min)/ft)]				

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8

Vertical coordinate information is referenced to the "North American Vertical Datum of 1988 (NAVD 88)."

Elevation, as used in this report, refers to distance above the vertical datum.

Abbreviations and Acronyms

µmhos/cm	micromhos per centimeter
µg/L	micrograms per Liter
als	above land surface
Aq	aquifer
bls	below land surface
bmp	below measuring point
CH 1	ROMP TR 19-3A Corehole 1
CH 2	ROMP TR 19-3A Corehole 2
CGWQMN	Coastal Groundwater Quality Monitoring Network
cm	centimeter
CME	Central Mining Equipment
CPS	counts per second
District	Southwest Florida Water Management District
EDP	Environmental Data Portal
FGS	Florida Geological Survey
fig.	figure
Fldn	Floridan
ft.	foot or feet
Geo.	Geohydrologic Data Section
GFWFC	Game and Fresh Water Fish Commission
gpm	gallons per minute
gpm/ft	gallons per minute per foot
Huss	Huss Drilling, Incorporated
ID	inside diameter
mg/L	milligrams per Liter
N/A	not applicable
NAVD 88	North American Vertical Datum of 1988
NDWRAP	Northern District Water Resources Assessment Project
NDDP	Northern District Drilling Plan
No.	number
OD	outside diameter
PVC	polyvinyl chloride
ROMP TR	Regional Observation and Monitor-well Program Coastal Transect
SrSO ₄	celestite
SID	Station Identification
SU	Standard Unit
Surf	surficial
TDS	total dissolved solids
TIITF	Trustees of the Internal Improvement Trust Fund
U	Upper
UFANMN	Upper Floridan aquifer Nutrient Monitoring Network
WCP	well construction permit
WQMP	Water Quality Monitoring Program

IX

Well Construction and Water Quality at the ROMP TR 19-3A – Heather Well Site in Hernando County, Florida

By Kristina D. Mallams

Introduction

The Geohydrologic Data Section of the Southwest Florida Water Management District (District) conducted a hydrogeologic investigation at the Regional Observation and Monitor-well Program Coastal Transect (ROMP TR) 19-3A - Heather well site in Hernando County. The data collected at the ROMP TR 19-3A - Heather (herein referred to as ROMP TR 19-3A) well site will be used by the District to align with its mission to manage and protect water resources. The primary objectives of the ROMP TR 19-3A well site are to infill the ROMP Coastal Transect network, delineate the vertical and geographic extent of the saltwater interface within the Upper Floridan aquifer, and construct wells for long-term water level and water quality monitoring. Data from this well site will help refine the groundwater flow models that are used to evaluate future water supply, establish minimum flow and level criteria, monitor groundwater quality in areas potentially impacted by saltwater intrusion, and monitor nutrient loading in the Upper Floridan aquifer. The ROMP TR 19-3A well site was selected for further investigation to support the Northern District Drilling Plan (NDDP) which supports the Northern District Water Resources Assessment Project (NDWRAP), the Upper Floridan Aquifer Nutrient Monitoring Network (UFANMN), and the Coastal Groundwater Quality Monitoring Network (CGWQMN) under the Water Quality Monitoring Program (WQMP). The NDWRAP was initiated to assess the impacts of groundwater withdrawals, monitor the saltwater/ freshwater interface, identify areas of poor groundwater quality, determine the nature of flow to major springs, and monitor groundwater levels in both the surficial and Upper Floridan aquifers in the northern six-county region of the District. The northern District encompasses all of Hernando, Citrus, and Sumter Counties as well as portions of Lake, Marion, and Levy Counties. Figure 1 presents a map of the NDDP sites. The UFANMN is designed to track regional trends of nitrates within the Upper Floridan aquifer in the northern portion of the District. The CGWQMN is designed to monitor the landward movement of the saltwater interface.

Permanent monitor wells constructed at this site include a surficial aquifer monitor, an Upper Floridan aquifer monitor, and a saltwater interface monitor. Long-term water level data will be collected from all three monitor wells. The Upper Floridan aquifer monitor well will be integrated into the WQMP as part of the UFANMN to monitor nitrate concentration and the saltwater interface monitor well will be incorporated into the WQMP as part of the CGWQMN to monitor the saltwater interface.

The ROMP TR 19-3A well site was completed on October 16, 2019. This report details the well construction, lithostratigraphy, hydrostratigraphy, and water quality at the ROMP TR 19-3A well site.

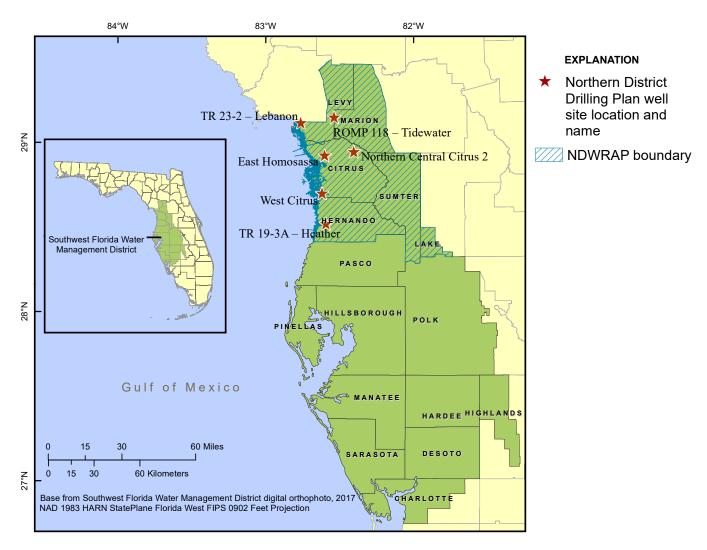
Acknowledgments

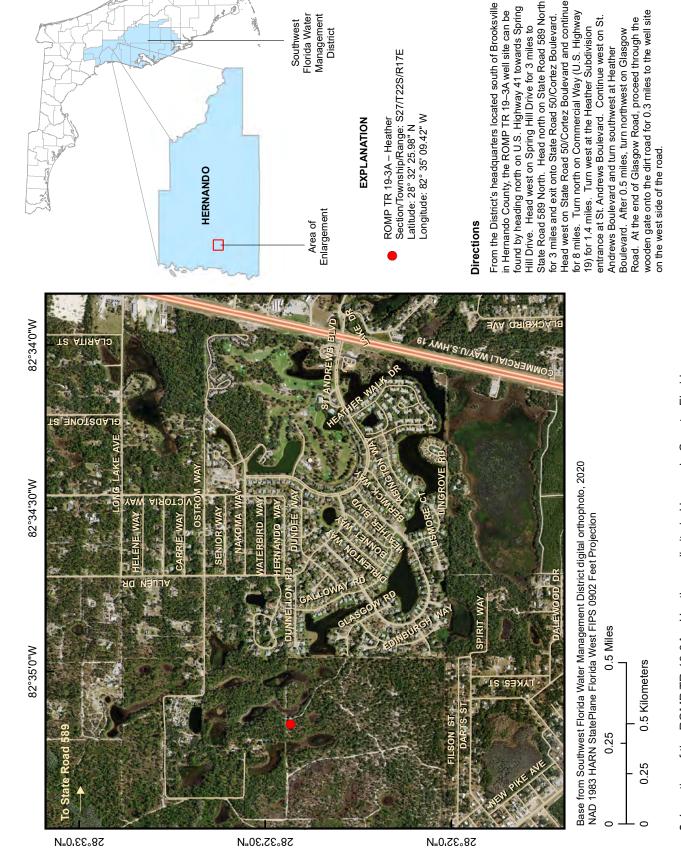
Special thanks to Huss Drilling, Incorporated, for their continued professionalism in assisting the District in data collection at the ROMP TR 19-3A well site.

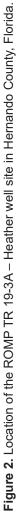
Site Location

The ROMP TR 19-3A well site is in western Hernando County approximately 1.5 miles north-northwest of Weeki Wachee Springs near the intersection of State Road 50 and U.S. Highway 19. It is in the northwest ¼ of the southeast ¼ of Section 27, Township 22 South, and Range 17 East at latitude 28° 32' 25.98" North and longitude 82° 35' 09.42" West (fig. 2). The land surface elevation is 22.7 feet above the North American Vertical Datum of 1988 (NAVD 88). The ROMP TR 19-3A well site is located on a perpetual easement granted by the Trustees of the Internal Improvement Trust Fund (TIITF) and Game and Fresh Water Fish Commission (GFWFC).

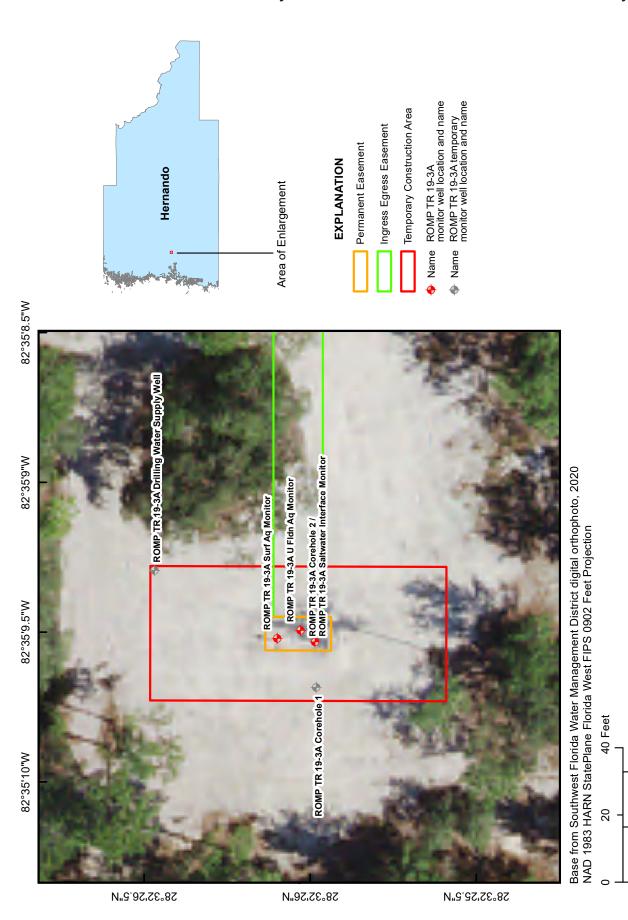
From the District's headquarters located south of Brooksville in Hernando County, the ROMP TR 19-3A well site can be found by heading north on U.S. Highway 41 towards Spring Hill Drive. Head west on Spring Hill Drive for 3 miles to State Road 589 North. Head north on State Road 589 North for 3 miles and exit onto State Road 50/Cortez Boulevard. Head west on State Road 50/Cortez Boulevard and continue for 8 miles. Turn north on Commercial Way (U.S. Highway 19) for 1.4 miles. Turn west at the Heather Subdivision entrance at St. Andrews Boulevard. Continue west on St. Andrews Boulevard and turn southwest at Heather Boulevard. After 0.5 miles, turn northwest on Glasgow Road. At the end of Glasgow Road, proceed through the wooden gate onto the




Figure 1. Northern District Drill Plan well sites with NDWRAP boundary.


dirt road for 0.3 miles to the well site, located on the west side of the road.

The ROMP TR 19-3A well site is in the northern Land O' Lakes Karst Plain Province in the Ocala Karst District (Williams et al, 2022). The Ocala Karst District is the largest area of eogenetic karst in the United States, extending from the southeastern Florida Panhandle and northwestern peninsular Florida southeast to west-central peninsular Florida. This District is a major recharge area of the Floridan aquifer system. The Land O' Lakes Karst Plain Province is a coastal karst plain, consisting of dry sinkholes and shallow wetland depressions. This province is located in the southwestern portion of the Ocala Karst District, from southwestern Hernando County and central and western Pasco County, southward into northern Pinellas and Hillsborough counties (Williams et al, 2022). Western Hernando County is a highly karstic region in Florida, where carbonate rock units may be at land surface, but the dissolution of these rock units results in an irregular and hummocky topography. The ROMP TR 19-3A well site is in the Upper Coastal Drainage Basin within the Weeki Wachee Springshed. The Weeki Wachee Springshed is an important hydrological feature of the area as it discharges groundwater from the Upper Floridan aquifer to the headwaters of the Weeki Wachee River.


Methods

The ROMP TR 19-3A well site investigation was conducted using a variety of methods to collect hydrogeologic data including lithologic, water quality, water level, and geophysical data. The following sections provide the data collection method details specific to the ROMP TR 19-3A well site. Data collected at this well site are available for download from the District's website: www.swfwmd.state.fl.us (accessed August 2021) using the Environmental Data Portal (EDP) and the Geohydrologic Data Map Viewer. As of November 2019, available data includes water level and water quality data. This report, stratigraphy, and geophysical logs are available for download from the District's website via the Geohydrologic Data Map Viewer: https://swfwmd.maps.arcgis.com/apps/

3

10 Meters

S

0

webappviewer/index.html?id=5cfe38abbae84d1fadfdf0953 c3126bc (accessed August 2021). Well construction details and survey data are also available for download from the EDP using the Advanced Metadata Retrieval application.

Lithologic Sampling

Huss Drilling, Incorporated (Huss) collected lithologic samples from land surface to a total depth of 740 feet below land surface (bls) from May 21 through August 8, 2019. Shallow exploratory coring and testing were conducted from land surface to 400 feet at the ROMP TR 19-3A Core hole 1 (herein referred to as core hole 1), using a post hole digger, Failing 1500 Water Well Rig, split-spoon sampler, HQ (3.06-inch internal diameter) steel coring rods, and the wireline retrieval method. A post hole digger was used to dig a pilot hole from land surface to 4 feet bls. Next, lithologic samples were collected in two-foot lengths every four feet, using the splitspoon sampler method. The split-spoon sampler was advanced using a 140-pound hammer through NWJ (2.55-inch internal diameter) steel rods, which acted as temporary casing and held the borehole open. The split-spoon sampling method was conducted on the upper unconsolidated sediments from four to 36 feet bls, where limestone was encountered, and the split-spoon sampler could not advance. The wireline core drilling method was used from 36 to 400 feet bls in core hole 1 using water starting at 40 feet bls. Core samples were collected in 10-foot sections. The purpose of coring core hole 1 was to locate any sand-filled cavities expected to occur in this karstic region of Florida and to identify appropriate surface and intermediate casing depths for the saltwater interface monitor well construction.

Next, Huss relocated the Failing 1500 drill rig to the ROMP TR 19-3A Core hole 2 (herein referred to as core hole 2) location and resumed continuous lithologic sampling from 321 to 740 feet bls using HQ coring rods and the wireline retrieval method. Core samples were collected in 10-foot sections. The collection of lithologic samples from 321 to 400 feet bls at core hole 2 overlapped the lithologic samples collected from core hole 1. The samples were used to characterize the hydrostratigraphy of the site and to aid in the design of the monitor wells. Both core holes were cleaned of cuttings between core runs using the airlift discharge method. All lithologic samples from the core holes were boxed, labeled, described, photographed, and sent to the Florida Geological Survey (FGS) for archiving.

Hydraulic Testing

Near daily static water levels were recorded using a Solinst water level meter before the start of exploratory core drilling. Composite water levels were collected in core hole 1, from 100 to 400 feet bls, and 400 to 740 feet bls in core hole 2. Drilling mud was used during coring and drilling above these depths in core hole 1 and core hole 2, influencing the natural

water levels; therefore, no hydraulic data was collected. Isolated water level data were also collected from the core holes during a packer test. After the off-bottom packer was inflated, the water level in the core rods was recorded after the water level stabilized. Discharge rates were collected and estimated using a v-notch weir tank. Composite discharge rates were collected every 20 feet from 100 feet to 400 feet bls in core hole 1 and every 20 feet from 400 to 740 feet bls in core hole 2. Near daily composite discharge rates were collected in core hole 1 and core hole 2 but were not useful during analysis because of multiple discrepancies in the data. Isolated discharge rates using the off-bottom packer were collected every 60 feet from 80 to 400 feet in core hole 1 and from 380 to 700 feet bls in core hole 2. Following the well construction completion of the temporary and permanent wells, specific capacity tests were conducted. On June 4, 2019, core hole 1 well was developed at 1.8 gpm and had a specific capacity of 0.17 gpm/ft. Following the completion of the ROMP TR 19-3A Surf Aq Monitor on June 6, 2019, the well was developed for approximately 140 minutes at 1.2 gpm and had a specific capacity of 1.3 gpm/ ft. On June 12, 2019, Huss completed the ROMP TR 19-3A U Fldn Aq Monitor well and developed it for approximately 70 minutes. The specific capacity of the well was calculated at 3.87 gpm/ft. On September 3, 2019, the ROMP TR 19-3A Saltwater Interface was developed for approximately 110 minutes at 15 gpm and had a specific capacity of 5.6 gpm/ft.

Water Quality Sampling

Fifteen groundwater samples were collected while core drilling at the ROMP TR 19-3A well site to target the 1,000 milligrams per Liter (mg/L) chloride isochlor. This chloride concentration identifies the vertical and geographic extent of the saltwater interface. Six discrete groundwater samples were collected from core hole 1 and nine discrete groundwater samples were collected from core hole 2 for laboratory analysis. Field samples were collected every 20 feet between core runs from the airlift discharge to monitor specific conductance, pH, and temperature. Discrete samples were collected every 60 feet using an off-bottom packer to isolate 20-foot intervals within the borehole. A 3-inch submersible pump was used to discharge water from the well and directed into a v-notch weir to estimate the discharge rate. A portion of each sample was analyzed in the field for specific conductance, pH, temperature, chloride, and sulfate. The specific conductance, pH, and temperature were measured with a YSI Pro DSS Multimeter and the chloride and sulfate were measured using a YSI 9300 Photometer. The remainder of each sample was processed and delivered to the District's Chemistry Laboratory for additional parameter analyses (Southwest Florida Water Management District, 2020).

Geophysical Logging

Borehole geophysical logs are used to delineate stratigraphic units, identify permeable zones and confining units, characterize water quality, and help determine well casing points and grouting requirements. All logs were collected from both core holes by District staff using District-owned Century® geophysical logging equipment (table 1 and appendix A).

After the completion of core hole 1, the 9511A induction tool was run from land surface to 393.7 feet bls on June 6, 2019, and the 8144C multifunction tool was run from land surface to 396.6 feet bls on June 10, 2019. Geophysical logging occurred during multiple stages of construction in core hole 2. After the completion of exploratory coring and testing to 740 feet bls, the 8144C multifunction tool, the 9165C caliper/gamma-ray tool, and the 9511C induction tool collected data from land surface to 740 feet bls on August 12, 2019. District staff collected geophysical data using the 8144C multifunction tool and the 9165C caliper/gamma-ray tool from land surface to 624 feet bls on August 22, 2019. District staff anticipated collecting geophysical data to the depth of 670 feet bls, however, a ledge was encountered at 624 feet bls, preventing the tools from advancing. After the final 4-inch Schedule 40 polyvinyl chloride (PVC) casing was installed to 670 feet bls, the 9165C caliper/gamma-ray tool collected data from land surface to 735 feet bls on September 10, 2019.

Well Construction

Monitor well construction at the ROMP TR 19-3A well site was completed by Huss and supervised by a District geologist and/or District drilling staff. Five wells were constructed at this site, including two temporary wells and three permanent long-term monitor wells (fig. 3). The temporary wells constructed were the ROMP TR 19-3A Drilling Water Supply well and core hole 1. The permanent monitor wells (Station Names italicized herein refer to table 2) constructed were the surficial aquifer monitor well (ROMP TR 19-3A Surf Aq Monitor well), the Upper Floridan aquifer monitor well (ROMP TR 19-3A U Fldn Aq Monitor well), and the saltwater interface monitor well, formally as core hole 2 (ROMP TR 19-3A Saltwater Interface Monitor well). The permanent wells were equipped with water level recorders by the District's Hydrologic Data Section for long-term groundwater level monitoring. Additionally, the Upper Floridan aquifer monitor and the saltwater interface monitor wells were entered into the District's Water Quality Monitoring Program for long-term water quality monitoring.

A summary of ROMP TR 19-3A well construction details is provided in table 2. Well construction as-built diagrams for the drilling water supply, core holes 1 and 2, surficial aquifer monitor well, Upper Floridan aquifer monitor well, and saltwater interface monitor well are presented in appendix B. Daily logs for coring and well construction operations are available from the District's online document storage data-

Table 1. Summary of geophysical logs collected at the ROMP TR 19-3A - Heather well site in Hernando County, Florida

[MM/DD/YYYY, month/day/year; ft, feet; bls, below land surface; ROMP TR, Regional Observation and Monitor-well Program Coastal Transect; PVC, polyvinyl chlroide; The multifunction tool includes natural gamma-ray, single-point resistance, short normal 16-inch resistivity, long normal 64-inch resistivity, fluid resistivity, spontaneous potential, specific conductance, and temperature parameters]

Date (MM/DD/ YYYY)	Well Name	Log Depth (ft bls)	Casing Type	-	Borehole Diameter (inches)		Tool Number	Comments
06/10/2019	ROMP TR 19-3A Corehole 1	396.4	Temporary Steel Cas- ing	41	4	Multifunction	8144C	
08/12/2019	ROMP TR 19-3A Corehole 2	742.2	Temporary Steel Cas- ing	550	4	Multifunction; Caliper/ Gamma-ray	8144C;	
08/12/2019	ROMP TR 19-3A Corehole 2	737.7	Temporary Steel Cas- ing	550	4	Induction	9511C	
08/22/2019	ROMP TR 19-3A Corehole 2	640	PVC	317	8	Multifunction; Caliper/ Gamma-ray	8411C;	Caliper/Gamma-ray logging tool could not advance past 624 ft.
09/10/2019	ROMP TR 19-3A Corehole 2	735.6	PVC	670	4	Caliper/Gam- ma-ray	9165C	

base. Additional well construction details can be found in the District's EDP.

Drilling Water Supply

The ROMP TR 19-3A Drilling Water Supply Well (herein referred to as the drilling water supply well) was constructed on the temporary easement on May 15, 2019. The drilling water supply well was constructed using a Central Mining Equipment (CME) 75 core drilling rig and 10.5-inch outside diameter (OD)/6.25-inch inside diameter (ID), 5-foot length hollow stem augers. The total depth of the well was 35 feet bls. Four-inch Schedule 40, 0.010-inch slotted PVC well screen was installed from 15 to 35 feet bls, and 4-inch Schedule 40 PVC casing was installed from one foot above land surface to 15 feet bls (table 2, appendix B, fig. B1). Twenty-six 50-pound bags of 6-20 silica sand were installed in the annulus from land surface to 35 feet bls. The well was constructed under Well Construction Permit (WCP) number 877839. This well was open to the undifferentiated sand and clay sediments within the upper portion of the Upper Floridan aquifer. The water table was estimated at 7.1 feet bls. After well construction was complete, the well was developed with a 2-inch submersible pump. The specific capacity was estimated at 0.46 gpm/ft. The well was intended to be used as a water supply during construction of core hole 1, however, it did not yield enough water. Therefore, Huss utilized a mobile water tank to supply water for the construction of core hole 1. The drilling water supply well was plugged on June 6, 2019, by Huss.

Core Hole 1

Core hole 1 was constructed on the temporary easement between May 21 and June 4, 2019, under WCP 877961, using a Failing 1500 drilling rig. The purpose of this temporary well was to locate any sand-filled cavities expected in this area, to identify an appropriate casing depth for constructing the saltwater interface monitor well, and to serve as a water supply well to the remaining exploratory coring and testing and well construction phases. A post-hole digger was used to remove the overlying sediments and shell pad from land surface to four feet bls. Non-continuous lithologic samples were collected from the unconsolidated sediments using the split-spoon sampling method from four to 36 feet bls, the depth where limestone was encountered, and the split-spoon sampler could not advance. Five-inch steel temporary casing was installed from land surface to 40 feet bls to hold back unconsolidated sediments. Exploratory coring and testing were conducted using the wireline method from 36 to 400 feet bls. As exploratory coring and testing advanced, a 4-inch working casing was set to 100 feet bls on May 23, 2019, and advanced again to 200 feet bls on June 3, 2019. Well construction specifications are presented in table 2 and the well as-built diagram is depicted in appendix B, figure B2. Core hole 1 was plugged on September 5, 2019, by Huss.

Core Hole 2

Between June 13 and August 8, 2019, Huss constructed core hole 2 on the permanent easement using a Failing 1500 drilling rig under the WCP 877845 (table 2). A 24-inch nominal borehole was drilled from land surface to 32 feet bls and 18-inch schedule 40 PVC surface casing was installed from land surface to 32 feet bls. Next, a 16-inch nominal hole was drilled from 32 to 63 feet bls and installed 63 feet of 12-inch schedule 40 PVC casing. A 12-inch diameter nominal hole was drilled from 63 to 321 feet bls and 8-inch schedule 40 PVC casing with centralizers from land surface to 317 feet bls. A temporary 4-inch HWT steel casing was installed from land surface to 321 feet bls, then lowered to 550 feet bls after coring to the depth of 555 feet bls. Well construction specifications are presented in table 2 and the well as-built diagram is depicted in appendix B, figure B6. Core hole 2 was converted to the saltwater interface monitor well.

Surficial Aquifer Monitor Well

On June 6, 2019, Huss constructed the surficial aquifer monitor well on the permanent easement using a CME 75 core drilling rig under WCP 877846 (table 2). Well construction specifications are in table 2 and the well as-built diagram is depicted in appendix B, figure B3. The surficial aquifer monitor well was installed to monitor the undifferentiated sands to determine if a surficial aquifer is present at this well site and to evaluate long-term groundwater interaction with the Upper Floridan aquifer. Analysis of long-term water levels suggests there is no surficial aquifer present at the ROMP TR 19-3A well site, and the surficial aquifer monitor well monitors the shallow Upper Floridan aquifer. Ten-inch OD/6.25-inch ID, 5-foot hollow stem augers were used to construct the open hole from land surface to 26 feet bls. Fifteen feet of 4-inch Schedule 40 0.010-inch slotted PVC well screen was installed from 11 to 26 feet bls and 14 feet of 4-inch Schedule 40 PVC casing was installed from three feet above land surface (als) to 11 feet bls. Twenty-eight 50-pound bags of silica sand and 2.5 50-pound bags of Portland Type II cement were used to seal the well. A lockable metal cover and a 2-foot by 2-foot concrete pad were installed around the well.

Upper Floridan Aquifer Monitor Well

From June 10 through June 12, 2019, Huss constructed the Upper Floridan aquifer monitor well on the permanent easement using a Failing 1500 drilling rig under WCP 877844 (table 2). Well construction specifications are depicted in appendix B, figure B4. A 12-inch nominal hole was drilled from land surface to 34 feet bls and 8-inch schedule 40-PVC surface casing was installed from one-foot als to 34 feet bls. Next, an 8-inch nominal hole was drilled from 34 to 65 feet bls. Sixty-eight feet of Schedule 40 Certa-Lok spline lock 4-inch PVC was installed and grouted from 65 feet bls to 3 feet als. An open hole was drilled below the 4-inch casing from 65 to 122 feet bls. A lockable metal cover and a 2-foot by 2-foot concrete pad were installed around the well. The Upper Floridan aquifer monitor well is open to the Ocala Limestone and was constructed to monitor the long-term water elevation and nitrate concentration of the Upper Floridan aquifer.

Saltwater Interface Monitor Well

From August 12 through August 29, 2019, Huss converted core hole 2 to the saltwater interface monitor well. The core hole was backfilled with sand from 740 to 670 feet, removed the 4-inch temporary steel working casing that was set to 550 feet, and reamed the 3-inch exploratory core hole with a 7 7/8-inch tri-cone bit to an 8-inch nominal hole from 317 to 670 feet bls. Two 4-inch by 8-inch formation packers were installed one foot and three feet from the bottom of the 4-inch Schedule 40 PVC Certa-Lok casing and wrapped in shredded plastic sheeting before casing installation and grouting from land surface to 670 feet bls. On August 29, 2019, the sand was drilled out of the 3-inch open interval. During the exploratory coring and testing phase, the middle confining unit II was encountered at 711.5 feet bls. To ensure future water level and water quality monitoring of the saltwater/ freshwater interface is exclusively from the Upper Floridan

aquifer, District staff proposed to back plug the bottom of the saltwater interface monitor well from 740 to 700 feet bls, leaving a 30-foot open interval in the lower portion of the Upper Floridan aquifer. On September 10, 2019, District staff used the District-owned Smeal 5T Pump Hoist rig and tremie method to back-plug the bottom of the saltwater interface monitor well under WCP 882303 (table 2). After the grout reached 711 feet bls, the formation would not allow the grout to ascend above 711 feet. After multiple unsuccessful grouting attempts made by District staff to grout above 711 feet bls, the saltwater interface monitor well was left open from 670 to 711 feet bls. A three-foot PVC riser, lockable metal cover, and a 2-foot by 2-foot concrete pad were installed around the well. The well construction specifications are depicted in appendix B, figure B5.

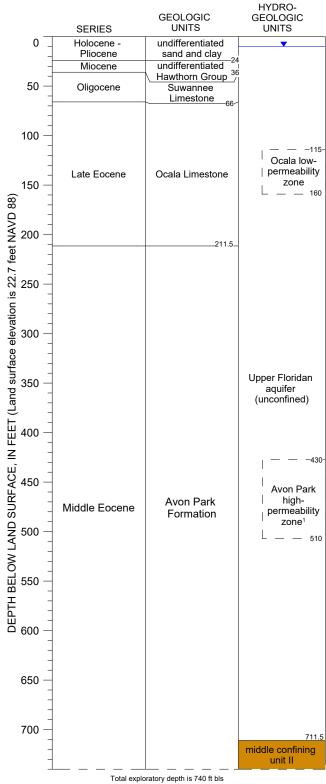
The final well configuration is open to the lower portion of the Upper Floridan aquifer; therefore, if chloride concentration increases, it will be detected in the saltwater interface monitor well before the Upper Floridan aquifer monitor well. The saltwater interface monitor well will monitor long-term water levels at the bottom of the Upper Floridan aquifer.

Table 2. Summary of well construction details at the ROMP TR 19-3A - Heather well site in Hernando County, Florida

[SID, Station Identification; ft, feet; bls, below land surface; MM/DD/YYYY, month/day/year; WCP, Well Construction Permit; No., number; --, no data; ROMP TR, Regional Observation and Monitor-well Program Coastal Transect; Surf, surficial; --, no data; PVC, polyvinyl chloride; Aq, aquifer; U, Upper; Fldn, Floridan]

SID	Well Name	Open Interval (ft bls - ft bls)		Casing Diameter (inches)	Start Date (MM/DD/YYYY)	Complete Date (MM/DD/YYYY)	Status	WCP No.
	ROMP TR 19-3A drilling water supply	15-35 (10 slot screen)	PVC	4	05/15/2019	06/06/2019	Plugged	877839
918411	ROMP TR 19-3A Corehole 1	34-400	PVC	8	05/21/2019	09/05/2019	Plugged	877961, 877840
927467	ROMP TR 19-3A Surf Aq Monitor	11 - 26 (10 slot Screen)	PVC	4	06/06/2019	06/06/2019	Active	877846
927469	ROMP TR 19-3A U Fldn Aq Monitor	65 - 122	PVC	4	06/10/2019	06/12/2019	Active	877844
918412	ROMP TR 19-3A Corehole 2	317-740	PVC	8	06/13/2019	08/08/2019	Converted to SID 927471	877845, 882303
927471	ROMP TR 19-3A Saltwater Interface Monitor	e670 - 711	PVC	4	08/12/2019	09/30/2019	Active	877845

Geology


The lithostratigraphy of the ROMP TR 19-3A well site is based on the lithologic samples collected from two separate exploratory core holes. Lithologic samples were collected from split-spoon sampling and wireline coring method, from land surface to 400 feet bls at core hole 1 and from 320 to 740 feet bls at core hole 2. The geologic units encountered at the well site include, in ascending order; the Avon Park Formation, the Ocala Limestone, the Suwannee Limestone, the undifferentiated Hawthorn group, and the undifferentiated sand and clay deposits. A stratigraphic column detailing the hydrogeology encountered at the well site is presented in figure 4. The lithologic log described by the FGS is presented in appendix C. Digital photographs of the core samples are presented in appendix D.

Avon Park Formation (Middle Eocene)

The middle Eocene age Avon Park Formation extends from 211.5 feet bls to beyond the total depth of exploration of 740 feet bls at the ROMP TR 19-3A well site. The top of the Avon Park Formation is based on the disappearance of foraminifera Nummulites ocalanus, Nummulites wilcoxi, and Lepidocyclina ocalana, index fossils characteristic of the Ocala Limestone. The upper surface of the Avon Park Formation was eroded before the overlying Ocala Limestone was deposited, making the contact unconformable (Cooke, 1945). From 211.5 to 257 feet, the lithology is very light orange to yellowish gray, fossiliferous packstone with an interbed of grainstone from 246 to 254 feet bls. Resistivity logs indicate a higher resistivity at these depths (appendix A, fig. A1). The first appearance of foraminifera Neolaganum dalli was identified at the depth of 250 feet bls. This foram is a key fossil of the Avon Park Formation. Less than one percent of organics and calcite are identified within the limestone.

The first appearance of dolostone begins at 257 feet bls. From 257 to 298 feet bls, the lithology ranges from highly weathered, poorly to moderately indurated dolostone with minimal secondary crystallization. The grayish-brown dolostone contains moderate amounts of organics and laminations. The dolomite alteration ranges from moderate (10 to 50 percent) to high (50 to 90 percent). Bryozoa and miliolid fossils, fragments, and molds were identified in the core samples.

From 298 to 332 feet bls, the lithology is very light orange, well-indurated wackestone and packstone with low dolomitic recrystallization. The lithology change corresponds to a decrease in electrical resistivity (left kick) (appendix A, fig. A1). The calcilutite matrix contains organics that range from four to less than one percent. Pinpoint and intergranular porosities were observed. The first appearance of *Cushmania*

Figure 4. Stratigraphic column detailing the hydrogeologic setting at the ROMP TR 19-3A – Heather well site in Hernando County, Florida. The water level was measured on May 15, 2019.

¹ A high permeability fractured dolostone interval was encountered from 430 to 510 feet bls, which corresponds to the approximate northern extent of the regionally mapped Avon Park high-permeability zone. The fractures are not as developed and the permeability is less than typically observed for the Avon Park high-permeability zone likely because the unit is pinching out at this location.

(*Dictyoconus*) *americana* is identified at 327 feet bls. Other benthic foraminifera and miliolids were identified.

Highly altered, grayish brown to very light orange dolostone was described starting at 332 feet bls and continues until 380 feet bls. Elongated fractures were identified from 366 to 368.9 feet bls. Low recrystallization and a dolomitic matrix began at 332 feet bls. Lower electrical resistivity in this interval can be seen in appendix A, figure A1. *Neolaganum dalli* fossils reappeared throughout this section and ranged in size from 0.5 to 1.5 centimeters (cm).

Beginning at 380 to 405.7 feet bls, the lithology changes back to a very light orange packstone and wackestone containing intergranular porosity. Fossil fragments and fossil molds, including benthic foraminifera were identified in the core samples. Trace amounts of organics and chert were also observed.

Highly altered fossiliferous sucrosic dolostone was identified between 405.7 and 550 feet bls. Dolomitic alteration ranges from 50 to 100 percent. The main sources of porosity are intercrystalline and pinpoint, however, starting at 461 feet bls, fractures appear to increase the porosity. *Neolaganum dalli* were identified from 405.7 to 407.5 feet bls but as recrystallized fossil molds. Fossil molds and benthic foraminifera were present from 405 to 444 feet bls. From 444 to 550 feet bls, no preserved fossils were identified in the core samples. Organics range from one to six percent, with sections of thin organic laminations that have a mottled appearance.

From 550 to 700 feet bls, the lithology is predominantly very light orange to grayish brown, intergranular, poorly to moderately indurated, friable wackestone to mudstone. Exploratory coring became difficult because the friable rock falling from above endangered the core rods getting locked in the core hole. The lowest core recovery was 45 percent between 550 and 560 feet bls. Organic laminae are present from 602 to 637 feet bls, ranging from four to less than one percent. Non-fossiliferous limestone continued from 550 to 666.4 feet bls. Starting at 666.4 feet bls, fossil fragments such as miliolids and forams reappeared in the core samples.

From 700 to 740 feet bls, the lithology changes from limestone back to moderate yellowish brown to grayish brown, highly altered, fossiliferous dolostone. Anhydrite, gypsum, and celestite crystals appear in the core samples starting at 706 feet bls. At 713 feet bls, a cluster of bluish-gray celestite crystals up to 1 cm in length were identified in a 5-cm-wide circular void within the core. The average core recovery of the Avon Park Formation was 94 percent.

Ocala Limestone (Late Eocene)

At the ROMP TR 19-3A well site, the late Eocene age Ocala Limestone extends from 66 to 211.5 feet bls. The Ocala Limestone unconformably overlies the Avon Park Formation. From 66 to 76 feet bls, the Ocala Limestone was weathered with only 87 percent core recovery during exploratory coring and testing. The lithology is primarily very light orange to light yellowish orange, fossiliferous wackestone, and packstone, with some interbeds of grainstone. Induration improves from moderate to well at 86.6 feet bls, which is identified by an increase in electrical resistivity (appendix A, fig. A1). Organics ranging from four to less than one percent are present throughout the entire formation. An increase in organics observed between 80 and 90 feet bls correlates to an increase in counts per second (CPS) on the gamma-ray log in appendix A, figure A1.

An increase in fossil content appears at 121.6 feet bls; transitioning from nonfossilferous wackestone to fossiliferous packstone and grainstone. From 121.6 to 194.4 feet bls, the Ocala Limestone index fossils such as *Lepidocyclina ocalana*, *Nummulites ocalanus*, and *Nummulites wilcoxi* are abundant. The *Lepidocyclina ocalana* fossils range in size from 0.5 cm to 1.5 cm. The average core recovery achieved within the Ocala Limestone was 98 percent.

Suwannee Limestone (Oligocene)

At the ROMP TR 19-3A well site, the Oligocene age Suwannee Limestone extends from 36 to 66 feet bls. The Suwannee Limestone disconformably overlies the Ocala Limestone (Applin and Applin, 1944). A drop in gamma-ray counts per second (CPS) at the top of this formation is in response to the disappearance of phosphatic siliciclastics that appeared in the Hawthorn Group above (appendix A, fig. A1). The lithology throughout the entire unit is very light orange to light yellowish orange fossiliferous packstone and wackestone with a muddy calcilutite matrix. From 36 to 49 feet bls, the formation is described as poorly indurated packstone with less than one percent silt material. At 51 feet bls, phosphatic sands produce a spike in gamma-ray counts. The FGS lithologic description suggests the phosphatic sand is fall-in from the above Hawthorn Group. The induration improves from poor to moderate with depth. The fossils in the Suwannee Limestone are identified as benthic forams and miliolid fragments and molds. From 57 to 62 feet, the core samples contained 2 percent chert. The average core recovery achieved within the Suwannee Limestone was 75 percent.

Undifferentiated Hawthorn Group (Miocene)

The Miocene age undifferentiated Hawthorn Group extends from 24 to 36 feet bls at the ROMP TR 19-3A well site. The top of the Hawthorn Group was gradual and difficult to identify at this site. From 24 to 31 feet bls, this unit consists of clayey phosphatic sands, with no identified fossils. Clay content ranges from four to six percent throughout the unit. Phosphatic sands range from less than one to two percent. The last split-spoon sample collected at 34 to 36 feet consists of white to yellowish gray calcilutite. This is likely residuum from the dissolved limestone below. Less than one percent of this sample contains phosphate. Approximately two percent of quartz sand was identified within this unit, but the likely source is from the sands above. The average sediment recovery from the split-spoon samples was 81 percent.

Undifferentiated Sand and Clay (Pliocene-Holocene)

The Pliocene to Holocene age undifferentiated sand and clay unit is the uppermost geologic unit at the ROMP TR 19-3A well site. The unit extends from land surface to 24 feet bls and consists of very light orange to light yellowish orange sand. No fossils were identified within this unit. Organic remains within this unit are two percent. The average sediment recovery from the split-spoon samples was 43 percent.

Hydrogeology

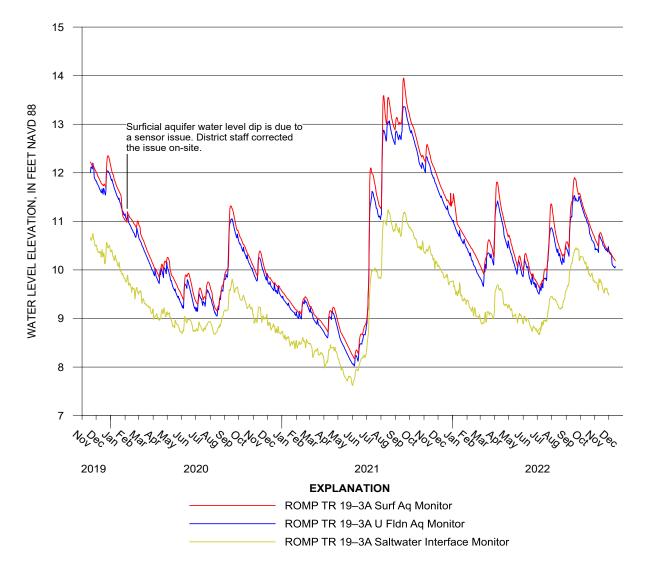
The ROMP TR 19-3A well site hydrogeology was delineated based on the results of all data collected during exploratory coring and testing, including lithologic, water level, water quality, discharge flow rates, and geophysical log data. The hydrogeologic units delineated at the ROMP TR 19-3A well site include the unconfined Upper Floridan aquifer and the middle confining unit II (fig. 4). The naming conventions used for the hydrogeologic units in this report are consistent with aquifer nomenclature guidelines proposed by Laney and Davidson (1986) and the North American Commission on Stratigraphic Nomenclature (2005). A comparison of the nomenclature used in this report (District nomenclature that is not site-specific) and previously published reports is presented in appendix E.

Upper Floridan aquifer (unconfined)

At the ROMP TR 19-3A well site, the Upper Floridan aquifer extends from the water table to 711.5 feet bls. The Upper Floridan aquifer includes the undifferentiated sands and clays, the undifferentiated Hawthorn Group, the Suwannee and Ocala Limestones, and the upper portion of the Avon Park Formation. The bottom of the Upper Floridan aquifer corresponds to the top of the middle confining unit II.

The top of the aquifer occurs within undifferentiated sands and clays because there is no effective basal confinement between the undifferentiated sands and clays and the underlying limestone. Clay was absent from land surface to 23 feet and ranges from four to six percent between 24 and 31 feet. Basal confinement of the surficial aquifer in this region is thin, discontinuous, and often breached by karst features as evidenced by loss of drilling fluid circulation at 34 feet bls, presumably in a karst solution channel. These factors render the confining unit hydraulically ineffective, and the underlying Upper Floridan aquifer regionally unconfined and represented by the water table (Basso, 2019). Long-term water levels collected from the surficial aquifer monitor well are near coincident in comparison to the Upper Floridan aquifer monitor well (fig. 5).

Although the Upper Floridan aquifer is a single aquifer, it can be subdivided based on variations of hydraulic properties. Regionally mappable units within an aquifer that contain different permeability, whether higher or lower, do not characterize the entire aquifer. The mappable permeable sections are referred to as zones (Laney and Davidson, 1986). The District identifies two zones that occur regionally within the Upper Floridan aquifer: the Ocala low-permeability zone and the Avon Park high-permeability zone. At the ROMP TR 19-3A well site, the Ocala low-permeability zone was identified within the Upper Floridan aquifer and extends from 115 to 160 feet bls. A high permeability fractured dolostone interval was encountered from 430 to 510 feet bls, which corresponds to the approximate northern extent of the regionally mapped Avon Park high-permeability zone. The fractures are not as developed, and the permeability is less than typically observed for the Avon Park high-permeability zone likely because the unit is pinching out at this location.


The first two packer tests were conducted within the Ocala Limestone portion of the Upper Floridan aquifer in core hole 1. Packer test 1 was conducted from 80 to 100 feet bls and packer test 2 was conducted from 140 to 160 feet bls. The discharge rate of packer test 1 was estimated at 28 gallons per minute (gpm). One of the highest discharge rates at the TR 19-3A site was observed during packer test 1. Fractures with well-defined slickenlines were observed from 83 to 85 feet bls, which likely contributes to the high discharge rate. The observed porosity is estimated at 30 percent.

Packer test 2 was conducted from 140 to 160 feet bls within the lower portion of the Ocala low-permeability zone within the Upper Floridan aquifer. The discharge rate of this packer test was estimated at 5 gpm (fig. 6). Intergranular and pinpoint porosities were observed and were estimated between 10 and 20 percent. The electrical resistivity is lower between 115 to 160 feet bls (appendix A, fig. A1) compared to the formation above and below. Based on the low discharge rates, the estimated porosity of the rock, and the geophysical log data, the Ocala low-permeability zone is identified between 115 to 160 feet bls.

Packer tests 3 through 6 were performed in core hole 1 within the Avon Park Formation. The packer discharge rates generally decrease with depth from 200 to 400 feet (fig. 6). This general decrease in discharge corresponds to an increase in rock density, which is supported by an increase in electrical resistivity (appendix A, fig. A1).

Packer tests 7 through 13 were performed in core hole 2 within the Avon Park Formation. Packer test 7 was performed from 380 to 400 feet, repeating packer test 6 test interval in core hole 1. The packer discharge rate was very similar in core hole 2 compared to core hole 1, 5.5 gpm and 5.0 gpm, respectively.

Packer test 8 was performed from 440 to 460 feet bls. Vuggy and high-angled fractured dolostone, as discussed

Figure 5. Hydrograph of the permanent monitor wells at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

previously for the Avon Park high-permeability zone, likely contributes to the discharge rate of 24 gpm.

Packer test 9 was performed from 500 to 520 feet bls and had a packer discharge rate of 15 gpm. Packer test 10 (interval from 560 to 580 feet bls), had a packer discharge rate of 6 gpm. This interval primarily contains very fine to fine-grained mudstone with poor to moderate induration. The core was described as friable with poor recovery. The electrical resistivity decreases between 560 and 570 feet, and again at 580 feet bls (appendix A, fig. A4).

Packer tests 11 through 13 had some of the highest packer discharge rates at the ROMP TR 19-3A well site. Packer test

11 was conducted from 620 to 640 feet bls, within poorly indurated, and very fine grained wackestone. The packer discharge rate was estimated at 27 gpm. Huss staff commented the core barrel kept getting clogged and had to collect ten-foot cores in multiple runs. Huss staff also noted there was a bit drop from 624 to 627 feet bls. This void likely contributes to the high discharge rate.

Packer tests 12 and 13 were conducted near the base of the Upper Floridan aquifer from 680 to 700 feet bls and the discharge was 28 gpm. The formation was described as well indurated wackestone. The driller commented a bit drop from 693 to 695 feet bls, suggesting a void within the formation. This void is likely a large contributor to the high discharge rate. The electrical resistivity steadily decreases from 620 to 711 feet bls (appendix A, fig. A4).

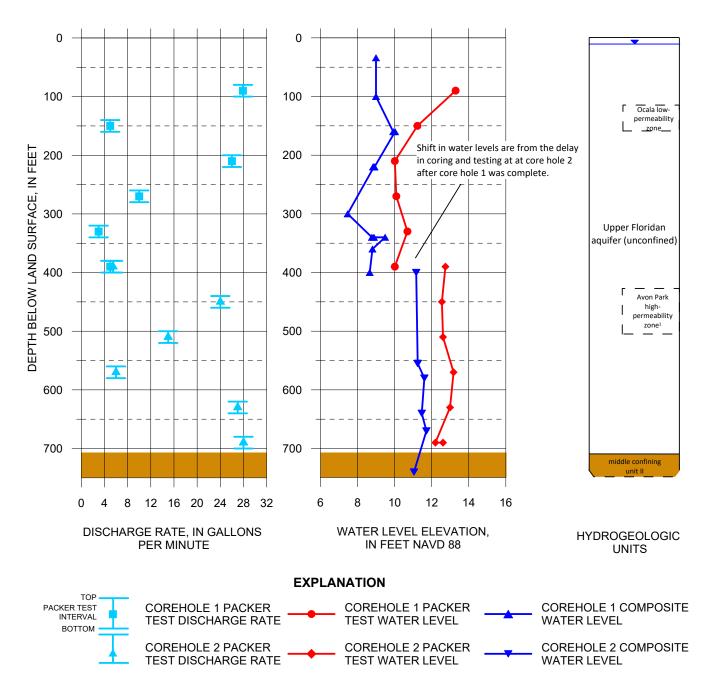
Core hole 2 was converted to the Saltwater Interface monitor well and two discharge rates were measured in the well. One discharge rate was estimated at 15 gpm and had an open interval from 670 to 740 feet bls. This open interval consists of the lower portion of the Upper Floridan aquifer and the upper portion of the middle confining unit II. The second estimated discharge rate was measured after the saltwater interface monitor well was back-plugged from 740 to 711 feet bls. The discharge rate was estimated at 30 gpm and had an open interval from 670 to 711 feet bls. This interval was exclusively open to the lower portion of the Upper Floridan aquifer. This is the highest discharge rate observed at the ROMP TR 19-3A well site. The lower estimated discharge rate with the open interval from 670 to 740 feet is likely due to inadequate well development prior to the discharge rate collection, and the lower flow rate of the submersible pump used during the development.

Composite and isolated water levels were collected during exploratory coring from 100 to 400 feet bls at core hole 1 and from 400 to 700 feet bls at core hole 2 (fig. 6). It appears an increase in water levels occurred from core hole 1 to core hole 2 at the depth of 400 feet bls. This shift is from the delay in coring and testing at core hole 2 after core hole 1 was complete. Core hole 1 construction was completed on June 4, 2019, and coring and testing resumed at 380 feet bls in core hole 2 on July 9, 2019.

Groundwater level data have been collected from the Upper Floridan aquifer monitor well and the saltwater interface monitor well since November 2019 (fig. 5). The water levels displayed in figure 5 are the maximum daily water levels. A comparison between the Upper Floridan aquifer monitor water levels and the saltwater interface monitor well indicates a downward head gradient. The average head difference from November 18, 2019, to October 27, 2021, is 0.95 feet, which suggests the ROMP TR 19-3A well site is in a recharge area for the Upper Floridan aquifer.

Middle Confining Unit II

At the ROMP TR 19-3A well site, the middle confining unit II extends from 711.5 feet bls to beyond the total depth of exploration of 740 feet bls. The top of the middle confining unit II is consistent with Miller (1986), which estimates the top of the middle confining unit II at approximately 680 feet NAVD 88 (702.7 feet bls). The top of middle confining unit II was picked at the first appearance of evaporites that significantly decreased the permeability. No packer tests were performed within the middle confining unit II.


Groundwater Quality

Groundwater analyses provide data for the groundwater quality characterization of the ROMP TR 19-3A well site. The major ion concentrations at the ROMP TR 19-3A well site are based on laboratory results from 15 discrete interval groundwater samples that were collected during exploratory coring and testing. Samples one through six were collected from core hole 1 and the remaining nine samples were collected from core hole 2. Water quality data are presented in figure 7. The groundwater quality sample acquisition sheets are presented in appendix G. The field and laboratory results for the groundwater quality samples are presented in appendix H, tables 1 and 2, respectively. Water quality samples were not collected in the undifferentiated sands and clays or the Suwannee Limestone because drilling mud was used during split-spoon sampling and coring. Water quality sampling and testing were performed during exploratory coring and testing to target the 1,000 mg/L chloride surface to delineate the vertical and geographic extent of the saltwater interface within the Upper Floridan aquifer. The U.S. Environmental Protection Agency's National Secondary Drinking Water Regulations (secondary standards) for total dissolved solids (TDS), sulfate, chloride, and iron are 500 mg/L, 250 mg/L, 250 mg/L, and 0.3 mg/L (300 micrograms per liter [µg/L]), respectively (Hem, 1985; U.S. Environmental Protection Agency, 2018). Groundwater is considered fresh water based on the concentration of TDS. Freshwater has a TDS of less than 1,000 mg/L (Fetter, 2001).

Water quality sample 1 was collected in the Ocala Limestone within the Upper Floridan aquifer, from 80 to 100 feet bls. The water quality sample results indicate the groundwater is fresh within this interval but does not meet secondary drinking water standards. Iron concentration was 0.8 mg/L in this interval, exceeding the secondary drinking water standard concentration. Laminations containing four percent organics were identified in the core from 92 to 94 feet bls, possibly contributing to the higher levels of iron.

The results of water quality samples 2 through 11, collected from 140 to 640 feet bls, are fresh and meets the secondary drinking water standards. The maximum concentration of chloride and sulfate within this interval were 22 mg/L and 170 mg/L, respectively. The TDS concentration remains under 500 mg/L. The specific conductance data collected by the 8144C multifunction tool shows a decrease from 480 to 396 µS/cm between 380 and 590 feet bls (appendix A, fig. A2). This decrease coincides with the increase in discharge within this interval (fig. 6). Magnesium concentration begins to increase throughout this interval (fig. 7), ranging from 1 mg/L in the Ocala low-permeability zone to 16 mg/L in the Avon Park Formation within the Upper Floridan aquifer. The increase in concentration is likely the response to the partial or complete dolomitization of limestone within the Avon Park Formation. The first dolostone was identified at 257 feet bls.

The water quality results for water quality samples 12 and 13 are fresh but do not meet the secondary drinking water standards. Both samples were collected from 680 to 700

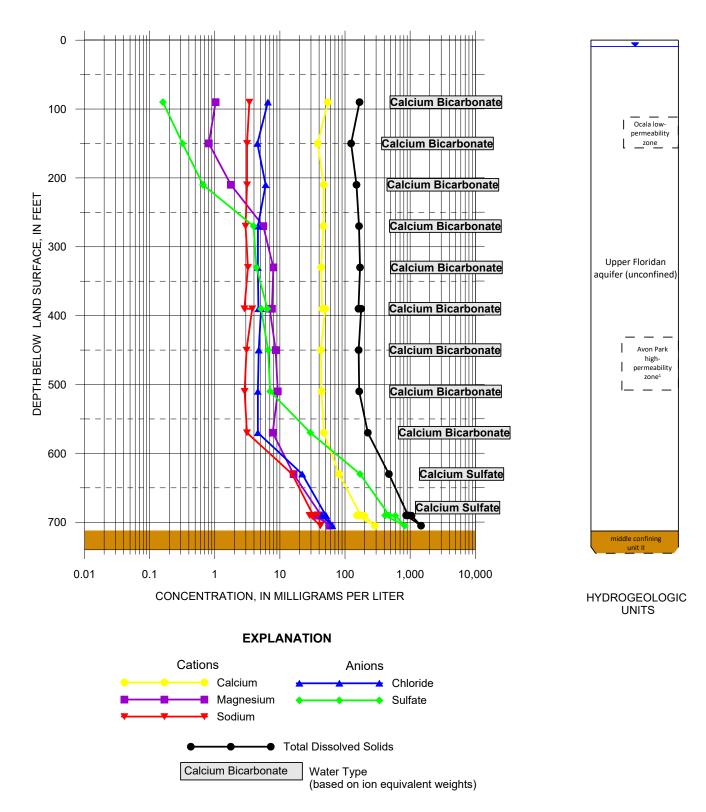


Figure 6. Discharge rates and water levels collected during exploratory coring and testing at the ROMP TR 19-3A -Heather well site in Hernando County, Florida. The packer test discharge rate represents the middle of the discrete open interval at the time of sampling. The packer test water levels represent the middle of the descrete open interval at the time the packer is set. The composite water level represents the core hole water level preceding daily site activity.

feet bls. Water quality sample 13 repeated the test interval of water quality sample 12 because it was uncertain whether the packer was sealed properly during the collection of water quality sample 12. In sample 12 and sample 13, the sulfate concentrations are 413 and 479 mg/L, the iron concentrations are 0.3 and 0.4 mg/L, and the TDS concentrations are 868 and 929 mg/L, respectively. Both water quality results exceed the secondary drinking water standards but remain fresh.

The results from water quality samples 14 and 15 indicate the water quality is brackish and does not meet secondary

¹ A high permeability fractured dolostone interval was encountered from 430 to 510 feet bls, which corresponds to the approximate northern extent of the regionally mapped Avon Park high-permeability zone. The fractures are not as developed and the permeability is less than typically observed for the Avon Park high-permeability zone likely because the unit is pinching out at this location.

Figure 7. Select cations and anions, and total dissolved solid concentrations for groundwater quality samples collected at the ROMP TR 19-3A – Heather well site in Hernando County, Florida. Depths represent the middle of the discrete open interval at the time of sampling.

¹ A high permeability fractured dolostone interval was encountered from 430 to 510 feet bls, which corresponds to the approximate northern extent of the regionally mapped Avon Park high-permeability zone. The fractures are not as developed and the permeability is less than typically observed for the Avon Park high-permeability zone likely because the unit is pinching out at this location.

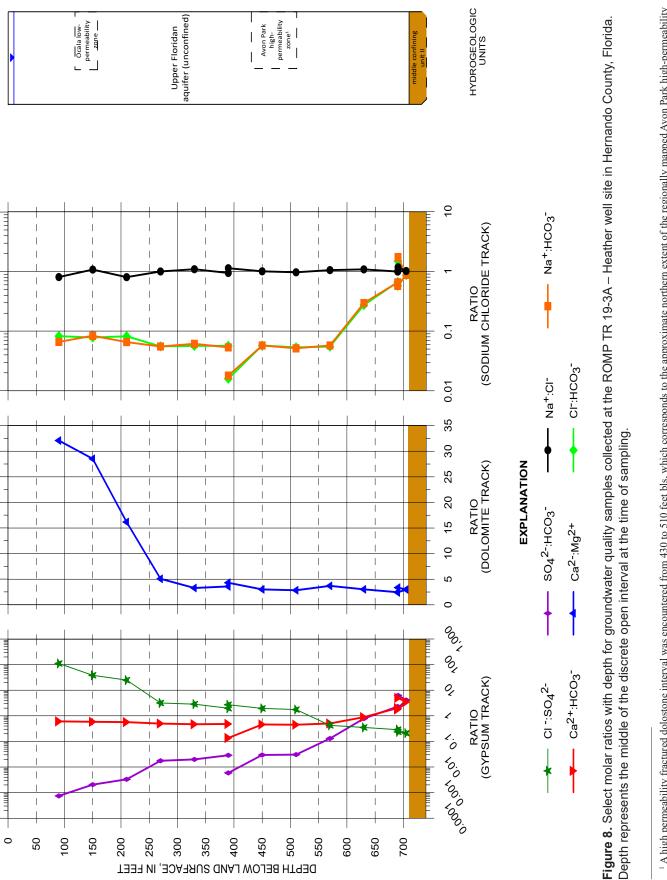
16 Well Construction and Water Quality at the ROMP TR 19-3A... Well Site in Hernando County, Florida

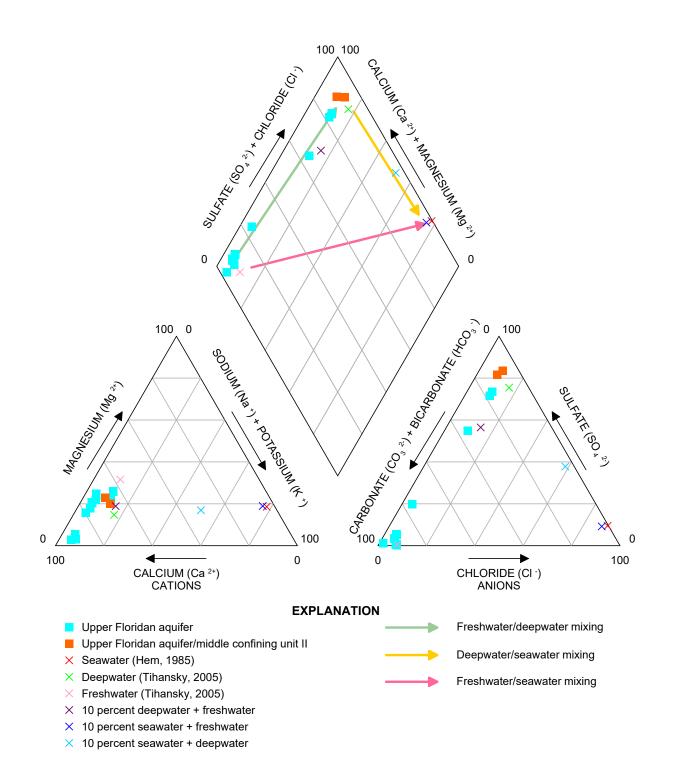
drinking water standards. Water quality sample 14 had an open interval from 670 to 740 feet bls. This interval contains the lower portion of the Upper Floridan aquifer and the upper portion of the middle confining unit II. Water Quality sample 14 had a sulfate concentration of 826 mg/L, an iron concentration of 0.3 mg/L, and a TDS concentration of 1,470 mg/L, all exceeding the secondary drinking water standard. Water quality sample 15 was collected after the core hole was backplugged from 740 to 711 feet bls, having an open interval of 670 to 711 feet bls. This interval is isolated to the lower portion of the Upper Floridan aquifer. The analysis results show the sulfate concentration is 591 mg/L and the TDS concentration is 1,050 mg/L, both exceeding the secondary drinking water standard. Water quality samples 14 and 15 are considered brackish water because the TDS concentrations exceed 1,000 mg/L but are under 10,000 mg/L.

Generally, the water quality samples with the lowest ion and TDS concentrations are from groundwater within the Ocala Limestone. The water quality samples collected at the bottom of the Upper Floridan aquifer and in the middle confining unit II have the highest ion and TDS concentrations. This is likely due to the influence of evaporites observed in the middle confining unit II. The chloride concentration did not exceed 1,000 mg/L within the field or laboratory water quality samples collected at the ROMP TR 19-3A well site (appendix H, tables H1 and H2). Furthermore, long-term water quality samples collected at the saltwater interface monitor well from November 20, 2019, through June 15, 2021, show no appreciable variation in chloride concentration and an average of 60 mg/L. As a result, the chloride isochlor was not identified at the ROMP TR 19-3A well site.

A substantial increase in strontium concentration was observed from 560 feet to the bottom of the core hole (appendix H, table H2). The sulfate concentration in the groundwater also begins to increase from 580 to 700 feet bls, and peaks in concentration at 740 feet bls. This increase is likely the result of the dissolution process of evaporite sediments from the middle confining unit II. If conditions are right, the mixing of strontium and sulfate with the oxygen ion in the carbonaterich groundwater may produce the mineral deposit celestite (SrSO₄) (Skougstad and Horr, 1963). At the ROMP TR 19-3A well site, small (<0.5 cm) celestite crystal deposits were identified starting at the depth of 706 feet bls. Large bluish-gray celestite crystals (1 cm) were identified within a dissolved evaporite nodule in the core at 713 feet bls.

Equivalent weights and water types were determined for each groundwater quality sample. Equivalent weights are presented in appendix H, table H3, and the water types are presented in appendix H, table H3, and figure 7. The results from water quality samples 1 through 10 indicate the water type is calcium bicarbonate in the Ocala Limestone and the upper portion of the Avon Park Formation within the Upper Floridan aquifer. Water quality samples 11 through 15 indicate the water type is calcium sulfate in the lower portion of the Avon Park Formation within the Upper Floridan aquifer and middle confining unit II. Influence from the dissolution of evaporites from the middle confining unit II likely changes the water type from calcium bicarbonate to calcium sulfate.


Select molar ratios were calculated and plotted to further investigate water quality changes with depth (fig. 8 and appendix H, table H4). The gypsum track illustrates the interaction between fresh water and evaporites (gypsum and anhydrite). The dolomite track primarily identifies fresh water affected by dolomite. The sodium chloride track depicts effects from connate or seawater.


The chloride to sulfate ratio on the gypsum track shows a decrease with depth while the sulfate to bicarbonate shows an increase with depth. This implies the sulfate concentration has a greater influence in the groundwater than the chloride or bicarbonate concentrations with depth. This increase in sulfate is likely derived from the influence of evaporite dissolution from the middle confining unit II. The calcium to bicarbonate ratio remains near the one-to-one ratio throughout the entire core hole, indicating changes in both ion concentrations are equivalent.

The calcium to magnesium ratio on the dolomite track shows a substantial decrease from 80 to 280 feet bls, then remains steady from 280 to 740 feet bls. The decrease in the calcium to magnesium ratio in the upper portion of the Upper Floridan aquifer signifies the increase in magnesium concentration as the formation transitions from limestone to dolostone. Highly altered dolostone was first identified at 285 feet bls. From 280 to 740 feet bls, the track remains relatively the same, signifying the ion concentrations change at a similar rate with depth.

The sodium to chloride ratio on the sodium chloride track remains similar throughout the entire core hole, indicating changes in both ion concentrations are at similar rates. The sodium to bicarbonate and chloride to bicarbonate ratios remain less than one-to-one from 80 to 560 feet bls. From 560 to 740 feet, the two ratios begin to shift towards a one-to-one ratio, indicating a decrease in bicarbonate concentration, but chloride and sodium concentrations increase.

The relative abundance trends of each major cation and anion for all water quality samples collected at the ROMP TR 19-3A well site are presented in percent milliequivalents using a Piper (1944) diagram (fig. 9). Groundwater samples collected within the Ocala Limestone and the upper portion of the Avon Park Formation within the Upper Floridan aquifer (water quality samples 1 through 10) plot on the left edge of the quadrilateral. The samples positioned here are typical for calcium-bicarbonate water types with low ionic concentrations considered unaffected by seawater or deepwater mixing (Tihansky, 2005). The groundwater samples collected in the lower portion of the Avon Park Formation within the Upper Floridan aquifer (water quality samples 11 through 13) plot on the top left edge of the quadrilateral at the end of the freshwater/deepwater mixing trend line. The samples placed here are typical for calcium-sulfate water types with elevated sulfate concentrations from deepwater mixing with freshwater. Water quality samples 14 and 15, collected within the lower portion of the Upper Floridan aquifer and upper portion of the middle

Figure 9. Piper Diagram of groundwater quality samples collected at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

confining unit II plot at the top vertex of the quadrilateral at the end of the freshwater/deepwater mixing line (Tihansky, 2005), which is indicative of mineralized water (deepwater).

Summary

Three permanent monitor wells and two temporary wells were constructed at the ROMP TR 19-3A well site in Hernando County, Florida. The ROMP TR 19-3A Surf Aq Monitor well and the ROMP TR 19-3A U Fldn Aq Monitor well were completed in June 2019, and the ROMP TR 19-3A Saltwater Interface Monitor well was completed in September 2019. The wells were constructed as part of the ROMP Coastal Transect Network, and to support the NDWRAP, the UFANMN, and the CGWQMN to monitor groundwater levels and groundwater quality in the Upper Floridan aquifer. The surficial aquifer monitor well has a casing depth of 11 feet bls and a total depth of 26 feet bls, the Upper Floridan aquifer monitor has a casing depth of 65 feet bls and a total depth of 122 feet bls, and the Saltwater Interface Monitor has a casing depth of 670 feet bls and a total depth of 711 feet bls. The wells are secure with locking well covers, surveyed, and groundwater levels and quality are currently being monitored by the District's Hydrologic Data Section and the WQMP.

Before well construction, exploratory split-spoon sampling and hydraulic rotary core samples were collected from land surface to 740 feet bls to delineate the hydrogeology of the well site. The general geology at the well site is, in ascending order, the Avon Park Formation, the Ocala Limestone, the Suwannee Limestone, the undifferentiated Hawthorn Group, and the undifferentiated sands and clays. The Avon Park Formation extends from 211.5 feet to beyond the total depth of exploration of 740 feet. The Ocala Limestone extends from 66 to 211.5 feet bls, the Suwannee Limestone extends from 36 to 66 feet bls, the undifferentiated Hawthorn Group extends from 24 to 36 feet bls, and the undifferentiated sands and clays extend from land surface to 24 feet bls. The hydrogeologic units delineated at the ROMP TR 19-3A well site include, in descending order, the Upper Floridan aquifer from the water table to 711.5 feet bls and the middle confining unit II, from 711.5 feet bls to beyond the depth of exploration of 740 feet bls.

Fifteen groundwater quality samples were collected and analyzed at the ROMP TR 19-3A well site. The groundwater quality samples 1 through 13 indicate that the Upper Floridan aquifer is fresh to the depth of 670 feet bls because the TDS concentrations are less than 1,000 mg/L. Groundwater quality samples 2 through 11 meet the secondary drinking standards and water quality samples 1, 12, and 13 exceed the secondary drinking standards. Groundwater samples 14 and 15 are considered brackish water because the TDS concentrations exceed 1,000 mg/L and do not meet the secondary drinking standards. The water type is calcium carbonate from 80 to 580 feet bls and transitions to calcium sulfate from 640 to 740 feet bls. The molar ratios on the gypsum track show an increasing sulfate influence with depth. The source of the sulfate is likely from the evaporites within the middle confining unit II. The molar ratios on the dolomite track indicate an increasing magnesium concentration with depth. The transition from limestone to dolostone with depth is likely the source of the magnesium. The sodium to chloride molar ratio remains similar with depth on the sodium chloride track. It is apparent there is no influence from connate or seawater on the groundwater at the well site.

On a Piper diagram, the results of water quality samples 1 through 10 plot along the upper left edge of the quadrilateral, which is typical for calcium-carbonate water types with low ionic concentrations not influenced by seawater or deepwater (Tihansky, 2005). Water quality samples 11 through 13 plot in the top left edge of the quadrilateral at the end of the freshwater/deepwater mixing trend line. Water quality samples 14 and 15 plot next to the deepwater symbol, indicating the ground-water is affected by mineralized water (deepwater) (Tihansky, 2005).

The primary purpose of this well site was to locate the saltwater/freshwater interface as defined by the 1,000 mg/L isochlor. The saltwater/freshwater interface was not located at the ROMP TR 19-3A well site because the chloride concentration remained less than 1,000 mg/L.

Selected References

Applin, P.L., and Applin, E.R. 1944, Regional Subsurface Stratigraphy and Structure of Florida and Southern Georgia. American Association of Petroleum Geologists Bulletin 28.

Arthur, J.D., Fischler, C., Kromhout, C., Clayton, J.M., Kelley, M., Lee, R.A., O'Sullivan, M., Green, R.C., and Werner, C.L., 2008, Hydrogeologic Framework of the Southwest Florida Water Management District: Florida Geological Survey Bulletin No. 68, 104 p.

Barr, G.L., 1996, Hydrogeology of the Surficial and Intermediate Aquifer Systems in Sarasota and Adjacent Counties, Florida: U.S. Geological Survey Water-Resources Investigations Report 96-4063, 87 p.

Basso, Ron, 2019, Hydrogeological Provinces Within West-Central Florida: Southwest Florida Water Management District, Technical Memorandum, 48 p.

Boggess, D.M., and Watkins, F.A., Jr., 1986, Surficial aquifer system in eastern Lee County, Florida: U.S. Geological Survey Water-Resources Investigations Report 85-4161, 59 p.

20 Well Construction and Water Quality at the ROMP TR 19-3A... Well Site in Hernando County, Florida

Bush, P. W., 1982, Predevelopment Flow in the Tertiary limestone aquifer, southeastern United States; A Regional Analysis from Digital Modeling: U.S. Geological Survey Water-Resources Investigations Report 82-905, 56 p.

Clarke, WE., Musgrove, R.M., Menke, G.C., and Cagle, J.W., Jr., 1964, Water resources of Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Report of Investigations 35, 170 p.

Cooke, C. W., 1945, Geology of Florida, Florida Geological Survey Bulletin 29.

Fetter, C.W., 2001, Applied Hydrogeology (4d ed.): Prentice Hall, Upper Saddle River, 598 p.

Freeze, R.A., and Cherry, J.A., 1979, Groundwater, Prentice Hall, Englewood Cliffs, 604 p.

Hem, J. D. 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254.

Joyner, B.F., and Sutcliffe, H. Jr., 1976, Water Resources of the Myakka River Basin Area, Southwest Florida: U.S. Geological Survey Water-Resources Investigation 76-58, 87 p.

Knochenmus, L.A., and Yobbi, D.K., 2001, Hydrology of the Coastal Springs Ground-Water Basin and Adjacent Parts of Pasco, Hernando, and Citrus Counties, Florida: U.S. Geological Survey Water-Resources Investigation Report 01-4230, 88 p.

Knochenmus, L.A., 2006, Regional Evaluation of the Hydrogeologic Framework, Hydraulic Properties, and Chemical Characteristics of the Intermediate Aquifer System Underlying Southern West-Central Florida: U.S. Geological Survey Scientific Investigations Report 2006-5013, 40 p.

Laney, R. L., and Davidson, C.B., 1986, Aquifer-Nomenclature Guidelines: U. S. Geological Survey Open-File Report 86-534, 60 p.

Leve, G.L., 1966, Ground water in Duval and Nassau Counties, Florida: Florida Geological Survey Report of Investigations 43, 91 p.

Lichtler, W.F., 1960, Geology and ground-water resourc-

es of Martin County, Florida: Florida Geological Survey Report of Investigations 23, 149 p.

Miller, J. A., 1982, Geology and configuration of the base of the Tertiary limestone aquifer system, southeastern United States: U.S. Geological Survey Water-Resources Investigations 81-1176, 1 map sheet.

Miller, J. A., 1986, Hydrogeology Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina: U. S. Geological Survey Professional Paper 1403-B, 91 p.

Miller, W.L., 1980, Geologic aspects of the surficial aquifer in the Upper East Coast planning area, southeast Florida: U.S. Geological Survey Water-Resources Investigations Report 80-586, scale 1:62,500, 2 sheets.

North American Stratigraphic Code (2005), North American Commission on Stratigraphic Nomenclature, 2005, American Association of Petroleum Geologists Bulletin, v. 89, no. 11, p. 1547-1591.

Parker, G.G., and others, 1955, Water resources of southeastern Florida: U.S. Geological Survey Water-Supply Paper 1255, 965 p.

Piper, A. M., 1944, A graphic procedure in the geochemical interpretation of water analyses: American Geophysical Union Transactions, v. 25, p. 914-923.

Reese, R.S., and Richardson, Emily, 2008, Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida: U.S. Geological Survey Scientific Investigations Report 2007-5207, 60 p., 4 pls., plus apps. (on CD).

Skougstad, M.W., and Horr, A.C. 1963, Occurrence and Distribution of Strontium in Natural Water: U.S. Geological Survey Water-Supply Paper 1496-D, 97 p.

Sproul, C.R., Boggess, D.H., and Woodward, H.J., 1972, Saline-water intrusion from deep artesian sources in the McGregor Isles area of Lee County, Florida: Florida Bureau of Geology Information Circular 75, 30 p.

Stringfield, V.T., 1936, Artesian water in the Floridan peninsula: U.S. Geological Survey Water-Supply Paper 773-C, p. C115-C195.

Stringfield, V. T., 1966, Artesian water in Tertiary limestone in the Southeastern States: U.S. Geological Survey Professional Paper 517, 226 p.

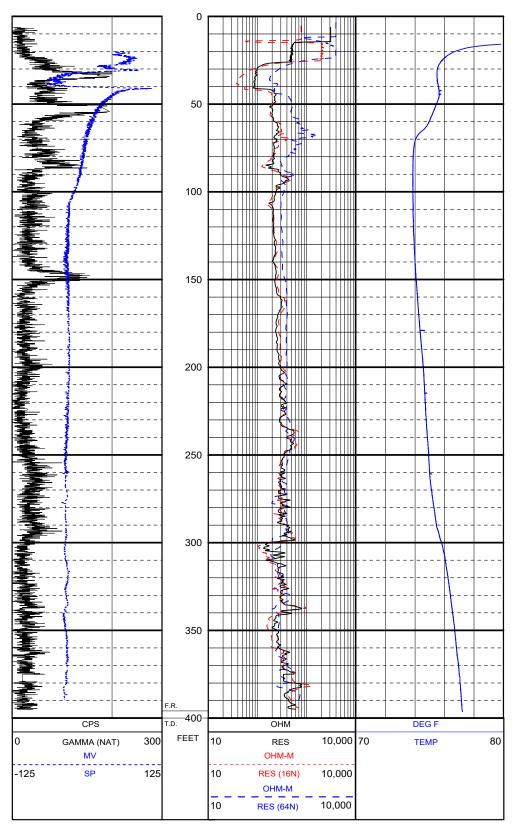
Southwest Florida Water Management District, 2009, Quality Control for Southwest Florida Water Management District: Brooksville, Florida, Southwest Florida Water Management District, 125 p.

Southwest Florida Water Management District, 2020, Water Quality Monitoring Program Standard Operating Procedures for the Collection of Water Quality Samples: Brooksville, Florida, Southwest Florida Water Management District, Revision 12.0, 116 p.

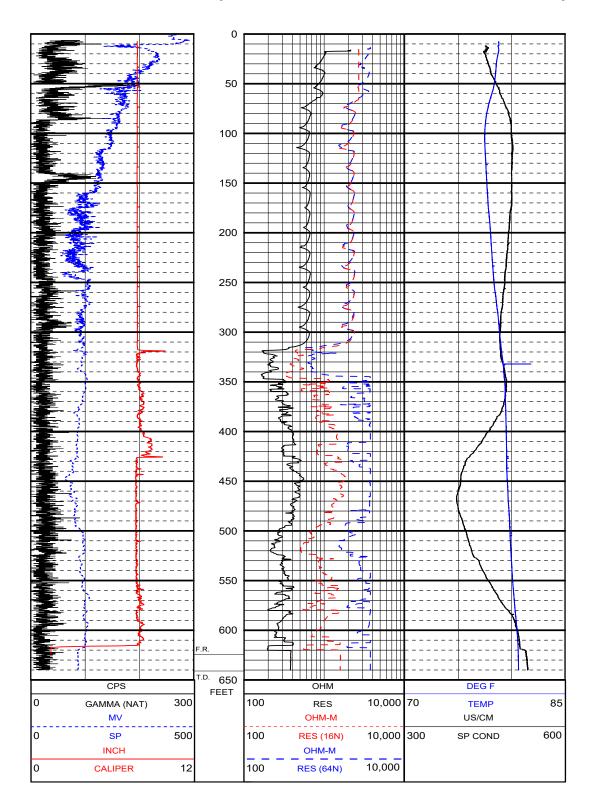
Tihansky, A.B., 2005, Effects of Aquifer Heterogeneity on Groundwater Flow and Chloride Concentrations in the Upper Floridan Aquifer near and within an Active Pumping Well Field, West-Central Florida: U.S. Geological Survey Scientific Investigations Report 2004-5268, 75 p.

Torres, A.E., Sacks, L.A., Yobbi, D.K., Knochenmus, L.A., and Katz, B.G., 2001, Hydrogeological Framework and Geochemistry of the Intermediate Aquifer System in Parts of Charlotte, De Soto, and Sarasota Counties, Florida: U.S. Geological Survey Water-Resources Investigations Report 01-4015, 81 p.

U.S. Environmental Protection Agency, 2018, 2018 Edition of the Drinking Water Standards and Health Advisories: U.S. Environmental Protection Agency Office of Water Publication no. EPA 822-F-18-001, 20 p.

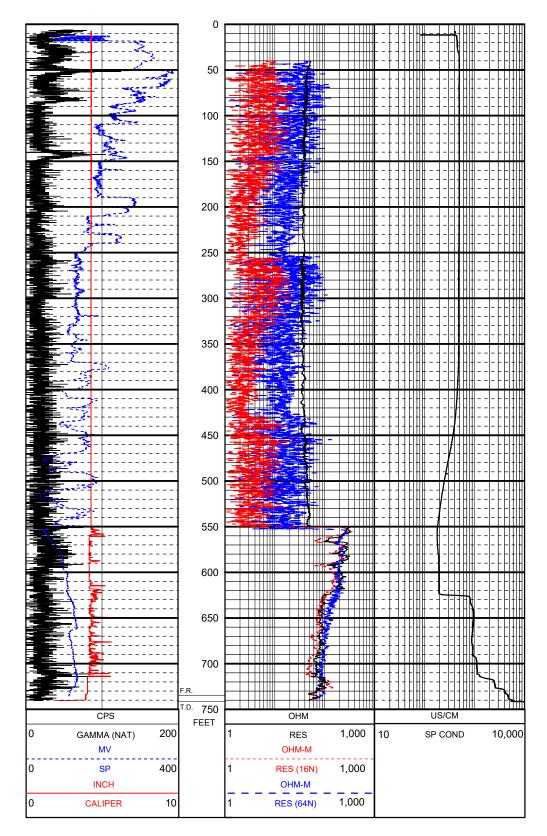

Wedderburn, L.A., Knapp, M.S., Waltz, D.P., and Burns, W.S., 1982, Hydrogeologic Reconnaissance of Lee County, Florida: South Florida Water Management District Technical Publication 82-1, pts. 1, 2, and 3, 192 p.

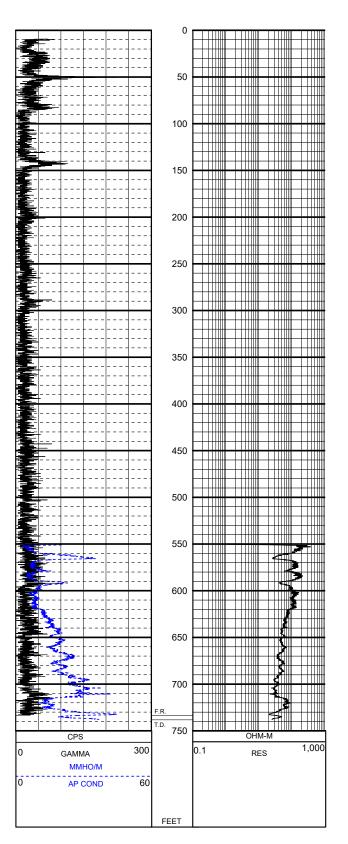
Williams, Christopher P., Scott, Thomas M., and Upchurch, Sam B., 2022, Florida Geomorphology Atlas: Florida Geological Survey Special Publication No. 59, 216 p.

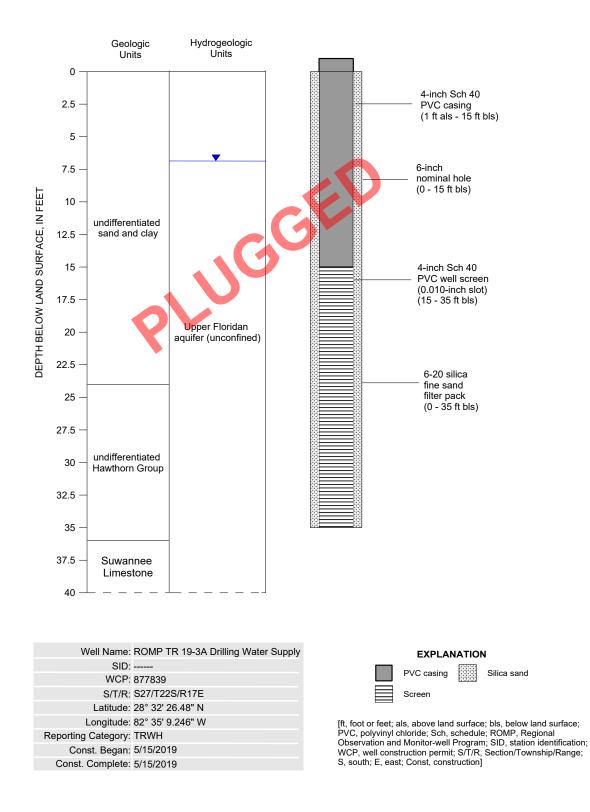

Williams, L.J., and Kuniansky, E.L., 2016, Revised Hydrogeologic Framework of the Floridan Aquifer System in Florida and Parts of Georgia, Alabama, and South Carolina (ver. 1.1, March 2016): U.S. Geological Survey Professional Paper 1807, 140 p., 23 pls., http://dx.doi. org/10.3133/pp1807. Wolansky, R.M., 1978, Feasibility of water-supply development from the unconfined aquifer in Charlotte County, Florida: U.S. Geological Survey Water-Resources Investigations Report 78-26, 34 p.

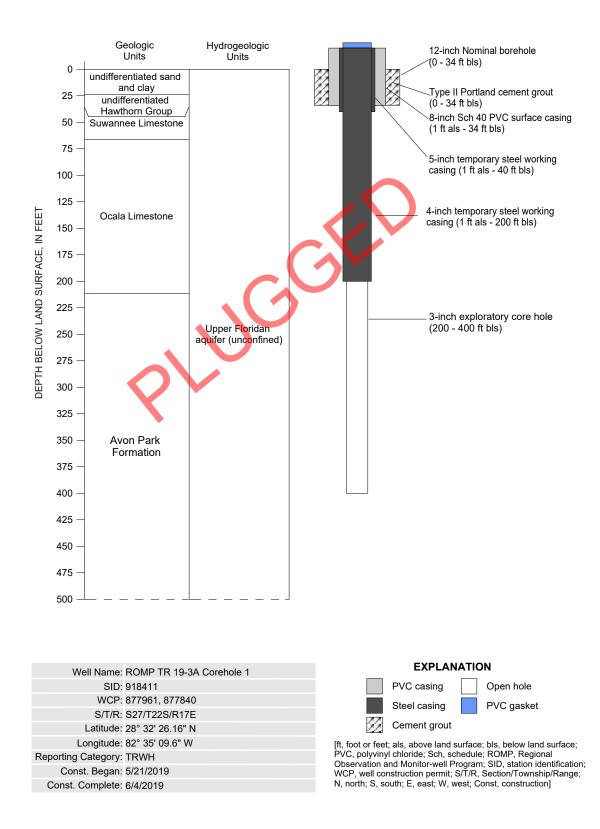
Wolansky, R.M., 1983, Hydrogeology of the Sarasota-Port Charlotte Area, Florida: U.S. Geological Survey Water-Resources Investigations Report 82-4089, 54 p.

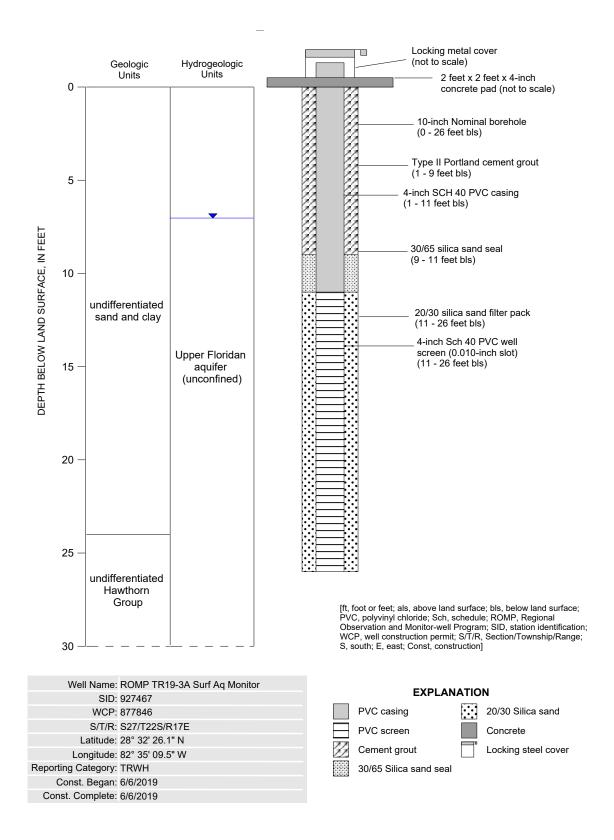
Wyrick, G.G., 1960, Ground-water resources of Volusia County, Florida: Florida Geological Survey Report of Investigations 22, 65 p.

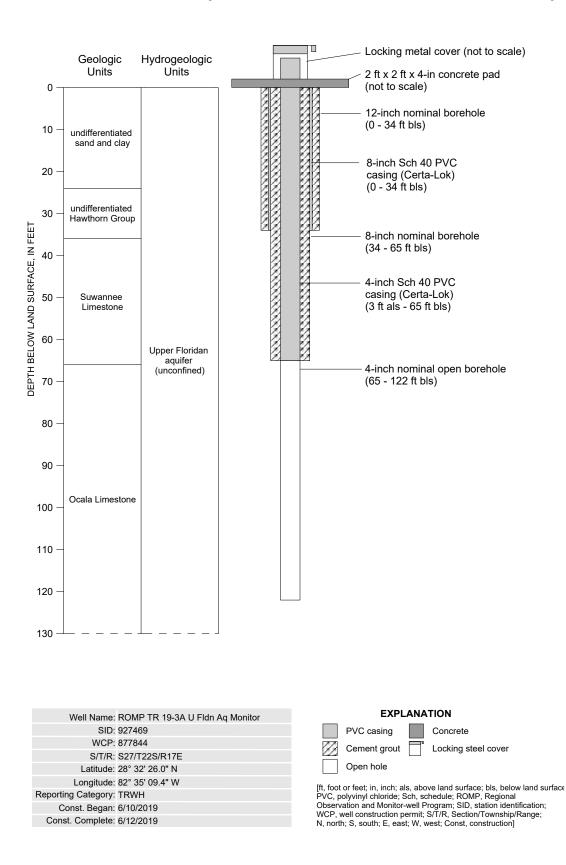

Figure A1. Geophysical log suite for Corehole 1 from 0.9 to 396.4 feet below land surface conducted at the ROMP TR1 19-3A – Heather well site in Hernando County, Florida. The log was performed on June 10, 2019, using the 8144C (multifunction) tool. Five-inch steel working casing was installed to 40 feet below land surface at the time of logging. The log scale is 2-inch per 100 feet. Tracks 1 and 3 are linearly scaled and track 2 is in logarithmic scale. The FR is 389.6 feet below land surface.


Figure A2. Geophysical log suite for Corehole 2 from land surface to 640 feet below land surface conducted at the ROMP TR 19-3A – Heather well site in Hernando County, Florida. The log was performed on August 22, 2019, using the 8144C (multifunction) and the 9165C (caliper/gamma-ray) tools. Eight-inch PVC intermediate casing was installed to 317 feet below land surface at the time of logging. The log scale is 1-inch to 100 feet bls. Tracks 1 and 3 are linearly scaled and track 2 is in logarithmic scale. The FR for tool 9165C was 624 feet below land surface and 640 feet below land surface for tool 8144C. Tool 9165C could not advance past 624 feet below land surface because of an obstruction in the core hole. The gamma-ray data shown in this figure was collected from tool 8144C.


Figure A3. Geophysical log suite for Corehole 2 from land surface to 735.6 feet below land surface conducted at the ROMP TR 19-3A – Heather well site in Hernando County, Florida. The log was performed on September 10, 2019, using the 9165C (caliper/gamma-ray) tool. Four-inch permanent PVC final casing was installed to 670 feet below land surface. The log scale is 1-inch to 100 feet. The FR is 735.6 feet below land surface.


Figure A4. Geophysical log suite for Corehole 2 from 0.8 to 742.2 feet below land surface conducted at the ROMP TR 19-3A – Heather well site in Hernando County, Florida. The log was performed on August 12, 2019, using the 8144C (multifunction) and 9165C (caliper/gamma-ray) tools. Four-inch steel working casing was installed to 550 feet below land surface at the time of logging. The log scale is 1-inch to 100 feet. Tracks 1 and 3 are linearly scaled and track 2 is in logarithmic scale. The FR is 735.3 feet below land surface.


Figure A5. Geophysical log suite for Corehole 2 from 0.6 to 737.7 feet below land surface conducted at the ROMP TR 19-3A – Heather well site in Hernando County, Florida. The log was performed on August 12, 2019, using the 9511C (induction) tool. Four-inch steel working casing was installed to 550 feet below land surface at the time of logging. The log scale is 1-inch to 100 feet. Tracks 1 and 3 are linearly scaled and track 2 is in logarithmic scale. The FR is 733.3 feet below land surface.


Figure B1. Well as-built diagram for the Drilling Water Supply well at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

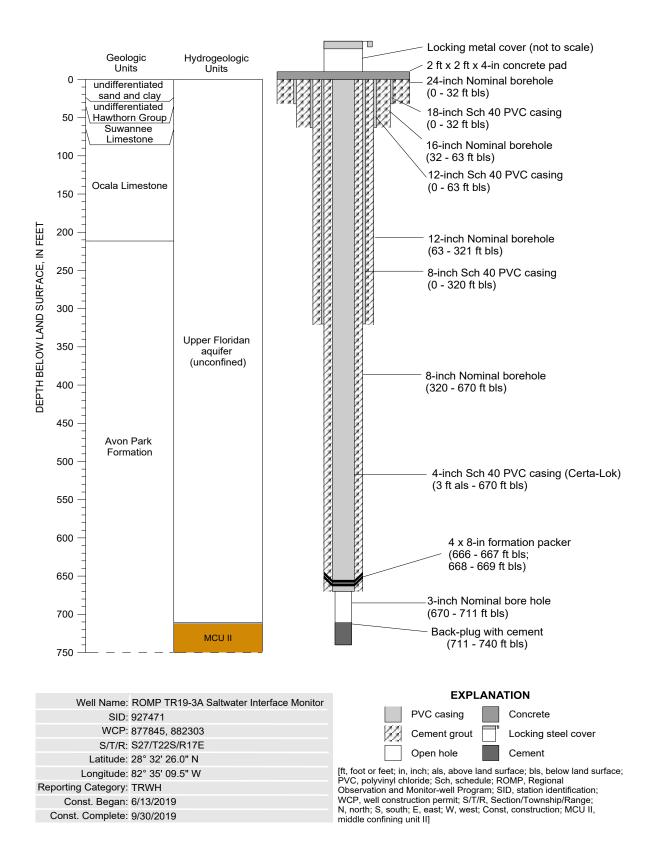

Figure B2. Well as-built diagram for the Corehole 1 at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

Figure B3. Well as-built diagram for the surficial aquifer monitor well at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

Figure B4. Well as-built diagram for the Upper Floridan aquifer monitor well at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

Figure B5. Well as-built diagram for the Saltwater Interface Monitor well at the ROMP TR 19-3A – Heather well site in Hernando County, Florida.

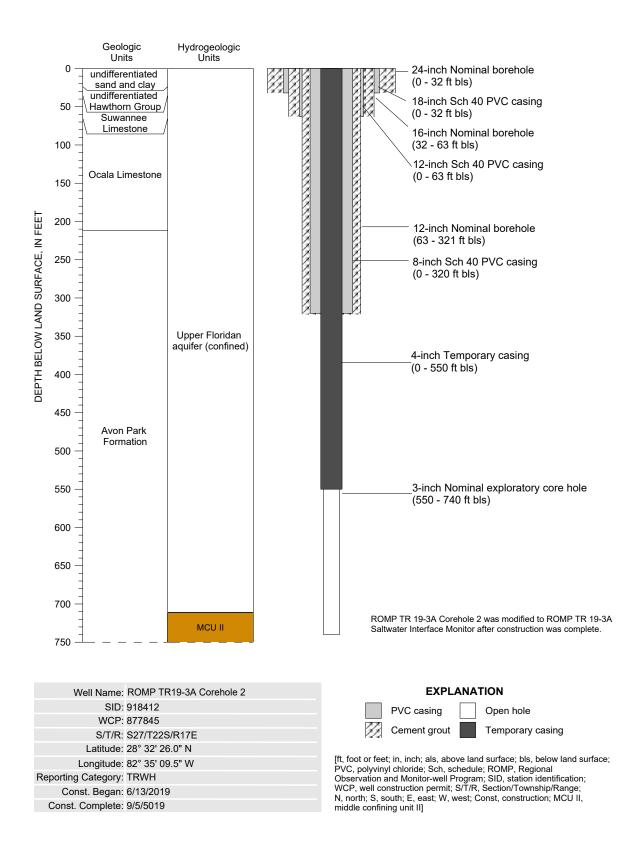


Figure B6. Well as-built diagram for the Corehole 2 well at the ROMP TR 19-3A – Heather well site in Hernando County, Florida

Appendix C. Lithologic Logs for the Samples Collected at the ROMP TR 19-3A Well Site in Hernando County, Florida

LITHOLOGIC WELL LOG PRINTOUT

SOURCE - FGS

WELL NUMBER: W-19772 TOTAL DEPTH: 400 FT. 31 SAMPLES FROM 0 TO 76.5 FT.

COMPLETION DATE:

OWNER/DRILLER: SWFWMD

COUNTY: HERNANDO LOCATION: LAT = 28° 32' 25.9" LONG = 82° 35' 9.55"

ELEVATION: 22.7 FT

WORKED BY: BEN L. DAVIS 2020									
WELL NAME: ROMP TR 19-3A COREHOLE 1									
0.0	-	4.0	ft	No Sample					
4.0	-	6.0	ft	Sand; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular; Grain Size: Coarse; Range: Coarse to Medium; Roundness: Sub-rounded to Sub-angular; Sphericity: Medium; Unconsolidated; Accessory Minerals: Organics - 0.02 Plant Remains - 2%; General Fossils: No Fossils					
6.0	-	9.0	ft	No Sample					
9.0	-	11.0	ft	Sand; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular; Grain Size: Coarse; Range: Coarse to Medium; Roundness: Sub-rounded to Sub-angular; Sphericity: Medium; Unconsolidated; Accessory Minerals: Organics - 0.02 Plant Remains - 2%; General Fossils: No Fossils					
11.0	-	14.0	ft	No Sample					
14.0	-	16.0	ft	Sand; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular; Grain Size: Coarse; Range: Coarse to Medium; Roundness: Sub-rounded to Sub-angular; Sphericity: Medium; Unconsolidated; Accessory Minerals: Organics - 2%; General Fossils: No Fossils					
16.0	-	19.0	ft	No Sample					
19.0	-	21.0	ft	Sand; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular; Grain Size: Coarse; Range: Coarse to Medium; Roundness: Sub-rounded to Sub-angular; Sphericity: Medium; Unconsolidated; Accessory Minerals: Organics -<1%; General Fossils: No Fossils					
21.0	-	24.0	ft	No Sample					
24.0	-	26.0	ft	Sand; Color: Grayish Brown (10YR 6/2) to Light Brown (5YR 5/6); Porosity: Intergranular; Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-rounded to Sub-angular; Sphericity: Medium; Unconsolidated; Accessory Minerals: Clay - 0.04 Organics - <1% Phosphatic Sand - 2%; Other Features: Friable; General Fossils: No Fossils; Comments: Black (N1) phosphatic sands are present throughout this interval.					
26.0	-	29.0	ft	No Sample					
29.0	-	31.0	ft	Sand; Color: Dark Yellowish Brown (10YR 4/2) to Light Brown (5YR 5/6); Porosity: Intergranular; Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-rounded to Sub-angular; Sphericity: Medium; Unconsolidated; Ac- cessory Minerals: Clay - 0.06 Organics - 0.02 Phosphatic Sand - 2%; Other Features: Friable; General Fossils: No Fossils; Comments: Black (N1) phosphatic sands are present throughout this interval.					
31.0	-	34.0	ft	No Sample					
34.0	-	36.0	ft	Calcilutite; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Phosphatic Sand - <1% Quartz Sand - 2%; Other Features: Calcareous Friable; General Fossils: Fossil Fragments; Comments: This interval consists of carbonate clay and silt that has minor amounts of fossil fragments. Quartz sand grains are likely cavings from above. Small fraction of accessory phosphatic sands present also.					
36.0	-	40.0	ft	No Sample					
40.0	-	42.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Silt - <1%; Other Features: Calcareous Friable Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Comments: This interval consists of a poorly indurated fossiliferous packstone.					

Appendix C 37

42.0	-	44.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Silt - <1%; Other Features: Calcareous Friable Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Comments: Same as above.
44.0	-	46.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Silt - <1%; Other Features: Calcareous Friable Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Comments: Same as above.
46.0	-	48.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Silt - <1%; Other Features: Calcareous Friable Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Comments: Same as above.
48.0	-	49.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Silt - <1%; Other Features: Calcareous Friable Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Comments: Same as above.
49.0	-	51.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 0.02 Phosphat- ic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Increase in fossil content is noted as well as more compitent induration. Black (N1) phosphatic sands are present throughout this interval and are likely cavings from above.
51.0	-	53.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.
53.0	-	55.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.
55.0	-	57.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 0.02 Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.
57.0	-	58.4	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Chert - 0.02 Organics - 0.02 Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Frag- ments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above with increase in fossil content and accessory chert.
58.4	-	60.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Chert - 0.02 Organics - 0.02 Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Frag- ments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.
60.0	-	62.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Chert - 0.02 Organics - 0.02 Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Frag- ments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.

62.0	-	64.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organ- ics - <1% Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Black (N1) phosphatic sands are present throughout this interval and are likely cavings from above.
64.0	-	66.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.
66.0	-	67.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1% Phosphatic Sand - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.
67.5	-	70.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Poor recovery consistsing of only 1.0' of core.
70.0	-	72.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 60%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
72.0	-	74.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
74.0	-	76.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
76.0	-	77.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
77.5	-	79.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
79.0	-	81.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
81.0	-	83.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
83.0	-	85.0	ft	Wackestone; Color: Yellowish Gray (5Y 8/1) to Light Brownish Gray (5YR 6/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Me- dium; Moderate Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Brecciated; Accessory Min- erals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments; Comments: This interval has well defined slicken-lines most likely attributed to fracturing. Noticeable color change brecciated calcareous lenses and loss of fossil content are noted for this interval.

85.0	-	86.8	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
86.8	-	88.5	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid
88.5	-	90.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 0.02 Organics - 3%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid; Comments: This interval is very fossiliferous and has a noticeable increase in amount of miliolids present.
90.0	-	92.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 0.02 Organics - 3%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid; Comments: Same as above.
92.0	-	94.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 4%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid; Comments: Same as above.
94.0	-	96.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid; Comments: Same as above.
96.0	-	98.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid
98.0	-	99.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid
99.0	-	100.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 0.01 Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Bryozoa
100.0	-	102.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 0.01 Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Bryozoa
102.0	-	104.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint Vugular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids Echinoid

104.0	-	105.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments; Comments: Lack of fossils present in this interval is very noticeable. Change from fossiliferous packstones to wackestones is present.
105.5	-	107.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments; Comments: Same as above.
107.0	-	109.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous; General Fossils: Fossil Fragments; Comments: Same as above.
109.0	-	111.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments; Comments: Same as above.
111.0	-	113.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous; General Fossils: Fossil Fragments; Comments: Same as above.
113.0	-	115.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 10%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
115.0	-	117.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 10%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
117.0	-	119.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
119.0	-	120.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
120.0	-	121.6	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 10%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
121.6	-	123.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Fea- tures: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Abundant Ocala Limestone Index fossils present throughout this interval. Major increase in fossil content. Transition from fossil-lacking wackestones to fossiliferous packstones and
123.0	-	125.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Fea- tures: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above. Excluding matrix interval is almost entirely composed of different nummulites varieties.

125.0	-	127.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Fea- tures: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above.
127.0	-	129.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above.
129.0	-	130.9	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 90%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above.
130.9	-	133.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Fora- minifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above.
133.0	-	135.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
135.0	-	137.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
137.0	-	139.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
139.0	-	141.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Fora- minifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Ocala Limestone index fossils present throughout interval.
141.0	-	143.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above.
143.0	-	145.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus Nummulites wilcoxi; Comments: Same as above.

145.0	-	147.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
147.0	-	148.3	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
148.3	-	149.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
149.5	-	151.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera
151.0	-	153.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 60%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana Nummulites ocalanus; Comments: Ocala Limestone index fossils are present throughout this interval.
153.0	-	155.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 30%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
155.0	-	157.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments
157.0	-	158.5	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana; Comments: Ocala Limestone index fossils are present throughout this interval.
158.5	-	160.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
160.0	-	162.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
162.0	-	164.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
164.0	-	166.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.

166.0	-	167.8	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Fea- tures: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Echinoid; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
167.8	-	169.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Fea- tures: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Bryozoa; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
169.0	-	171.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Bryozoa; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
171.0	-	173.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
173.0	-	175.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
175.0	-	177.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Bryozoa; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
177.0	-	179.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Bryozoa; Index Fossils: Lepidocyclina ocalana; Comments: Ocala Limestone index fossils are present throughout this interval. Noticeable increase in Lepidocyclina ocalana.
179.0	-	180.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Bryozoa; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
180.0	-	182.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
182.0	-	184.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
184.0	-	185.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Bryozoa; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.

185.5	-	187.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments Fossil Molds; Index Fossils: Lepidocyclina ocalana; Com- ments: Noticeable decrease in fossil content. Still present are Ocala Limestone index fossils.
187.0	-	189.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments Fossil Molds; Index Fossils: Lepidocyclina ocalana; Com- ments: Same as above.
189.0	-	190.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 40%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments Fossil Molds; Index Fossils: Lepidocyclina ocalana; Com- ments: Same as above.
190.5	-	192.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranu- lar Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments Fossil Molds; Index Fossils: Lepidocyclina ocalana; Com- ments: Same as above.
192.5	-	194.4	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 50%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods; Index Fossils: Lepidocyclina ocalana; Comments: Same as above.
194.4	-	196.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
196.0	-	198.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
198.0	-	200.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral; Index Fossils: Nummulites wilcoxi; Comments: Ocala Limestone index fossils are present in this very fossiliferous interval.
200.0	-	202.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
202.0	-	202.8	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral; Index Fossils: Lepidocyclina ocalana; Comments: Ocala Limestone index fossils are present.
202.8	-	204.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
204.0	-	206.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral

206.0	-	208.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
208.0	-	210.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
210.0	-	211.5	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Coral
211.5	-	213.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Cal- careous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Miliolids
213.0	-	215.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Cal- careous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Miliolids
215.0	-	217.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Cal- careous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Miliolids
217.0	-	219.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Cal- careous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Miliolids
219.0	-	220.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Cal- careous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Gastropods Miliolids
220.0	-	222.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
222.0	-	224.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
224.0	-	226.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
226.0	-	228.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
228.0	-	228.5	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
228.5	-	230.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids

230.0	-	232.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
232.0	-	234.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
234.0	-	236.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
236.0	-	237.5	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
237.5	-	239.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
239.0	-	241.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
241.0	-	242.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
242.0	-	244.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
244.0	-	246.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
246.0	-	248.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 90%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
248.0	-	250.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 90%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids

250.0	-	252.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 90%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids; Index Fossils: Neolaganum dalli; Comments: Avon Park Formation index fossils are present throughout this interval. Although this is the first noted AVP index fossil the Ocala/Avon Park contact is
252.0	-	254.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 95%; Grain Size: Fine; Range: Fine to Medi- um; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids; Index Fossils: Neolaganum dalli; Comments: Avon Park Formation index fossils are present throughout this interval.
254.0	-	255.0	ft	Grainstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 90%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1% Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
255.0	-	257.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
257.0	-	259.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Indu- ration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 4%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds; Comments: First occurance of highly weathered dolostone that has moderate amounts of organics and laminations.
259.0	-	261.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Indu- ration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 5%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds; Comments: Same as above.
261.0	-	263.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds; Comments: Same as above.
263.0	-	263.5	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds; Comments: Same as above.
263.5	-	265.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds
265.0	-	267.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 2%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds
267.0	-	269.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 2%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds
269.0	-	271.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic Weathered; General Fossils: Fossil Fragments Fossil Molds

271.0	-	273.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to White (N9); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Indu- ration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Chalky; General Fossils: No Fossils
273.0	-	273.6	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to White (N9); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Medium; Good Indu- ration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Chalky; General Fossils: No Fossils
273.6	-	275.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 85%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
275.0	-	277.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
277.0	-	279.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Medium (10-50%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 2%; Other Features: Dolomitic
279.0	-	281.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous Low Recrystallization; General Fossils: Fossil Fragments Fossil Molds Benthic Foramin- ifera Bryozoa Miliolids
281.0	-	283.2	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 80%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Fossiliferous Low Recrystallization; General Fossils: Fossil Fragments Fossil Molds Benthic Foramin- ifera Bryozoa Miliolids
283.2	-	285.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Fossiliferous Low Recrystallization; General Fossils: Fossil Fragments Fossil Molds Benthic Foramin- ifera Bryozoa Miliolids
285.0	-	287.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds
287.0	-	289.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds
289.0	-	291.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds
291.0	-	294.2	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous Fossiliferous Low Recrystallization; General Fossils: Fossil Fragments Fossil Molds; Comments: Poor recovery consisting of only 1.0' of core.
294.2	-	296.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids

296.0	-	298.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Bryozoa Miliolids
298.0	-	300.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
300.0	-	302.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 25%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
302.0	-	304.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 25%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
304.0	-	306.2	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Fine; Range: Fine to Me- dium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
306.2	-	308.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
308.0	-	310.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 12%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
310.0	-	312.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 12%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 4%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
312.0	-	314.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 17%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
314.0	-	315.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
315.5	-	317.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
317.5	-	319.5	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcareous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
319.5	-	321.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 60%; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
321.0	-	323.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Fine; Range: Fine to Very Fine; Good In- duration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids

323.0	-	325.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 25%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
325.0	-	327.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 30%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
327.0	-	328.5	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Index Fossils: Cushmania (Dictyoconus) americana; Comments: Avon Park index fossils are found throughout this interval.
328.5	-	330.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 25%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 2%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
330.0	-	332.0	ft	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 75%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - 3%; Other Features: Calcare- ous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids
332.0	-	333.8	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular; Altera- tion: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic Low Recrystallization; General Fossils: Fossil Fragments Fossil Molds
333.8	-	335.5	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular; Altera- tion: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera
335.5	-	337.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular; Altera- tion: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Index Fossils: Neolaganum dalli; Comments: Avon Park index fossils present throughout this interval. Although highly weathered Neolaganum dalli fossils range in size from 1 cm - 1.5 cm.
337.0	-	339.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular; Altera- tion: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera
339.0	-	341.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - <1%; Other Features: Dolomitic Low Recrystallization; General Fossils: Fossil Fragments
341.0	-	342.4	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - <1%; Other Features: Dolomitic Low Recrystallization; General Fossils: Fossil Fragments
342.4	-	344.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic; General Fossils: No Fossils; Comments: Noticeable loss of fossil content in this interval and the ones to follow.
344.0	-	346.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic; General Fossils: No Fossils

346.0	-	348.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic; General Fossils: Fossil Fragments
348.0	-	350.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Ce- ment Type: Dolomite; Accessory Minerals: Organics - 6%; Other Features: Dolomitic; General Fossils: No Fossils
350.0	-	351.8	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Ce- ment Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic; General Fossils: No Fossils
351.8	-	353.5	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Ce- ment Type: Dolomite; Accessory Minerals: Organics - 4%; Other Features: Dolomitic; General Fossils: No Fossils
353.5	-	355.0	ft	Dolostone; Color: Grayish Brown (10YR 6/2) to Grayish Orange (10YR 7/4); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Ce- ment Type: Dolomite; Accessory Minerals: Organics - 5%; Other Features: Dolomitic; General Fossils: No Fossils
355.0	-	357.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 4%; Other Features: Dolomitic; General Fossils: No Fossils; Comments: Thin darker colored (10YR 4/2) laminations are found throughout this interval.
357.0	-	359.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 2%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Index Fossils: Neolaganum dalli; Comments: Avon Park index fossils are present throughout this interval. Neolaganum dalli's range in size from 0.5 cm - 1.5 cm.
359.0	-	360.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 1%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Index Fossils: Neolaganum dalli; Comments: Same as above.
360.0	-	362.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 4%; Other Features: Dolomitic; General Fossils: Fossil Fragments; Comments: Thin darker colored (10YR 4/2) laminations are found throughout this interval.
362.0	-	364.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Ce- ment Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 3%; Other Features: Dolomitic; General Fossils: Fossil Fragments; Comments: Same as above but in fewer quantity.
364.0	-	366.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Alteration: Highly (50-90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Ce- ment Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 3%; Other Features: Dolomitic; General Fossils: Fossil Fragments; Comments: Same as above.
366.0	-	368.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Fracture; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 2%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Index Fossils: Neolaganum dalli; Com- ments: Avon Park index fossils are present throughout this inetrval. Laminations have ceased and are not present in this interval of dolostone. Elongated fracture present.
368.0	-	368.9	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Fracture; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera; Index Fossils: Neolaganum dalli; Com- ments: Same as above. Fracture continues through this interval as well.

368.9	-	370.5	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good In- duration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic; General Fossils: Fossil Fragments Fossil Molds
370.5	-	372.5	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 4%; Other Features: Dolomitic; General Fossils: Fossil Fragments; Comments: Dark colored (10YR 4/2) organic laminations occur throughout this interval.
372.5	-	374.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good In- duration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 5%; Other Features: Dolomitic; General Fossils: Fossil Fragments; Comments: Same as above.
374.0	-	376.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good In- duration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics - 5%; Other Features: Dolomitic; General Fossils: Fossil Fragments; Comments: Same as above.
376.0	-	378.2	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good In- duration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic; General Fossils: Fossil Fragments
378.2	-	380.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good In- duration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic; General Fossils: Fossil Fragments
380.0	-	382.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
382.0	-	384.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
384.0	-	386.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 20%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
386.0	-	387.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
387.0	-	389.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 15%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
389.0	-	391.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 25%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
391.0	-	393.0	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 25%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
393.0	-	394.0	ft	Dolostone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular Pinpoint; Alteration: Highly (50- 90%); Crystallinity: Anhedral; Grain Size: Very Fine; Range: Very Fine to Fine; Good In- duration; Cement Type: Dolomite; Accessory Minerals: Organics - 3%; Other Features: Dolomitic; General Fossils: Fossil Fragments

394.0	-	395.9	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain
				Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 35%; Grain Size: Very Fine; Range: Very Fine to
				Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%; Other Features:
				Calcareous Low Recrystallization; General Fossils: Fossil Fragments
395.9	-	397.5	ft	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain

- 595.9 597.5 It Wackestone; Color: Very Light Orange (10 Y R 8/2) to Yellowish Gray (5 Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 45%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics <1%; Other Features: Calcareous Low Recrystallization; General Fossils: Fossil Fragments
- 397.5 399.5 ft Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 65%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics <1%; Other Features: Calcareous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Abundant Miliolids present throughout this interval.
- 399.5 400.0 ft Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Biogenic Calcilutite Pellet; Allochemical Constituents: 70%; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics <1%; Other Features: Calcareous Low Recrystallization Fossiliferous; General Fossils: Fossil Fragments Fossil Molds Benthic Foraminifera Miliolids; Comments: Same as above.

LITHOLOGIC WELL LOG PRINTOUT

WELL NUMBER: W-19773 TOTAL DEPTH: 740 FT. 31 SAMPLES FROM 0 TO 76.5 FT. SOURCE - FGS

COUNTY: HERNANDO LOCATION: LAT = 28° 32' 25.81" LONG = 82° 35' 9.35"

ELEVATION: 22.7 FT

COMPLETION DATE: OWNER/DRILLER: SWFWMD WORKED BY: BEN L. DAVIS 2020 WELL NAME: ROMP TR 19-3A COREHOLE 2

0	_	379	No Sample;
379	_	381	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds;
381	_	383	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds;
383	_	385	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds;
385	_	387	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 35% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds;
387	_	387.9	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 65% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
387.9	_	389.2	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 65% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
389.2	_	389.5	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-<1%; Other Features: Dolomitic; General Fossils: No Fossils;
389.5	_	391	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 70% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
391	_	393	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 60% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
393	_	393.4	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Subhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-<1%; Other Features: Dolomitic; General Fossils: No Fossils;

393.4	_	395.9	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 65% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
395.9	_	397.5	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 75% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
397.5	_	398	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 75% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
398	_	398.6	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Chert-2%, Organics-2%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
398.6	_	400	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 70% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera; Poor recovery consisting of only 0.5" of core.
400	_	400.5	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Chert-2%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foramin- ifera;
400.5	_	402.5	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 75% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
402.5	_	404	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 75% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
404	_	405.7	Packstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 80% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Low Recrystallization, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera;
405.7	_	407.5	Dolostone; Dark Yellowish Brown (10YR 4/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline, Fossiliferous; General Fossils: Fossil Molds, Benthic Foraminifera; Avon Park index fossils are found throughout this interval as recrystallized fossil molds. Index Fossils: Neolaganum dalli
407.5	_	409.2	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline, Fossiliferous; General Fossils: Fossil Molds, Benthic Foraminifera;
409.2	_	410.8	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-1%; Other Features: Dolomitic, Crystalline, Fossiliferous; General Fossils: Fossil Molds, Benthic Foraminifera;
410.8	_	412.5	Dolostone; Dark Yellowish Brown (10YR 4/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Fossiliferous; General Fossils: Fossil Molds, Benthic Foraminifera;
412.5	_	414.2	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline, Fossiliferous; General Fossils: Fossil Molds, Benthic Foraminifera;
414.2	_	416	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 3%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;

416	_	418	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 3%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
418	_	420	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 2%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
420	_	422	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 2%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
422	_	423.6	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics-2%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
423.6	_	425	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 3%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
425	_	427	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 3%; Other Features: Dolomitic, Crystalline, Fossiliferous, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
427	_	429	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; An- hedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 2%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
429	_	431	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; An- hedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
431	_	433	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; An- hedral Crystals; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
433	_	433.7	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Min- erals: Organics-4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
433.7	_	435	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Min- erals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
435	_	437	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Min- erals: Organics-2%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
437	_	439	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Min- erals: Organics-2%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
439	_	441	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Min- erals: Organics-2%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;

441	_	442.2	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crys- tals; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
442.2	_	444	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Microcrystalline; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds, Benthic Foraminifera;
444	_	446	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Microcrystalline; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
446	_	448	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Microcrystalline; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
448	_	450	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Microcrystalline; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-5%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Thinnly laminated with organics throughout the interval.
450	_	451.9	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Same as above.
451.9	_	453	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
453	_	455	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
455	_	457	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-6%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Thin laminations of organics are found throughout this interval.
457	_	459	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated, Brecciated; Accessory Minerals: Organics-6%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Same as above with noticeable brecciation throughout the interval.
459	_	461.5	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated, Brecciated; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Same as above.
461.5	_	463	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
463	_	465	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated, Mottled; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Similar to above intervals as far as organic laminations but also contains a mottled appearance.
465	_	467	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Same as above.
467	_	469	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated, Mottled; Accessory Minerals: Organics-5%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Same as above.

469	_	470	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Completely (90-100%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
470	_	472	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-6%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils; Dark bands on black (N1) organics are found throughout this interval.
472	_	474	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-5%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds; Same as above.
474	_	476	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds;
476	_	478	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: Fossil Molds;
478	_	478.8	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crys- tals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Acces- sory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Sucrosic; General Fossils: No Fossils;
478.8	_	480	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline; General Fossils: No Fossils; Less laminations than previous intervals but still present throughout.
480	_	482	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
482	_	484	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds; Same as above.
484	_	486	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds; Same as above.
486	_	488	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: No Fossils;
488	_	490	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
490	_	492	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
492	_	494	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
494	_	496	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
496	_	497	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;

497	_	499	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds; Abundant thin, black (N1) organic laminations present throughout this interval.
499	_	501	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
501	_	503	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
503	-	504.7	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Miner- als: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
504.7	_	506.5	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
506.5	_	508.5	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
508.5	_	510	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds; Poor recovery consisting of only 0.8" of fractured core.
510	_	512	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
512	_	514	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Moderate Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Crystalline, Platy; General Fossils: Fossil Molds; Thin black (N1) organic laminations are present throughout this interval.
514	_	515	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
515	_	517	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Crystalline, Platy; General Fossils: Fossil Molds; Similar to above intervals, except with increased organic laminations present.
517	_	519	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
519	_	521.4	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crys- tals; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Dolomite; Acces- sory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
521.4	_	523	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Crystalline; General Fossils: Fossil Molds;
523	_	525	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
525	_	527	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
527	_	529	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;

529	_	531	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-5%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
531	_	533	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
533	_	535.5	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
535.5	_	537.5	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
537.5	_	540.4	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
540.4	_	542.5	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
542.5	_	544	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds;
544	_	545.3	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Dolomite; Sedimentary Structures: Brecciated; Accessory Minerals: Organics-2%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds; Interval consists of brecciated dolostone with accessory organics present throughout the interval.
545.3	_	550	Dolostone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Dolomite; Accessory Minerals: Organics-<1%; Other Features: Dolomitic, Friable; General Fossils: No Fossils; Poor recovery consisting of only 1.5' of core fragments.
550	_	555	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Noticeable change from dolostones to poorly indurated wackestone and mudstones. Poor recovery consisting of only 1.8' of core fragments.
555	_	557	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
557	_	560	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Poor recovery consisting of only 0.4" of core fragments.
560	_	562	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
562	_	562.7	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 3% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
562.7	_	564.5	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 3% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
564.5	_	566.5	Mudstone; Grayish Brown (10YR 6/2) to Very Light Orange (10YR 8/2); Grain Type: Biogenic, Calcilutite, Pellet; 5% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Ma- trix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Abundant thin, black (N1) organic laminations present throughout this interval.

566.5	_	570	Mudstone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Poor recovery consist- ing of only~1.2' of core fragments and crumbles.
570	_	572	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 3% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
572	_	574.1	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
574.1	_	576	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds;
576	_	578	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
578	_	580	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
580	_	582	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
582	_	584.5	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
584.5	_	586	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
586	_	588	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-3%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
588	_	590	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
590	_	592	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
592	_	593.5	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Mottled; Accessory Minerals: Organics-3%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
593.5	_	595.5	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Mottled; Accessory Minerals: Organics-3%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
595.5	_	597	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
597	_	599	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
599	_	601	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;

62 Well Construction and Water Quality at the ROMP TR 19-3A... Well Site in Hernando County, Florida

601	_	602.4	Mudstone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 5% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
602.4	_	604	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-2%; Other Features: Calcareous, Friable; General Fossils: No Fossils; This interval conatins asmall amount of thin black (N1) organic laminations.
604	_	606	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
606	_	608	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-2%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Similar thin black (N1) organic laminations present in this interval.
608	_	610	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
610	_	612.2	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
612.2	_	614	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
614	_	616	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-2%; Other Features: Calcareous, Friable; Gener- al Fossils: No Fossils; There are 1.0-3.0 mm thick bands of black (N1) organic laminations present throughout this interval.
616	_	618	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
618	_	620.4	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
620.4	_	622	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-3%; Other Features: Calcareous, Friable; General Fossils: No Fossils; This interval contains undulating, thin, black (N1) organic laminations throughout.
622	_	630.4	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Poor recovery consisting of only ~1.5' of core.
630.4	_	632	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
632	_	634	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
634	_	635.9	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;

635.9	_	637.5	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-3%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Although the induration is poor-moderate there are well-defined thin, black (N1) organic laminations present throughout this interval.
637.5	_	640	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Laminated; Accessory Minerals: Organics-4%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Same as above.
640	_	642	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
642	_	644	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 12% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
644	_	646.3	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
646.3	_	648	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils; Intervals above and below have extremely poor induration.
648	_	650	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
650	_	652	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 12% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
652	_	654	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 12% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
654	_	656.6	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 15% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Friable; General Fossils: No Fossils;
656.6	_	658	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds; Better induration than in previous intervals and a noticeable return of fossil molds is present.
658	_	660	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous; General Fossils: Fossil Molds; Same as above.
660	_	662	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 20% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous; General Fossils: Fossil Molds; Same as above.
662	_	664	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 25% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds; Same as above.
664	_	666.4	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 30% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds; Same as above.

64 Well Construction and Water Quality at the ROMP TR 19-3A... Well Site in Hernando County, Florida

666.4	_	668	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 40% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds, Fossil Fragments;
668	_	670	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 40% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds, Fossil Fragments;
670	_	672	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 35% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds, Fossil Fragments;
672	_	674.5	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 35% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous; General Fossils: Fossil Molds;
674.5	_	676.5	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments, Miliolids, Benthic Foraminifera;
676.5	_	680	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments, Miliolids, Benthic Foraminifera; Poor recovery consisting of only ~1.2' of core.
680	_	682	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-3%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments, Miliolids, Benthic Foraminifera;
682	_	684	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments, Miliolids, Benthic Foraminifera;
684	_	686.2	Wackestone; Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments, Miliolids, Benthic Foraminifera;
686.2	_	690	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Frag- ments, Miliolids, Benthic Foraminifera; Poor recovery consisting of only ~1.8' of core.
690	_	692	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Al- lochemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-2%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments, Miliolids, Benthic Foraminifera;
692	_	694	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Frag- ments, Miliolids, Benthic Foraminifera;
694	_	700	Wackestone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Grain Type: Biogenic, Calcilutite, Pellet; 45% Allo- chemical Constituents; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics-<1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Molds, Fossil Frag- ments, Miliolids, Benthic Foraminifera; Poor recovery consisting of only ~1.0' of core.
700	_	702.3	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Poor Induration; Cement Type: Dolomite; Accessory Miner- als: Organics- 3%; Other Features: Dolomitic, Friable; General Fossils: Fossil Molds, Fossil Fragments; Poorly indurated dolostone interlayered with lesser dolomitic sands.

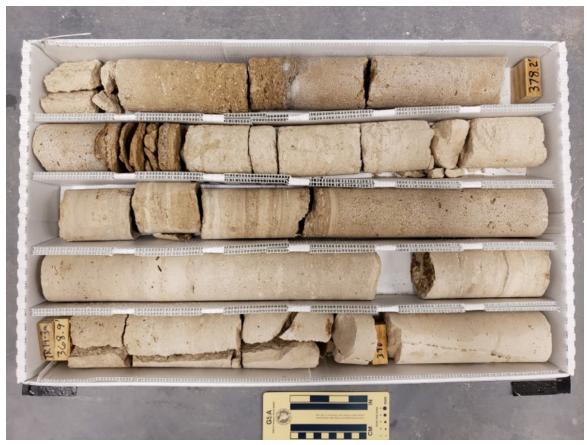
702.3	_	704	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Dolomite; Accessory Minerals: Organics-3%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments;
704	_	706	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 3%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments;
706	_	710	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 4%, Anhydrite-<1%; Other Features: Dolomitic, Fossiliferous, Brown Anhydrite Crystals; General Fossils: Fossil Molds, Fossil Fragments; First occurance of evaporites in well. Trace anhydrite crystals were present in this interval. Also poor recovery consisting of only ~1.2' of core.
710	-	712	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 4%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments;
712	_	713	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Organics- 3%, Gypsum-2%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments; White (N9) gypsum clusters were present in this interval.
713	-	713.7	No Sample; No sample is indicated because SWFWMD removed \sim 6.5-7" of dolomitic core for education/demo purposes. Missing core section was described by SWFWMD as dolostone with \sim 1.5" round vug filled with euhedral quartz crystals.
713.7	_	715.5	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum- 3%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments; White (N9) gypsum clusters were present in this interval.
715.5	_	717.5	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Struc- tures: Mottled; Accessory Minerals: Organics-4%, Gypsum-2%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments; Same as above.
717.5	_	720	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Struc- tures: Mottled; Accessory Minerals: Gypsum-3%, Organics-2%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments; Same as above and also has poor recovery consisting of only ~1.2' of core.
720	_	722	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Struc- tures: Mottled; Accessory Minerals: Organics-3%, Gypsum-2%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments; Same as above.
722	_	724.3	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Sedimentary Struc- tures: Mottled; Accessory Minerals: Organics-2%, Gypsum-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds, Fossil Fragments; Same as above.
724.3	_	726	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum-4%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds;
726			Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum- 3%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds;
726.6	_	727.2	Gypsum; White (N9); Good Induration; Cement Type: Gypsum; Accessory Minerals: Anhydrite-<1%; Other Features: Crystalline, Frosted;
727.2	_	729	Dolostone; Moderate Yellowish Brown (10YR 5/4) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhe- dral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum- 3%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds;
729	_	731	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum-4%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds;

66 Well Construction and Water Quality at the ROMP TR 19-3A... Well Site in Hernando County, Florida

731	_	733	Dolostone; Grayish Brown (10YR 6/2) to Dark Yellowish Orange (10YR 6/6); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum-3%, Organics-<1%; Other Features: Dolomitic, Fossiliferous; General Fossils: Fossil Molds;
733	_	735	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum-5%, Organics-<1%; Other Features: Dolomitic; General Fossils: Fossil Molds;
735			Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum-5%, Organics-<1%; Other Features: Dolomitic; General Fossils: Fossil Molds;
736.5	_	737.5	Gypsum; White (N9); Good Induration; Cement Type: Gypsum; Accessory Minerals: Anhydrite-<1%; Other Features: Crystalline;
737.5		739	Dolostone; Grayish Brown (10YR 6/2) to Yellowish Gray (5Y 8/1); Highly (50-90%) Altered; Anhedral Crystals; Grain Size: Fine; Range: Fine to Very Fine; Good Induration; Cement Type: Dolomite; Accessory Minerals: Gypsum-6%, Organics-<1%; Other Features: Dolomitic; General Fossils: Fossil Molds;

739 – 740 Gypsum; White (N9); Accessory Minerals: Anhydrite-<1%; Other Features: Crystalline;

Appendix D. Digital Photographs of Core Samples Retrieved from the ROMP TR 19-3A Well Site in Hernando County, Florida Digitial Photographs of Core Samples Retrieved from Core hole 1 at the ROMP TR 19-3A Well Site in Hernando County, Florida



Digitial Photographs of Core Samples Retrieved from Core hole 2 at the ROMP TR 19-3A Well Site in Hernando County, Florida

98

Appendix E. Correlation Charts

	_	
SWFWMD PRESENT	surficial aquifer	confining unit
BOGGESS 1986; ARTHUR AND OTHERS 2008	surficial aquifer system	confining unit
MILLER 1980	surficial aquifer	confining unit
WOLANSKY 1978	unconfined aquifer	confining unit
LEVE 1966	shallow aquifer system	confining unit
CLARKE 1964	water-table aquifer	confining unit
LICHTLER 1960	Shallow aquifer	confining unit
WYRICK 1960	nonartesian aquifer	confining unit

4

[SWFWMD, Southwest Florida Water Management District]

ш

SPROUL AND OTHERS 1972	JOYNER, SUTCLIFFE 1976	3	WEDDERBURN AND OTHERS 1982	>	WOLANSKY 1983	BARR 1996	RR 36	AND (TORRES AND OTHERS 2001	KNC	KNOCHENMUS 2006	۲	ARTHUR AND OTHERS 2008		SWFWMD PRESENT
confining unit	confining unit		confining unit	Ŭ	confining unit	confir	confining unit	8	confining unit		confining unit		confining unit	00	confining unit
sandstone aquifer	Zone 1	System	Sandstone aquifer				Permeable Zone 1		Tamiami/ Peace River zone (PZ1)	u	Zone 1	1			Peace River aquifer
confining unit	confining unit	ıətiu	confining unit	SJ	unner	-	confining unit	S S			confining unit	linu nətə		шe	confining unit
upper Hawthorn aquifer	Zone 2	npA nrontwsH	mid-Hawthorn aquifer	iətinps ətsibər	_	iate aquifer sy P B	Permeable Zone 2		Upper Arcadia zone (PZ2)	iate aquifer sγ	Zone 2	ate aquifer sys iate confining	zones/ aquifers were not delineated	n aquifer syste	upper Arcadia aquifer
confining unit	confining unit		confining unit	tern	confining unit		confining unit		confining unit		confining unit	pəu		uoqi	confining unit
lower Hawthorn aquifer	Zone 3	SAA	lower Hawthorn / Tampa producing	Iul	Lower Hawthorn - upper Tampa aquifer		Permeable Zone 3	Ac Ac	Lower Arcadia zone (PZ3)	Intern	Zone 3	mtern intern		wвН	lower Arcadia aquifer
confining unit	confining unit		zone confining unit	õ	confining unit	confi	confining unit	20	confining unit		confining unit		confining unit	90	confining unit

Figure E1. Nomenclature of (A), the surficial aquifer, (B), the Hawthorn aquifer system, and (C), the Floridan aquifer system used for the ROMP TR 19-3A – Heather well site compared to names in previously published reports.

zone unit / stem confining zone unit / stem //stem //stem //stem	Idertiary limestone aquifer sy Cone Permaale Providan aquifer sy Providan aquifer sy Pro	Intra-aquifer middle ing unit and/or Middle Middle-Avon permeable low-permeablity confining unit Floridan Park confining confining zone li or VI lower part) confining unit middle-Avon confining zone li or VI lower part) confining unit unit (MAPCU) confining confining zone li or VI lower part) confining unit unit (MAPCU) confining confining confining	And e confining Lower Floridan Cone Con	it confining unit confining unit confining unit	[Terms shown are for hydrogeologic units present within the Southwest Florida Water Management District (SWFWMD)]
---	--	---	--	---	---

Ocala low-permeability zone

Upper Floridan

confining unit

aquifer

Upper permeable zone

Upper Floridan aquifer

Upper Floridan

aquifer

chief

Lower Hawthom producing zone

SWFWMD PRESENT

WILLIAMS AND KUNIANSKY 2016

ARTHUR AND OTHERS 2008

REESE AND RICHARDSON 2008

MILLER 1986

BUSH 1982

MILLER 1982

STRINGFIELD 1966

PARKER AND OTHERS 1955

STRINGFIELD

1936

Arthur and others acknowledge existence of the middle confining unit I within the Southwest Florida Water Management but do not map it for Special Publication 68.

³The middle confining unit VIII of Miller (1986) in south Florida was extended across the entire peninsula based on new data in Williams and Kuniansky (2015) and reidentified as the Glauconite marker unit.

Figure E1. (Continued) Nomenclature of (A), the surficial aquifer, (B), the Hawthorn aquifer system, and (C), the Floridan aquifer system used for the ROMP TR 19-3A – Heather well site compared to names in previously published reports.

C

Holoce	ne	ur	ndiffe	rentiated		
Pleistoce				and clay		a surfact of
				shead Fm		surficial aquifer
Pliocen	e			atchee Fm		adame.
			Tamia	ami Fm		
	late		lie	Bone Valley		confining unit
	middle		Coosawhatchie Formation	Member Member	stem ¹	Peace River aquifer
Miocene		dn	For	For	r sys	confining unit
	early	Hawthorn Group	_	• Tampa	Hawthorn aquifer system	upper Arcadia aquifer
	Carry	wthe	orma	Member Nocatee	thor	confining unit
0	late	На	Arcadia Formation	• Member	Haw	lower Arcadia aquifer
Oligocene						confining unit
	early	Suwa		Limestone		
	late			cala estone		Ocala low- Upper ^{permeability zone} Floridan
					Ε	aquifer Avon Park low- permeability zone ²
	middle	Avon Park Formation		syste	middle confining unit unit l	
				uifer s	Avon Park low- permeability zone ²	
Eocene					Floridan aquifer system	Lower Floridan aquifer below middle confining unit I
					Flor	middle confining unit II or VI
	early			smar nation		Lower Floridan aquifer below middle confining unit II or VI
						middle condfining unit VIII ³ Lower Floridan aquifer below middle confining
Paleoce	ne			r Keys nation		unit VIII confining unit

Southwest Florida Water Management District Stratigraphic Correlation Chart

This chart may be used to correlate the chronostratigraphic and lithostratigraphic units of the current hydrogeologic framework model of the Southwest Florida Water Management District.

Note: ¹The Hawthorn aquifer system was previouly referred to as the Intermediate aquifer system. ²The Avon Park high-permeability zone (SWFWMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk. ³The middle confining unit VIII of Miller (1986) was extended beyond the original extent in south Florida based on new data.

Figure E2. Chart correlating chronostratigraphic and lithostratigraphic units to the current hydrogeologic framework of the Southwest Florida Water Management District.

Holoce	ne			diffo	rentiated		
Pleistoc					and clay		
			Cy	press	shead Fm		surficial aquifer
Pliocer	ie				atchee Fm		aquilei
				Tamia	ami Fm		
	late	Alachua Formation		hie	• Bone Valley		confining unit
	middle			Coosawhatchie Formation	Member Member	stem ¹	Peace River aquifer
Miocene			đ	0010	For	sys	confining unit
	early		Hawthorn Group		• Tampa	Hawthorn aquifer system	upper Arcadia aquifer
	Curry		vth		MemberNocatee	thor	confining unit
Olizacene	late		Нач	Arcadia Formation	Member	Haw	lower Arcadia aquifer
Oligocene				1			confining unit
	early		Suwa	innee	Limestone		
	late	Crystal River Fm Williston Formation Inglis Formation			cala estone		Ocala low- Upper ^{permeability zone}
Eocene	middle	Lake City Limestone		Avoi	n Park nation	Floridan aquifer system	Floridan aquifer Avon Parklow- permeability zone ² middle confining unit unit I Avon Parklow- permeability zone ² Lower Floridan aquifer below middle confining unit I middle confining
	early				smar nation	Ĩ	unit II or VI Lower Floridan aquifer below middle confining unit II or VI middle confining unit VIII ³ Lower Floridan aquifer below middle confining
Paleoce	ne				r Keys nation		unit VIII confining unit

Southwest Florida Water Management District Stratigraphic Correlation Chart

This chart may be used to correlate the stratigraphic units in past reports to the current hydrogeologic framework model of the Southwest Florida Water Management District. Note: ¹The Hawthorn aquifer system was previouly referred to as the Intermediate aquifer system. ²The Avon Park high-permeability zone (SWFWMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk. ³The middle confining unit VIII of Miller (1986) was extended beyond the original extent in south Florida based on new data.

Figure E3. Chart correlating lithostratigraphic units used in past reports to current lithostratigraphic units and the current hydrogeologic framework of the Southwest Florida Water Management District.

4-inch HWTStatic Static Temporary Total Data (MH)4-inch HWTStatic Static Static Temporary Total StaticStatic Met Met TempoStatic Met				Corehole	ole 1		0	Corehole 2	2		U Fldn	U Fldn Aq Monitor Well		Surf Ac M	Surf Aq Monitor Well	
11:00	Date (MM/ DD/YYY)	Time (HH:MM)	4-inch HWT Temporary Casing Depth (ft bls)	Total Depth (ft bls)		Static Water Level (ft NAVD 88)		S Total W Depth L (ft bls) b					Static Water 3 Level 7 (ft NAVD 88)	Static Water Level (ft bmp) N	Static Water Level (ft NAVD 88)	Comments
- $ -$ <td>)5/15/2019</td> <td>11:00</td> <td>ł</td> <td>1</td> <td>ł</td> <td>:</td> <td>I</td> <td>:</td> <td>1</td> <td>1</td> <td>1</td> <td>·</td> <td></td> <td></td> <td></td> <td>Specific Capacity 10 gpm/21.65 ft = 0.46 gpm/ft. Construction of CH1</td>)5/15/2019	11:00	ł	1	ł	:	I	:	1	1	1	·				Specific Capacity 10 gpm/21.65 ft = 0.46 gpm/ft. Construction of CH1
16:00 34 15.35 8.99	05/21/2019	ł	ł	ł	1	ł	ł	:	1	1			ŗ		ł	
8:05 100 15.35 8:99	05/22/2019	16:00	I			8.99	ł					I	,		1	
7:00 100 160 14.42 9.92	05/23/2019	8:05	I			8.99	ł	:	1	1			ī		1	Packer set at 80°, Specific capacity = 1.46 gpm/ft
7:30 100 160 14.32	05/28/2019	7:00	100			9.92	1	1	1	1		I	i		1	
7:30 100 220 15.43 8.91) 5/28/2019	7:30	100		14.32	:	I					·			1	Packer set at 140°, no specific capac- ity collected due to cavitating pump
13:15 100 220 15.51 8.83	05/29/2019	7:30	100			8.91	ł	:	1	1	:	I	ļ		ł	
14:15 100 220 15.46 8.88	05/29/2019	13:15	100			8.83	I	1		1	!	I	i		-	Collected water level before packer test
6:50 100 280 19.6 4.74	05/29/2019	14:15	100			8.88	ł			1		·	i		1	Packer set at 260', no specific capac- ity because pump cavitates
9:00 100 300 16.88 7.46	05/30/2019	6:50	100			4.74	ł	1	1	1	:	·	ļ	I	ł	
17:06 100 340 15.57	05/30/2019	9:00	100			7.46	I	1	1	1	:	-	i		1	Retook reading later in the day
	05/30/2019	17:06	100			8.77	I	:	1	1		ı	i	1	1	Checked water levels late in the day

Appendix F 113

Alloch Alloch Static Valuer Linch Static Valuer Linch <th></th> <th>Col</th> <th>Corehole 1</th> <th>_</th> <th></th> <th>Corehole 2</th> <th>le 2</th> <th></th> <th>U FI</th> <th>U Fldn Aq Monitor Well</th> <th></th> <th>Surf A</th> <th>Surf Aq Monitor Well</th> <th></th>		Col	Corehole 1	_		Corehole 2	le 2		U FI	U Fldn Aq Monitor Well		Surf A	Surf Aq Monitor Well	
7:45 200 340 15.46 8.88		nch NT orary To sing Del th (ft (1 s) bi				Total Depth (ft bls)	Static Water Level (ft btoc)				Static Water Level (ft NAVD 88)	Static Water Level (ft bmp)	Static Water Level (ft NAVD 88)	Comments
8:00 200 340 14:86 9:48 -		340			ł	1	ł	I	1	ł	1	ł	ł	2.9 stick up (HQ) from MP (8" PVC)
10:10 200 340 $$		340			I	1	1	ł	ł	I	ł	I	I	Formation is low perm dolostone, WL with packer may not have set long enough for equilibrium
7:00 200 360 $15:54$ $8:80$ $$		340		1	1	ł	ł	I	ł	ł	ł	ł	1	
9:57 200 400 15.69 8.65		360			1	ł	1	1	ł	ł	1	ł	1	
11:47 200 400 -		400			ł	ł	ł	ł	1	1	ł	ł	ł	
8:32 200 400 15.42 8.92 -		400		1	ł	1	1	1	ł	1	1	12.30	9.26	Checked completed water levels in surficial aquifer monitor well
8:36 200 400 $$ <		400			ł	ł	ł	ł	ł	ł	I	ł	1	rained over the weekend. No rain gauge to keep track of how much.
7:3020040014.619.73 $$ $-$		400		1	ł	ł	ł	ł	ł	1	ł	11.98	9.59	Start construction of CH2
7:15 200 400 14.87 9.47 65 13:12 200 400 122 7:00 200 400 14.77 9.57 122 7:00 200 400 14.77 9.57 122 9:49 200 400 15.08 9.26 63 122 200 400 63 122 200 400 15.08 9.26 63 122 200 400 122 122 200 400 122 122 200 400 122 200 400 122		400			ł	ł	ł	ł	40	1	ł	11.40	10.16	
13:12 200 400 122 7:00 200 400 14.77 9.57 122 200 400 14.77 9.57 122 200 400 122 122 9:49 200 400 15.08 9.26 63 122 200 400 63 122		400			ł	ł	I	I	65	1	I	11.40	10.16	
7:00 200 400 14.77 9.57 122 200 400 32 122 9:49 200 400 15.08 9.26 63 122 200 400 63 122		400	ł	ł	I	ł	1	ł		14.09	10.12	I	I	rained today. Recovery water level after specific capacity test in com- pleted UFA monitor well
200 400 32 - 122 9:49 200 400 15.08 9.26 63 122 200 400 63 122		400			ł	ł	I	I		14.2	10.01	11.30	10.26	rained last night and today
9:49 200 400 15.08 9.26 63 122 200 400 63 122	200	400		1	ł	32	ł	ł	122	1	ł	ł	1	
200 400 63 122		400			ł	63	I	I		14.04	10.17	ł	ł	
	200	400		ł	ł	63	ł	ł	122	ł	ł	ł	1	

			Corehole	ole 1		0	Corehole	le 2		Ū I I I	U Fldn Aq Monitor Well	onitor	Surf A	Surf Aq Monitor Well	
Date (MM/ DD/YYY) (Time (HH:MM)	4-inch HWT Temporary Casing Depth (ft bls)	/ Total Depth (ft bls)	Static Water Level (ft bmp)	Static Water Level (ft NAVD 88)	4-inch HWT Tem- porary Casing Depth (ft bls)	Static Static Total Water Depth Level (ft (ft bls) btoc)	Static Static Total Water Depth Level (ft (ft bls) btoc)	Static Water Level (ft NAVD 88)	Total Depth (ft bls)	Static Water Level (ft btoc)	Static Water Level (ft NAVD 88)	Static Water Level (ft bmp)	Static Water Level (ft NAVD 88)	Comments
06/19/2019 8	8:35	200		14.88	9.46		103			122	13.7	10.51	:		
06/20/2019 7	7:00	200	400	14	10.34	ł	163	ł	1	122	13.25	10.96	11.50	10.06	
06/21/2019 7	7:00	200	400	14	10.34	ł	283	1	ł	122	13.2	11.01	11.50	10.06	
06/24/2019 7	7:00	200	400	14	10.34	ł	321	ł	ł	122	13.2	11.01	11.20	10.36	
06/25/2019 7	7:00	200	400	14	10.34	1	321	ł	ł	122	13.25	10.96	11.20	10.36	
06/26/2019 7	7:00	200	400	14	10.34	1	321	ł	ł	122	13.25	10.96	11.20	10.36	
06/27/2019 7	7:00	200	400	1	1	1	321	ł	ł	122	:	1	1	1	
07/01/2019 7	7:30	200	400	8.01	16.33	321	321	ł	1	122	13.09	11.12	9.23	12.33	
07/02/2019 7	7:00	200	400	13.9	10.44	321	337	ł	1	122	13.12	11.09	10.20	11.36	
07/03/2019 7	7:00	200	400	13.23	11.11	321	370	ł	1	122	13.14	11.07	10.21	11.35	
07/08/2019 7	7:15	200	400	13.43	10.91	321	400	13.18	11.164	122	12.8	11.41	11.00	10.56	
07/09/2019 7	7:00	200	400	13.12	11.22	321	440	ł	ł	122	12.94	11.27	10.93	10.63	
07/10/2019 7	7:10	200	400	13.16	11.18	321	460	ł	1	122	12.6	11.61	10.55	11.01	
07/11/2019 7	7:10	200	400	13.16	11.18	321	500	ł	:	122	12.57	11.64	10.50	11.06	
07/12/2019 7	7:10	200	400	12.56	11.78	321	530	ł	I	122	12.51	11.70	10.56	11.00	
07/15/2019 7	7:00	200	400	12.63	11.71	321	555	ł	1	122	12.55	11.66	10.56	11.00	
07/16/2019 7	7:00	200	400	13.2	11.14	380	555	ł	1	122	12.49	11.72	10.48	11.08	
07/17/2019 7	7:00	200	400	13.23	11.11	440	555	13.1	11.244	122	12.59	11.62	10.49	11.07	
7 010C/81/20															

Appendix F

115

[MM/DD/YYYY, month/day/year; HH:MM, hour:minute; ft, foot or feet; bls, below land surface; MP, measuring point; bmp, below measuring point; NAVD 88, North American Vertical Dataum of 1988; btoc, below top of casing; HQ, 3.5-inch outside diameter and 3.06-inch inner diameter core rods; HWT, 4.5-inch outside diameter and 4.00-inch inner diameter temporary casing; gpm, gallons per minute; gpm/ft, gallons per minute per foot; PVC, polyvinyl chloride; CH1, Corehole 1; CH2, Corehole 2; WL, water level; U, Upper; Fldn, Floridan; Aq, aquifer; UFA, Upper Floridan aquifer; --, no measurement]

ше Эще	Core	Corehole 1		C	Corehole 2	2		U Flo	U Fldn Aq Monitor Well	nitor	Surf A	Surf Aq Monitor Well	
7:00 200 7:00 200	าch MT orary Total sing Depth th (ft (ft s) bls)	Static Static Mater (ft bmp)	Static Water Level (ft NAVD 88)	4-inch HWT Tem- porary Casing I Depth (ft bls)	Static Static Total Water Depth Level (ft (ft bls) btoc)		Static Water Level (ft I NAVD 88)	Total Depth (ft bls)	Static Water Level (ft btoc)	Static Water Level (ft NAVD 88)	Static Water Level (ft bmp)	Static Water Level (ft NAVD 88)	Comments
7:00 7:00 7:00 7:00 7:00 7:00 7:00 7:00	4	-						1		11.83	10.53	11.03	
7:00 7:00 7:00 7:00 7:00 7:00 7:00 7:00	400	12.52	11.82		555	-	-	122 1	12.36	11.85	10.51	11.05	
7:00 7:00 7:00 7:00 7:00 7:00 7:00 7:00	400	12.38	11.96	530 5	555	1		122 1	12.27	11.94	10.47	11.09	
7:00 7:00 7:00 7:00 7:00 7:00 7:00 7:00	400	12.15	12.19	-	555	1		122 1	12.1	12.11	9.28	12.28	
7:00 7:00 7:00 7:00 7:00 7:00 7:00	400	12.14	12.20	1	555	i	_	122 1	12.02	12.19	10.03	11.53	
7:00 7:00 7:00 7:00 7:00 7:00 7:00	400	ł	ł	4)	555	i	-	122	I	1	ł	ł	
7:00 7:00 7:00 7:00 7:00 7:00 7:00	400	12.39	11.95	550 5	555	i	_	122 1	11.97	12.24	9.90	11.66	
7:00 7:00 7:00 7:00 7:00 7:00	400	12.47	11.87	550 5	580 12	12.74 1	11.604 1	122 1	12.03	12.18	10.21	11.35	
7:00 7:00 7:00 7:00 7:00	400	11.95	12.39	550 6	009		-	122 1	12.06	12.15	9.13	12.43	polymer used in hole
7:00 7:00 7:00 7:00 7:00	400	12.04	12.30	550 (640 12	12.88 11.464		122 1	12.13	12.08	9.23	12.33	
7:00 7:00 7:00 7:00	400	1	ł	550 6	670 12	12.63 1	11.714	122 1	12.4	11.81	8.91	12.65	Crew turned water supply pump on prior to collecting water levels
7:00 7:00 7:00	400	ł	ł	550 7	002	1		122	1	ł	ł	1	
7:00 7:00 7:00	400	ł	1	550 7	730	i	-	122	;	ł	1	1	
7:00	400	12.41	11.93	550 7	740 13	13.3 1	11.044 1	122 1	12.3	11.91	9.28	12.28	
7:00	400	12.46	11.88	550 7	740	i	-	122 1	12.31	11.90	9.40	12.16	
	400	12.38	11.96	550 7	740		-	122 1	12.32	11.89	9.41	12.15	
200 200 200	400	13.43	10.91	550 7	740		-	122 1	12.22	11.99	9.33	12.23	
08/19/2019 7:00 200	400	10.34	14.00	550 7	740	i		122 1	12.13	12.08	7.27	14.29	

			Corehole 1	ole 1		0	Corehole 2	e 2		U FIc	In Aq Mo Well	nitor	Surf A \	U FIdn Aq Monitor Surf Aq Monitor Well Well	
		4-inch HWT Static Temporary Total Water Casing Denth Level	r Total Denth	Static Water Level	Static Water Level	4-inch HWT Tem- porary Casind	Total	Static Nater	Static Water Level	Total Denth	Static Water	Static Water Level	Static Water Static Level Water /ft Level	Static	
Date (MM/] DD/YYYY) (HI	Time (HH:MM)	Depth (ft bls)	lt (ft bls)	(ft bmp)	NAVD 88)		bls)		Δ	l (ft l bls)		NAVD 88)			Comments
08/20/2019 7:00		200	400	10.44	13.90	550	740	1	1	122 1	12.26	11.95	7.54	14.02	
08/21/2019 7:00		200	400	10.54 13.80		550	740	I	ł	122 1	10.33	13.88	7.23	14.33	
08/23/2019 7:00		200	400	10.63	13.71	550	740	I	ł	122 1	10.53	13.68	7.40	14.16	
08/26/2019 7:00		200	400	10.85	13.49	550	740	I	1	122 1	10.44	13.77	7.50	14.06	
08/27/2019 7:00		200	400	10.55	13.79	550	740	I	ł	122 1	10.82	13.39	6.92	14.64	
08/28/2019 7:00		200	400	10.7	13.64	550	740	ł	1	122 1	10.83	13.38	7.56	14.00	
08/29/2019 7:00		200	400	10.85	13.49	550	740	1	1	122 1	10.66	13.55	7.53	14.03	

[MM/DD/YYYY, month/day/year; HH:MM, hour:minute; ft, foot or feet; bls, below land surface; MP, measuring point; bmp, below measuring point; NAVD 88, North American Vertical Dataum of 1988; btoc,

117

Appendix G. Water Quality Sample Data Acquisition Forms for the ROMP TR 19-3A Well Site in Hernando County, Florida

General Inf	ormation		W	ater Quality	No.: 1			
Site Name:	ROMP TR 19	9-3a		[Date: <u>5</u>	/23/2019		
Well Name:	Corehole 1			Performe	d by: K	Mallams/J La	aRoche	
SID:	918411							
			400	 D			00.400	
		epth (ft bls)	100			erval (ft-ft bls)		
	est Casing De		80			rval (m-m bls)		
Test Ca	sing Type/Dia					al WL (ft bmp)		
	Hole Dia	meter (in.)	3.88	Initial	Annulu	s WL (ft bmp)	N/A	
Purae Volur	me (gallons)							
1	0.37	g/ft X	80	ft (interval)) = [29.6	gallons	
2		g/ft X	20	ft (interval)		13.1	gallons	
-	0.0020	-		```	·	42.7	gallons	
					(0)	72.1	gallolis	
	Pump Method		le Pump					
	Airline Length		feet					
Discharg	e Rate (gpm)	27.9	gpm					
Volume (or	ne)/Discharge	1.51	minutes X	THREE =		4.6	minutes	
Colle	ction Method	Submersib	le Pump or V	Wireline Bai	ler or N	lested Bailer o	or Reverse-air	
						er element of p		
Commenta.						ame = 0.37 gas		
Note: NO/NRO	=0.2301 gal/ft; H						a/1t	
	-0.2001 gai/it, 1	100/11001-0.00			()=0.00ZC	gaint		
Test Inform	nation							
	10/-			-	1			
	VVa		During Purg	e				
		Specific	-		_	o 	7.45	
	Time	Cond.	Temp.	pH	Purge	e Start Time:	7:15	
	8:58	285.8	23.7	7.32				
	9:03	286.2	23.3	7.56			0.44	
9:09 285.9 23.3 7.5 Purge End Time: 9:14								
							0.40	
					Sai	mple Time:	9:12	
					Shippi	ng Batch ID:	0523191820	
					l			
			Sample Fie	ld Analvsis	5			
YSI Mult	timeter Serial #	15J103118	•			ometer Serial #	¢71011180004	
			35.9					
	ond. (uS) aturo (°C)			Chloride (n		<u>3.4</u> 3	-	
	ature (°C)		3.3	Sulfate (n	iig/∟)	3]	
	oH (SU)		7.5	l				
		~	· · · · · · · · · · · · · · · · · · ·	N1/A				
			ensity (atm)		A			
Samples Se	ent to District's	Laborator	y for Standai	a Complete	e Analys	sis? Y or N		

Generarium	formation		۱۸	Ator Qualit	v No + 0	
	formation : ROMP TR 1	0.33	VV	ater Qualit	y No.: 2 Date: 5/28/2019	
	Corehole 1	9-Ja		_ Perform	ed by: K Mallams/J La	Pacha
	: 918411					
012.				-		
	Well D	epth (ft bls)	160	Pa	cked Interval (ft-ft bls)	140-160
Т	est Casing D	epth (ft bls)	140	Pac	ked Interval (m-m bls	42.6-48.7
Test Ca	ising Type/Di	ameter (in.)	HQ / 3.06	Initial Tes	st Interval WL (ft bmp)	14.42
	Hole Di	ameter (in.)	3.88	Initia	I Annulus WL (ft bmp)	N/A
Purge volui	me (gallons)		140	T # /intonio		
ן ו	0.37	g/ft X	140 20	ft (interva		gallons
<u>۲</u>	0.0520	g/ft X		ft (interva	,	gallons
		IUIA	L PURGE \		one) = 72.3	gallons
F	Pump Method	d Submersib	le Pump			
	Airline Length		feet			-
	e Rate (gpm)		gpm			
-	ne)/Discharge		minutes X	THREE =	43.4	minutes
•	, .			Wireline Ba	ailer or Nested Bailer	
					ls, lower element outs	
Comments.		el element a		IS at เอฮ ม		
	-0.2201 gal/ft				Q)=0.3623 gal/ft; HQ = 0.37	7 ~~1/ft
	2=0.2301 gai/it,		528 gal/it; oper		Q)=0.3623 gai/it; mQ = 0.37	′ gai/π
Test Inform	nation					
			During a During		7	
	vv		During Pure	je T	4	
	Time	Specific Cond.	Tomp		Durge Start Time:	0.25
	8:51	244.9	Temp.	рН 7.65	Purge Start Time:	8:35
	9:01	244.9	24.8 24.9	7.69	4	
	9:01	200.7	24.9	7.69	Purge End Time:	9:29
	9:11	199.9	24.0	7.58		9.29
	3.20	199.9	24.1	1.00	4	
					Sample Time:	9:25
					Sample Time.	9.20
		-			4	
		-			Shipping Batch ID:	0528191711
						0520191711
					4	
					4	
		-			4	
		-			4	
					_1	
			Sample Fie	eld Analysi	S	
	timator Sorial t	# 15J103118		YSI 9	300 Photometer Serial #	[‡] 71011180004
YSI Mult						
		19	997	Chloride ((mg/L) 2.3	
Spec.C	ond. (uS)		99.7 5.8	Chloride (Sulfate (
Spec.C Temper	cond. (uS) ature (°C)	2	5.8	Chloride (Sulfate (]
Spec.C Temper	ond. (uS)	2				
Spec.C Temper	cond. (uS) ature (°C)	2	5.8	Sulfate (]

General Inf	ormation		W	ater Quality	/ No.: 3	3		
Site Name:	ROMP TR 19	9-3a		_	Date: 5	5/28/2019		
	Corehole 1			Performe	ed by: k	K Mallams/J La	Roche	
SID:	918411							
		unth (ft bla)	220	 Dev		to m (c /ft ft c c)	200, 220	
		epth (ft bls)	220			terval (ft-ft bls)		
	est Casing De	• • •	200			erval (m-m bls)		
Test Ca	sing Type/Dia	• • •				al WL (ft bmp)		
	Hole Dia	ameter (in.)	3.88	Initial	Annui	us WL (ft bmp)	<u> </u>	
Purae Volur	me (gallons)							
1	0.37	g/ft X	200	ft (interval) = [74.00	gallons	
2		g/ft X	20	ft (interval	·	13.06	gallons	
		-	L PURGE V	•	· _	87.06	gallons	
				• - • (•	,		3	
	Pump Method						_	
	Airline Length		feet					
•	e Rate (gpm)		gpm					
Volume (or	ne)/Discharge	3.35	minutes X	THREE =		10.04	minutes	
Collection Method: Submersible Pump or Wireline Bailer or Nested Bailer or Reverse-air								
Comments: Upper packer element set in HQ rods at 199' bls, lower element outside at 220'.								
oonnonto:	TD of corehole is 220 ft bls.							
Note: NO/NRO	Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft							
$\mathbf{N}_{\mathbf{Q}} = \mathbf{N}_{\mathbf{Q}} + \mathbf{N}_{\mathbf{Q}} = \mathbf{U}_{\mathbf{Q}} + $								
Test Information								
				-	٦			
	VVč	· · · · ·	During Purg	e	-			
	Time	Specific Cond.	Tomp	۳Ц	Dure	o Start Time	15:39	
	15:59	254.8	Temp. 24.6	рН 7.57	Fuig	e Start Time:	10.59	
					-			
	16:04 16:08	254.3 253.7	24.2 24.2	7.59 7.6	Dur	no End Timo	16:15	
	10.00	255.7	24.2	7.0	Pul	ge End Time:	10.15	
					-			
					-	nemle Times	10.10	
					Sa	mple Time:	16:12	
					4			
					0		0500404744	
					Snipp	ing Batch ID:	0528191711	
					-			
			<u> </u>		-			
	ļ				4			
					4			
]			
			Sample Fie	ld Analysis	S			
YSI Mult	timeter Serial #	15J103118	-	-		tometer Serial #	£ 71011180004	
Shoo C	ond (uS)	ົ່	54.1	Chloride (r	ma/I∖Γ	3.5	1	
	ond. (uS) ature (°C)		4.1	· ·	v /	<u> </u>	4	
			4.1 .62	Sulfate (r	ng/∟)	۷.	J	
	pH (SU)	/	.02	l				
		-		N1/A				
0			ensity (atm)					
Samples Se	ent to District's	s Laborator	y for Standai	a Complete	e Analy	sis? Y or N		

General Information Water Quality No.: 4									
			VVa						
	ROMP TR 1	9-3a			Date: <u>5/29/2019</u>	<u> </u>			
	Corehole 1			Performe	d by: K Mallams/J La	akocne			
SID:	918411								
	Well De	epth (ft bls)	280	Pac	ked Interval (ft-ft bls)) 260-280			
т	est Casing De	• • •		Packed Interval (m-m bls) 79.1-85.2					
	•	• • •			t Interval WL (ft bmp)				
1001 04		ameter (in.)			Annulus WL (ft bmp)				
			0.00						
Purge Volur	ne (gallons)								
1	0.37	g/ft X	260	ft (interval)) = 96.20	gallons			
2	2 0.6528 g/ft X 20 ft (interval) = 13.06 gallons								
		ΤΟΤΑ	L PURGE V	OLUME (or	ne) = 109.26	gallons			
Pump Method Submersible Pump									
	•					-			
	Airline Length		feet						
-	e Rate (gpm)		gpm		00 70				
	ne)/Discharge		minutes X 1		32.78	minutes			
Colle	ction Method	Submersib	le Pump or V	Vireline Bai	ler or Nested Bailer	or Reverse-air			
Comments:	Comments: Upper packer element set in HQ rods at 259' bls, lower element outside at 260'.								
	TD of coreh	ole is 280 ft	bls.						
Note: NQ/NRQ	Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft								
Test Inform	nation								
	W	ater Quality	During Purg	е					
		Specific	0 0						
	Time	Cond.	Temp.	pН	Purge Start Time:	14:36			
	15:06	280.8	25.4	7.71	Ū				
	15:11	279.4	25.3	7.72					
	15:15	279.7	25.2	7.71	Purge End Time:	15:26			
					0				
					Sample Time:	15:22			
					Shipping Batch ID:	0529191646			
			Comple Field	- ' ا - م ا م ا					
Volte	in the O is the		Sample Fiel	-		1 74044400004			
YSI Mult	imeter Serial #	15J103118			00 Photometer Serial #	<u>71011180004</u>			
Spec.C	ond. (uS)	28	30.4	Chloride (n	ng/L) 2.3	J			
Temper	ature (°C)	2	5.1	Sulfate (n	ng/L) 2				
	oH (SÙ)	7.	.72			_			
		D	ensity (atm)	N/A					

General Inf	ormation		W	ater Quality	No.: 5			
Site Name:	ROMP TR 19	9-3a		[Date: 6	/3/2019		
Well Name:	Corehole 1			Performe	d by: K	Mallams/J La	Roche	
SID:	918411			_				
_		epth (ft bls)				erval (ft-ft bls)		
	est Casing De		320			rval (m-m bls)		
Test Ca						al WL (ft bmp)		
	Hole Dia	meter (in.)	3.88	Initial	Annulu	is WL (ft bmp)	N/A	
Purge Volur	me (gallons)							
1 urge volu	0.37	g/ft X	245	ft (interval)) = [90.65	gallons	
2		g/ft X	20	ft (interval)		13.06	gallons	
_	0.0020	-		· · ·		103.71	gallons	
					(0)	100.71	guilons	
	Pump Method		le Pump				_	
	Airline Length		feet					
Discharg	e Rate (gpm)	3	gpm					
Volume (or	e)/Discharge	35.00	minutes X	THREE =		105.00	minutes	
Colle	ction Method	Submersib	le Pump or	Wireline Bai	ler or N	lested Bailer o	or Reverse-air	
						element outs		
Comments.	TD of coreh			3 41 0 10 010	3, 10000	cicilient outs	100 01 020 .	
Note: NO/NRO))=0.3623	$3 \text{ aal/ft} \cdot HO = 0.37$	ˈ ɡal/ft	
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft								
Test Information								
				-	1			
	VV2		During Purg	e				
	Time	Specific	Taman		Dura		0.20	
	Time	Cond.	Temp.	pH	Purg	e Start Time:	8:30	
	9:52	283.3	26.2	7.75				
	10:05	282.3	26	7.72	Dura	o End Timo	10.25	
	10:15	284.6	26.4	7.81	Purg	e End Time:	10:25	
					<u> </u>	namla Tina a i	10.10	
					Sa	mple Time:	10:19	
					<u>.</u>		000000404740	
					Snippi	ng Batch ID:	060320191740	
					l			
			Sample Fie	ld Analysis	5			
YSI Mult	imeter Serial #	15J103118	•	-		tometer Serial #	71011180004	
	ond. (uS)		35.3	Chloride (n	_	3.6	1	
	ature (°C)		6.5	Sulfate (n		<u> </u>	- I	
	• •		0.5 .79	Sunate (fi	ng/∟)	U	J	
	oH (SU)	1	.19	l				
			Innaity (atm)	NI/A	1			
Complete C	whether Distriction		ensity (atm)		Analis			
Samples Se	ent to District's	Laporator	y for Standa	a Complete	e Analys	sis? Y or N		

General Inf			W			PT #6 CH 1			
	ROMP TR 1	9-3a				6/4/2019			
Well Name:	Corehole 1			Performe	ed by:	K Mallams/J La	Roche		
SID:	918411			-					
			400						
		epth (ft bls)				Interval (ft-ft bls)			
	est Casing D					iterval (m-m bls)			
Test Ca						rval WL (ft bmp)			
L	Hole Dia	ameter (in.)	3.88	Initial	Annu	ulus WL (ft bmp)	<u> </u>		
Purae Volur	me (gallons)								
1		g/ft X	380	ft (interval) =	140.60	gallons		
2		g/ft X	20	ft (interval	/	13.06	gallons		
-	0.0020	U U		`	,		gallons		
		1017					•		
F	Pump Method <u>Submersible Pump</u> $* PV = (1*140.60)+(3*13.1) = 179.9$								
	Airline Length		feet				gallons		
Discharg	e Rate (gpm)	5	gpm						
Volume (or	ne)/Discharge	35.98	minutes X	THREE =		N/A	minutes		
Colle	ction Method	Submersib	le Pump op	Wireline Ba	iler or	^r Nested Bailer o	or Reverse-air		
Commento.	Comments: Set packer at 380 ft, purge 1 volume HQ rods, check for stablization								
Note: NO/NRO	Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft								
	Note: NQ/NRQ=0.2301 gal/it; HW/HW1=0.6528 gal/it; open note(NQ/NRQ)=0.3623 gal/it; HQ = 0.37 gal/it								
Test Information									
	\\/	atar Quality		2	٦				
	VV	· · · · · ·	During Purg	e	-				
	Time	Specific Cond.	Tomp	ъЦ		rae Start Times	15:04		
			Temp.	pH	Pu	rge Start Time:	15:04		
	15:35	291.5	26.3	8.04	-				
	15:40	291.3	26.2	8.03	- _Б	ware Find Times	45.55		
	15:45	290.5	26.2	8.01	Pu	irge End Time:	15:55		
					-				
						· · · · ·			
		1			5	Sample Time:	15:50		
		1			-				
		1			.		000400404740		
		1			Ship	ping Batch ID:	060420191716		
					4				
					4				
					4				
		ļ			1				
]				
			Sample Fie	ld Analvsis	5				
YSI Mult	timeter Serial #			-		notometer Serial #	71011180004		
			17				<u></u>		
	ond. (uS)		91.7	Chloride (r			4		
	ature (°C)		6.2	Sulfate (r	ng/L)	2	Ţ		
1	pH (SU)	8	.08						
		-				1			
			ensity (atm)						
Samples Se	ent to District	s Laboratory	y tor Standar	rd Complete	e Ana	Īysis? Y 👌 N			

Site Name: ROMP TR 19-3a Date: 7/8/2019 Well Name: Corehole 2 Performed by: K Mallams/J LaRoche SID: 918412 Performed by: K Mallams/J LaRoche Well Depth (ft bis) 400 Packed Interval (ft-ft bis) 380-400 Test Casing Depth (ft bis) 380 Packed Interval (ft-ft bis) 115.8-121.9 Test Casing Type/Diameter (in.) HQ 7.06 Initial Test Interval VIL (ft bmp) 113.8 1 0.37 g/ft X 380 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 140.60 gallons 9 g/ft X 20 ft (interval) = 152.80 gallons 9 ft/ft NA feet insteat or Nested Bailer or Reverse-air Conteat or Nested Bailer or R
SID: 918412 Well Depth (ft bls) 400 Packed Interval (ft-ft bls) 380-400 Test Casing Depth (ft bls) 380 Packed Interval (m-m bls) 115.8-121.9 Test Casing Type/Diameter (in.) HQ / 3.06 Initial Test Interval WL (ft bmp) 13.18 Hole Diameter (in.) 3.88 Initial Annulus WL (ft bmp) N/A Purge Volume (gallons) 1 0.37 g/ft X 20 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NO/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NO/NRQ)=0.3623 gal/ft
SID: 918412 Well Depth (ft bls) 400 Packed Interval (ft-ft bls) 380-400 Test Casing Depth (ft bls) 380 Packed Interval (m-m bls) 115.8-121.9 Test Casing Type/Diameter (in.) HQ / 3.06 Initial Test Interval WL (ft bmp) 13.18 Hole Diameter (in.) 3.88 Initial Annulus WL (ft bmp) N/A Purge Volume (gallons) 1 0.37 g/ft X 20 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons Pump Method Submersible Pump Airline Length N/A feet 0.5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole.
Well Depth (ft bls) 400 Packed Interval (ft-ft bls) 380-400 Test Casing Depth (ft bls) 380 Packed Interval (m-m bls) 115.8-121.9 Test Casing Type/Diameter (in.) HQ / 3.06 Initial Test Interval WL (ft bmp) 13.18 Hole Diameter (in.) 3.88 Initial Annulus WL (ft bmp) N/A Purge Volume (gallons) 1 0.37 g/ft X 20 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons 2 0.61 g/ft X 20 ft (interval) = 152.80 gallons Purge Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump ov Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. ML measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Valuer Quality During Purge 11 13.1 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge En
Test Casing Depth (ft bls) 380 Packed Interval (m-m bls) 115.8-121.9 Test Casing Type/Diameter (in.) HQ / 3.06 Initial Test Interval WL (ft bmp) 13.18 Hole Diameter (in.) 3.88 Initial Annulus WL (ft bmp) N/A Purge Volume (gallons) 1 0.37 g/ft X 380 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 142.0 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons gallons Pump Method Submersible Pump Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm gpm Ymmutes X THREE = 83.35 minutes Collection Method Submersible Pump or Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Value Quality During Purge 1 1 1 5.5 7.78 9:18 308.7 25.4 7.81
Test Casing Type/Diameter (in.) HQ / 3.06 3.88 Initial Test Interval WL (ft bmp) 13.18 N/A Purge Volume (gallons) 1 0.37 2 g/ft X 380 20 ft (interval) = 140.60 12.20 gallons gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons Purge Volume (one) 0.61 g/ft X 20 ft (interval) = 12.20 gallons Pump Method Submersible Pump Airline Length N/A feet 152.80 gallons Discharge Rate (gpm) 5.5 gpm yminutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Purge Start Time: 8:24 Value Quality During Purge Specific Temp. pH Purge Start Time: 8:24 9:31 307.1 25.5 7.78 <td< td=""></td<>
Hole Diameter (in.) 3.88 Initial Annulus WL (ft bmp) N/A Purge Volume (gallons) 1 0.37 g/ft X 380 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons 2 0.61 g/ft X 20 ft (interval) = 152.80 gallons Pump Method Submersible Pump Airline Length N/A feet 152.80 gallons Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge 1 0:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55 9:44 305.5
Purge Volume (gallons) 1 0.37 g/ft X 380 ft (interval) = 140.60 gallons 2 0.61 g/ft X 20 ft (interval) = 12.20 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons Pump Method Submersible Pump Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Specific Time Cond. Temp. pH 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
$1 0.37 g/ft X 380 ft (interval) = 140.60 gallonsg/ft X 20 ft (interval) = 12.20 gallonsgallonsTOTAL PURGE VOLUME (one) = 152.80 gallonsgallonsPump Method Submersible PumpAirline Length N/A feetDischarge Rate (gpm) 5.5 gpmVolume (one)/Discharge 27.78 minutes X THREE = 83.35 minutesCollection Method Submersible Pump Wireline Bailer or Nested Bailer or Reverse-airComments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods onformation. WL measuring point is at top of spill-over near corehole.Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ftTest Information\frac{Water Quality During Purge}{Specific}Purge Start Time: 8:249:18 308.7 25.4 7.819:31 307.1 25.5 7.789:44 305.5 25.6 7.87Purge End Time: 9:55$
$1 0.37 g/ft X 380 ft (interval) = 140.60 gallonsg/ft X 20 ft (interval) = 12.20 gallonsgallonsTOTAL PURGE VOLUME (one) = 152.80 gallonsgallonsPump Method Submersible PumpAirline Length N/A feetDischarge Rate (gpm) 5.5 gpmVolume (one)/Discharge 27.78 minutes X THREE = 83.35 minutesCollection Method Submersible Pump Wireline Bailer or Nested Bailer or Reverse-airComments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods onformation. WL measuring point is at top of spill-over near corehole.Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ftTest Information\frac{Water Quality During Purge}{Specific}Purge Start Time: 8:249:18 308.7 25.4 7.819:31 307.1 25.5 7.789:44 305.5 25.6 7.87Purge End Time: 9:55$
2 0.61 g/ft X 20 ft (interval) = 12.20 gallons TOTAL PURGE VOLUME (one) = 152.80 gallons Pump Method Submersible Pump Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method: Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Time Cond. Temp. pH Purge Start Time: 8:24 9:18 308.7 25.4 7.81 Purge End Time: 9:55 9:44 305.5 25.6 7.87 Purge End Time: 9:55
TOTAL PURGE VOLUME (one) = 152.80 gallons Pump Method Submersible Pump Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump or Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge 11 Vill 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Pump Method Submersible Pump Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump or Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. ML measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Vine Specific Time Yield 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Ville Specific Time Cond. Temp. 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Airline Length N/A feet Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Ville Specific Time Cond. Temp. PH 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Discharge Rate (gpm) 5.5 gpm Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method, Submersible Pump or Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Vater Quality During Purge 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Volume (one)/Discharge 27.78 minutes X THREE = 83.35 minutes Collection Method: Submersible Pump of Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Collection Method Submersible Pump or Wireline Bailer or Nested Bailer or Reverse-air Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Vater Quality During Purge Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Specific Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Comments: Inflate packer inside HQ rods at 380', lower packer inflated outside rods on formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Specific Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
formation. WL measuring point is at top of spill-over near corehole. Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Specific PH 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 Purge Start Time: 8:24 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft Test Information Water Quality During Purge Specific PH 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 Purge Start Time: 8:24 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Test Information Water Quality During Purge Specific Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Water Quality During Purge Specific Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Water Quality During Purge Specific Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Specific pH Purge Start Time: 8:24 9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
Time Cond. Temp. pH Purge Start Time: 8:24 9:18 308.7 25.4 7.81 7.81 7.81 7.81 7.81 9:31 307.1 25.5 7.78 7.81 7.81 9:44 305.5 25.6 7.87 7.87 7.81 9:55 7.81 9:55 7.81 9:55 7.81 9:55 7.81 9:55 7.81 9:55
9:18 308.7 25.4 7.81 9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
9:31 307.1 25.5 7.78 9:44 305.5 25.6 7.87 Purge End Time: 9:55
9:44 305.5 25.6 7.87 Purge End Time: 9:55
Image: Sample Time: 9:50
Sample Time: 9:50
Shipping Batch ID: 070820191737
Sample Field Analysis
Sample Field Analysis YSI Multimeter Serial # 15/103118 YSI 9300 Photometer Serial # 71011180004
YSI Multimeter Serial # 15J103118 YSI 9300 Photometer Serial # 71011180004
YSI Multimeter Serial # 15J103118 YSI 9300 Photometer Serial # 71011180004 Spec.Cond. (uS) 305.6 Chloride (mg/L) 7.1
YSI Multimeter Serial # 15J103118 YSI 9300 Photometer Serial # 71011180004 Spec.Cond. (uS) 305.6 Chloride (mg/L) 7.1 Temperature (°C) 25.6 Sulfate (mg/L) 11
YSI Multimeter Serial # 15J103118 YSI 9300 Photometer Serial # 71011180004 Spec.Cond. (uS) 305.6 Chloride (mg/L) 7.1
YSI Multimeter Serial # 15J103118 YSI 9300 Photometer Serial # 71011180004 Spec.Cond. (uS) 305.6 Chloride (mg/L) 7.1 Temperature (°C) 25.6 Sulfate (mg/L) 11
YSI Multimeter Serial # 15J103118 YSI 9300 Photometer Serial # 71011180004 Spec.Cond. (uS) 305.6 Chloride (mg/L) 7.1 Temperature (°C) 25.6 Sulfate (mg/L) 11

	QUALITY 3				No 1 9				
General Inf		0.0-	VV	ater Quality					
	ROMP TR 1	9-3a			Date: 7/10/2019				
	Corehole 2			Performe	d by: <u>K Mallams/J L</u>	akoche			
SID:	918412			•					
	ام اام/\\	epth (ft bls)	460	Par	cked Interval (ft-ft bls) 440-460			
т т	est Casing De		440		ked Interval (m-m bls				
	ising Type/Dia				t Interval WL (ft bmp	,			
1631 04		ameter (in.)	3.88		Annulus WL (ft bmp				
			5.00)			
Purge Volu	me (gallons)								
1	0.37	g/ft X	440	ft (interval) = 162.80	gallons			
2	0.61	g/ft X	20	ft (interval) = 12.20	gallons			
			L PURGE V	OLUME (o	ne) = 175.00	gallons			
	Pump Method Submersible Pump								
	•					_			
	Airline Length		feet						
-	e Rate (gpm)		gpm			-			
Volume (or	ne)/Discharge	7.29	minutes X	I HREE =	21.88	minutes			
Colle	ction Method	Submersib	le Pump op	Wireline Ba	iler or Nested Bailer	or Reverse-air			
Comments: Inflate packer inside HQ rods at 440', lower packer inflated outside rods on formation.									
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft									
Test Information									
	W	ater Quality	During Purg	e	1				
		Specific			1				
	Time	Cond.	Temp.	рН	Purge Start Time:	9:05			
	9:15	286	25.3	7.93		0.00			
	9:20	283	25.3	7.82	1				
	9:25	283.5	25.3	7.78	Purge End Time:	9:40			
	0.20	200.0	20.0	1.10		0.70			
					1				
					Sample Time:	9:30			
						0.00			
					4				
					Shipping Batch ID:	071020191658			
						011020191030			
					-				
					4				
					4				
					4				
					J				
			Sample Fie	Id Analysis	6				
YSI Mult	timeter Serial #	£ 15J103118	-	-	300 Photometer Serial	# 71011180004			
Snec C	ond. (uS)	29	34.6	Chloride (r	ng/L) 9.9	7			
•	ature (°C)		5.2	Sulfate (r	- · ·	-			
	pH (SU)		3.2 7.8						
	pri (30)		.0	J					
			oncity (otm)	N/A					
Somelas Cr	opt to District		ensity (atm)			1			
Samples Se	Ent to District's	s Laboratory	y ior Standal	u Complete	e Analysis? (Y 👌 N	N			

General Inf			W	ater Quality	/ No.: 9				
Site Name:	ROMP TR 19	9-3a		_	Date: 7	/11/2019			
	Corehole 2			Performe	d by: k	(Mallams/J La	Roche		
SID:	918412			•	_				
		onth (ft bla)	520	Dad		terval (ft-ft bls)	500 520		
I -		epth (ft bls)	520			erval (n-n bls) erval (m-m bls)			
	est Casing De sing Type/Dia					al WL (ft bmp)			
Test Ca	• • •	ameter (in.)	3.88			ar w⊑ (it binp) is WL (ft bmp)			
			5.00	IIIIuai	Annuit		N/A		
Purge Volui	me (gallons)	_		_					
1	0.37	g/ft X	500	ft (interval		185.00	gallons		
2	0.61	g/ft X	20	ft (interval) =	12.20	gallons		
		ΤΟΤΑ	L PURGE V	OLUME (o	ne) =	197.20	gallons		
	Pump Method	Submorsib	le Pumn						
	Pump Method Submersible Pump Airline Length N/A feet								
	e Rate (gpm)		gpm						
-	ne)/Discharge		minutes X 1	THREE =		39.44	minutes		
`	, 0				L N		- 1		
						Nested Baller o	or Reverse-air		
Comments: Inflate packer inside HQ rods at 500, TD is 520'									
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft									
Test Information									
					1				
	Wa	· · · · · ·	During Purg	е	-				
		Specific	-		_	o :	10.07		
	Time	Cond.	Temp.	pH	Purg	e Start Time:	12:27		
	12:46	305.6	26.1	8	-				
	12:57	301.3	26	7.92		. End Times	40.00		
	13:08	299.8	25.7	7.92	Purg	e End Time:	13:28		
					-				
					- 	mple Time:	13:12		
					Ja	inple fille.	13.12		
					Shinni	ng Batch ID:	071120191650		
					Omppi	ng baten ib.	071120131030		
					-				
					1				
					1				
					1				
	L		• • •		L				
			Sample Fie	-					
YSI Mult	timeter Serial #	15J103118		YSI 93	300 Pho	tometer Serial #	ŧ 71011180004		
Spec.C	ond. (uS)	29	99.5	Chloride (r	ng/L)	6.8			
Temper	ature (°C)	2	5.7	Sulfate (r	ng/L)	4			
	pH (SÙ)	7	.92	Ì			_		
	- *								
		D	ensity (atm)	N/A		\frown			
Samples Se	ent to District's	Laborator	y for Standai	rd Complete	e Analy	sis? Y or N			

General Information Water Quality No.: 10									
General Inf			VV						
	ROMP TR 1	9-3a		-	Date: 7/31/2019				
	Corehole 2			Performed by: K Mallams/J LaRoche					
SID:	918412			-					
	Well De	epth (ft bls)	580	Pa	cked Interval (ft-ft bls) 560-580			
т	est Casing De		560		ked Interval (m-m bls				
	sing Type/Dia				t Interval WL (ft bmp)				
1001 04		ameter (in.)	3.88		Annulus WL (ft bmp				
			0.00						
Purge Volur	me (gallons)	_		-					
1	0.37	g/ft X	560	ft (interval) = 207.20	gallons			
2	0.61	g/ft X	20	ft (interval) = 12.20	gallons			
		ΤΟΤΑ	L PURGE V	OLUME (o	ne) = 219.40	gallons			
,	Pump Method Submersible Pump								
Pump Method Submersible Pump									
	Airline Length		feet						
-	e Rate (gpm)		gpm		400 70	.			
	ne)/Discharge		minutes X		109.70	minutes			
Colle	ction Method	Submersib	le Pump	Wireline Ba	iler or Nested Bailer	or Reverse-air			
Comments:	Comments: Inflate packer inside HQ rods at 560, TD is 580'								
Note: NQ/NRQ	Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft								
Test Information									
	W	ater Quality	During Purg	e	1				
		Specific	0		1				
	Time	, Cond.	Temp.	pН	Purge Start Time:	6:45			
	9:18	341.9	26.3	7.98					
	9:23	342	26.3	7.96					
	9:28	342.1	26.3	7.94	Purge End Time:	9:43			
	0.20	0.2	2010		1				
					Sample Time:	9:33			
					Shipping Batch ID:	073120191724			
						0/0120101/21			
					** 7/30 - Start purge	time: 15:30			
					** 7/30 - End purge				
	 								
					1				
	L			1	J				
			Sample Fie	Id Analysis	5				
YSI Mult	timeter Serial #	15J103118		YSI 93	300 Photometer Serial #	# <u>71011180004</u>			
Spec C	ond. (uS)	34	2.4	Chloride (ı	mg/L) 3.1				
	ature (°C)		6.4	Sulfate (r	• /	1			
	pH (SU)		.96						
'	pii (00)	/		1					
		п	ensity (atm)	N/A					
Samples Sc	ant to District				e Analysis? Y or N	I			
Jampies Se		s Laburatury	y ior Stanual						

General Inf	ormation		W	ater Quality				
Site Name:	ROMP TR 19	9-3a		[Date: 8	/5/2019		
Well Name:	Corehole 2			Performe	d by: k	K Mallams/J La	aRoche	
SID:	918412			-				
		epth (ft bls)	640	Pac	ked In	terval (ft-ft bls)	620-640	
т	est Casing De	• • •				erval (m-m bls)		
						al WL (ft bmp)		
1001 04	• • •	imeter (in.)				us WL (ft bmp)		
			0.00	-				
Purge Volur	me (gallons)			•	_		-	
1	0.37	g/ft X	640	ft (interval)		236.80	gallons	
2	0.61	g/ft X	20	ft (interval)	/ L	12.20	gallons	
		ΤΟΤΑ	L PURGE V	OLUME (or	ne) =	249.00	gallons	
F	Pump Method	Submersib	le Pump					
	Airline Length		feet				-	
	e Rate (gpm)		gpm					
-	ne)/Discharge		minutes X	THREE =		27.67	minutes	
•	, .				lor or N			
						vesteu baller (or Reverse-air	
Comments:	Inflate packe	r inside HG	rods at 560	, TD is 580 [°]				
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft								
Test Information								
			D · D		1			
	VVa		During Purg	le				
	Time	Specific	Taman		Dura		0.10	
	Time 9:52	Cond.	Temp. 25.9	pH	Purg	e Start Time:	9:19	
	9:52	651 653	25.9	7.66 7.64				
	10:02	656	20.9	7.64	Dure	e End Time:	10:30	
	10.02	050	20	7.04	Pul	je End Time.	10.30	
					Sa	mple Time:	10:07	
					0a	inple fille.	10.07	
					Shinni	ng Batch ID:	080520191647	
					Спрр	ng baton ib.	000020101041	
	<u> </u>							
	L	1	0		1			
YSI Mult	timeter Serial #	15J103118	Sample Fie	•		tometer Serial #	± 71011180004	
Spec.C	ond. (uS)	6	57	Chloride (n	ng/L)	14]	
-	ature (°C)		5.9	Sulfate (n		180	1	
-	pH (SU)		.66	(J/∟		-	
	x - /	·	-	4				
		D	ensity (atm)	N/A		\frown		
Samples Se	ent to District's				Analy	sis? Y or N		

General Information Water Quality No.: 12									
	: ROMP TR 1	0.32	VV		Date: 8/6/2019				
	Corehole 2	9-3a		Performed by: K Mallams/J LaRoche					
	: 918412			- Penonne	u by. <u>K ivialianis/J L</u>	aroche			
3ID.	. 910412								
	Well Do	epth (ft bls)	700	Pac	cked Interval (ft-ft bls	680-700			
Т	est Casing De	• • •		-	ked Interval (m-m bls	·			
	sing Type/Dia				t Interval WL (ft bmp	/			
	• • •	ameter (in.)	3.88		Annulus WL (ft bmp	,			
		()				/			
Purge Volu	me (gallons)			_					
1		g/ft X	680	ft (interval	,	gallons			
2	0.61	g/ft X	20	ft (interval) = 12.20	gallons			
		ΤΟΤΑ	L PURGE V	OLUME (o	ne) = 263.80	gallons			
,									
	Pump Method					_			
	Airline Length		feet						
	ge Rate (gpm)		gpm		00.00	1			
	ne)/Discharge		minutes X 1		28.26	minutes			
Colle	ction Methods	Submersib	le Pump op	Wireline Bai	iler or Nested Bailer	or Reverse-air			
Comments: Packer set at 680' bls (20' off bottom)									
\ (
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft									
Test Inforn	nation								
	W	ater Quality	During Purg	le	1				
		Specific							
	Time	, Cond.	Temp.	pН	Purge Start Time:	15:35			
	16:00	1227	26.2	7.58					
	16:05	1225	26.3	7.56					
	16:10	1231	26.3	7.56	Purge End Time:	16:41			
		-			Sample Time:	16:17			
		-				10.17			
		-			-				
					Shipping Batch ID:	080620191800			
		╉───┤			Chipping Daton ID.	000020101000			
		+			1				
		╉────┤			4				
		╉────┤			4				
		┥───┤			4				
		<u> </u>	<u> </u>		J				
			Sample Fie	Id Analysis	6				
YSI Mul	timeter Serial #	<u>15J103</u> 118		YSI 93	300 Photometer Serial	# <u>71011180</u> 004			
Spec C	cond. (uS)	11	234	Chloride (r	ng/L) 28				
	ature (°C)		6.3	Sulfate (r	• ·	-			
	pH (SU)		.55		···9/ 200				
	pri (00)			1					
		п	ensity (atm)	N/A					
Samples S	ant to District				e Analysis? Y or I	J			
Jampies Se	ອກເພຍ່ມເອເມດເອ	ອັບລາວເລເບເທ	y iui utanual		∋r∹iicaiyəiə (∖i yl l	N			

General Inf	ormation		W	ater Quality				
Site Name:	ROMP TR 1	9-3a		[Date: 8	3/7/2019		
Well Name:	Corehole 2			Performe	d by: I	< Mallams/ T F	allon	
SID:	918412			-	_			
		nth (ft hla)	700	 Doo	lead In	tory (a) (ft ft b)a)	690 700	
–		epth (ft bls)	700			terval (ft-ft bls)		
	est Casing De	• • •				erval (m-m bls)		
Test Ca	• • •	• • •				val WL (ft bmp)		
		meter (in.)	3.88		Annui	us WL (ft bmp)	<u> </u>	
Purge Volur	me (gallons)							
1	0.37	g/ft X	680	ft (interval)) = [251.60	gallons	
2	0.61	g/ft X	20	ft (interval)) =	12.20	gallons	
		TOTA	L PURGE V	OLUME (o	ne) =	263.80	gallons	
	Pump Method Submersible Pump							
	•						_	
	Airline Length		feet					
•	e Rate (gpm)		gpm				.	
	ne)/Discharge		minutes X			28.26	minutes	
Colle	ction Method	Submersik	ole Pump	Wireline Bai	ler or l	Nested Bailer o	or Reverse-air	
Comments:	Packer set a	t 680' bls (2	20' off bottom	n). Re-do in	terval	for QA/QC pur	poses	
Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft								
Test Information								
	Wa	ater Quality	During Purg	le	1			
		Specific						
	Time	Cond.	Temp.	pН	Purc	ge Start Time:	8:28	
	9:08	1105	26	7.37		,		
	9:13	1109	26	7.42				
	9:18	1119	26	7.42	Pure	ge End Time:	9:40	
		-						
					1			
					Sa	mple Time:	9:25	
						·		
					Shipp	ing Batch ID:	080720191646	
						5		
					1			
					1			
		1			1			
					1			
	L	<u>.</u>			1			
		4 - 1400	Sample Fie	-			74044400654	
YSI Mult	timeter Serial #	15J103118		YSI 93	00 Pho	otometer Serial #	± /1011180004	
Spec.C	ond. (uS)	1	117	Chloride (n	ng/L)	30		
Temper	ature (°C)	2	5.8	Sulfate (n	ng/L)	252		
	pH (SÙ)	7	.51				_	
	-			-				
		C	ensity (atm)	N/A		\frown		
Samples Se	ent to District's	s Laborator	y for Standa	rd Complete	Analy	/sis?(Y)dr N		

General In	formation			ater Quality	/ No · 1/			
	ROMP TR 1	0.32	vv		Date: 9/3/2019			
	Corehole 2	9-3a			Performed by: K Mallams/ J LaRoche			
	918412			Fenome	tu by. <u>IN Malianis/ 5 L</u>	antoche		
	910412							
	Well De	epth (ft bls)	740	Pa	cked Interval (ft-ft bls) 670-740		
Т	est Casing D		670		ked Interval (m-m bls			
					t Interval WL (ft bmp	,		
		ameter (in.)	3.88		Annulus WL (ft bmp			
		·····						
Purge Volu	me (gallons)	r				-		
1	0.5426	g/ft X	670	ft (interval	,	gallons		
2	0.61	g/ft X	70	ft (interval	·	gallons		
		ΤΟΤΑ	L PURGE V	OLUME (o	one) = 406.24	gallons		
	Pump Method	Submersib	le Pumn			_		
Pump Method Submersible Pump Airline Length N/A feet								
	e Rate (gpm)		gpm					
-	ne)/Discharge		minutes X 1	HREF =	81.25	minutes		
	, .							
					iler or Nested Bailer			
Comments:	Sample from	n pump discl	harge, purgii	ng complet	ed well bore from 670)-740 bls.		
Note: NQ/NRC	Note: NQ/NRQ=0.2301 gal/ft; HW/HWT=0.6528 gal/ft; open hole(NQ/NRQ)=0.3623 gal/ft; HQ = 0.37 gal/ft							
Test Information								
Test morn	lation							
	W	ater Quality	During Purg	е]			
		Specific						
	Time	Cond.	Temp.	pН	Purge Start Time:	11:30		
	11:48	1480	26.4	7.55				
	12:10	1728	26.2	7.46				
	12:25	1740	26.6	7.41	Purge End Time:	13:21		
	12:42	1757	26.5	7.43				
					Sample Time:	12:59		
					Shipping Batch ID:	090320191507		
]			
					1			
					1			
]			
			Sampla Eia	ld Analysi	-			
Vermon	timator Sorial +		Sample Fie	-	s 300 Photometer Serial ;	# 71011190004		
	timeter Serial #					+ <u>/1011160004</u>		
•	ond. (uS)		751	Chloride (I		4		
	ature (°C)	2	6.4	Sulfate (r	mg/L) 420			
	pH (SU)	7	′.4					
			ensity (atm)		\frown			
Samples Se	ent to District	s Laboratory	/ for Standar	d Complete	e Analysis? Y 👌 N	I		

WATER QUALITY	SAMPLE	ACQUISIT	ION
---------------	--------	----------	-----

General Information		W	ater Quality		
Site Name: ROMP TR 1	9-3a			Date: <u>10/1/2019</u>	
Well Name: Corehole 2			Performe	d by: <u>K Mallams/ J L</u>	aRoche
SID: <u>918412</u>			-		
	epth (ft bls)			ked Interval (ft-ft bls)	
Test Casing De				ed Interval (m-m bls)	
Test Casing Type/Dia					
	meter (in.)	3.88	Initial	Annulus WL (ft bmp)	N/A
Purge Volume (gallons)					
4" 1 0.653	g/ft X	670	ft (interval)) = 437.51	gallons
3.88 2 0.614	g/ft X	41	ft (interval)		gallons
	TOTA	L PURGE V	OLUME (or	ne) = 462.68	gallons
Pump Method	Submoreih	lo Pump 10	h		
Airline Length		feet)		-
Discharge Rate (gpm)					
Volume (one)/Discharge		gpm minutes X		46.27	minutes
				iler or Nested Bailer	or Reverse-air
Comments: Final WQ sa	mple - well	completion -	- TD =711 ft	t bls, CD = 670 ft bls	
Note: NQ/NRQ=0.2301 gal/ft;	HW/HWT=0.6	528 gal/ft; ope	n hole(NQ/NR	Q)=0.3623 gal/ft; HQ = 0.3	37 gal/ft
Test Information					
				1	
Wa		During Purg	ge		
Times	Specific	T			10.01
Time	Cond.	Temp.	pH	Purge Start Time:	13:31
14:00	1217	26.25	9.71		
14:10	1210	26.26	9.83	Durgo End Timos	14.56
14:20 14:30	1215 1254	26.31 26.35	9.5 9.16	Purge End Time:	14:56
14:35	1254	26.35			
14:40	1270	26.57	9.02 8.9	Sampla Tima:	14:47
14:45	1209	26.4	8.82	Sample Time:	14.47
14.45	1303	20.4	0.02		
				Shipping Batch ID:	100120101637
				ompping baten ib.	100120101007
				1	
				1	
		Sample Ele	Id Analysia		
YSI Multimeter Serial #	08L100684	Sample Fie	-	• 00 Photometer Serial #	71011180004
Spec.Cond. (uS)	1:	311	Chloride (n	ng/L) 34	7
Temperature (°C)		5.49	Sulfate (n	•	-
pH (SU)		.79		······································	J
pri (60)	0	.15	J		
pri (88)		ensity (atm)	N/A		

Appendix H. Water Quality Data for the Groundwater Samples Collected at the ROMP TR 19-3A Well Site in Hernando County, Florida

water quality samples collected at the ROMP TR 19-3A well site in Hernando County, Florida. All field samples were	the weir tank.
lality sampl	collected from the airlift discharge using the weir tank.

[No., number; SID, Station Identification; MM/DD/YYYY, month/day/year; HH:MM, hour:minute; ft, foot or feet; bls, below land surface; °C, Celsius; SU,, standard unit; Cl⁻, chloride; SO₄⁻², sulfate; mg/L, milligrams per liter; µmhos/cm, micromhos per centimeter]

milligrams p	milligrams per liter; µmhos/cm, micromhos per centimeter]	, micromhos per	centimeter									
				Deenest						MAJOR AN- IONS	SAN-	
Water Quality Sample No.	Monitor Well . SID No.	Date (MM/ DD/YYYY)	Time (HH:MM)	Casing Depth (ft bls)	Total Depth (ft bls)	Airline Length (ft)	Tempera- ture (°C)	pH (SU)	Specific Conductance (µmhos/cm)	CI- (mg/L) (SO ²⁻ (mg/L)	Sample Collection Method/Re- marks
-	918411	05/23/2019	13:56	100	120	80	26.3 8	8.0	247.3			Airlift with 80 ft airline. Core rods 20 ft off bottom
7	918411	05/23/2019	15:41	100	140	80	27.7 7	6.7	277.6	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
ę	918411	05/23/2019	17:30	100	160	80	27.3 7	6.7	264.5	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
4	918411	05/28/2019	11:32	100	180	80	24.7 8	8.1	245.5	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
S	918411	05/28/2019	13:11	100	200	80	24.8 7	6.7	240.9	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
9	918411	05/28/2019	15:12	100	220	80	25.1 8	8.0	254.0	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
7	918411	05/29/2019	09:22	100	240	80	24.7 8	8.1	257.5	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
8	918411	05/29/2019	11:27	100	260	80	24.9 8	8.2	266.7	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
6	918411	05/29/2019	14:02	100	280	80	24.7 7	7.8	269.4	1		Airlift with 80 ft airline. Core rods 20 ft off bottom
10	918411	05/30/2019	09:47	100	300	80	25.0 8	8.0	270.8	1	-	Core rods 20 ft off bottom
11	918411	05/30/2019	13:41	100	320	80	25.5 8	8.2	266.5	:	-	Core rods 20 ft off bottom
12	918411	05/30/2019	16:51	100	340	80	25.7 8	8.2	265.4	:	-	Core rods 20 ft off bottom
13	918411	06/03/2019	16:27	200	360	80	25.5 8	8.0	282.6	:	-	Core rods 20 ft off bottom
14	918411	06/04/2019	11:12	200	380	80	25.5 8	8.2	286.6	:	-	Core rods 20 ft off bottom
15	918411	06/04/2019	14:39	200	400	80	25.7 8	8.2	288.2	1	-	Core rods 20 ft off bottom
16	918412	07/02/2019	14:04	320	360	09	32.5 9	9.8	203.1	1	-	Core rods 10 ft off bottom/Mud and cement may still be in the borehole
17	918412	07/03/2019	10:13	320	380	80	29.9 9	9.2	185.5	1	-	Core rods 10 ft off bottom

Table H1. Field analyses results for the water quality samples collected at the ROMP TR 19-3A well site in Hernando County, Florida. All field samples were

collected from the airlift discharge using the weir tank. [No., number; Bis, below land surface; °C, celsius; SU, standard unit; CI; chloride; SO₄²; sulfate; mg/L, mil-

centimeter
per c
micromhos
umhos/cm,
r liter;
grams per
-

	Sample Collection Method/Re- marks	Core rods 10 ft off bottom/Purged more and rechecked field param- eters	Core rods 10 ft off bottom																	
R AN- NS	SO_4^{2-} (mg/L)	1	ł	1	1	1	ł	ł	ł	1	41.0	80.0	23.0	0.66	108.0	288.0	252.0	260.0	252.0	264.0
MAJOR AN- IONS	CI- (mg/L)	1	ł	ł	ł	ł	ł	ł	ł	ł	4.8	7.6	4.6	12.5	10.5	20.0	13.5	29.0	18.0	20.5
Snorific	Conductance (µmhos/cm)	298.5	283.8	282.9	284.1	287.2	302.8	298.0	305.6	292.9	283.5	300.2	335.3	404.1	488.1	802.0	744.0	1,202.0	1,296.0	1,362.0
	Hd - (US)	8.3	8.4	8.0	8.0	8.2	8.0	8.3	8.2	8.2	8.5	7.8	8.1	7.8	8.0	8.1	8.0	8.0	8.0	7.9
	Tempera- ture (°C)	27.7	27.6	25.4	25.4	25.5	25.9	25.6	25.8	25.4	26.3	27.1	25.5	26.4	25.9	26.7	25.8	26.1	26.3	26.6
Airline		80	80	80	80	80	80	80	80	80	100	100	100	100	100	100	100	100	100	100
	Total Depth (ft bls)	400	420	440	460	480	500	510	520	540	560	580	600	620	640	660	680	700	720	740
Deepest	Casurg Depth (ft bls)	320	320	320	320	320	320	320	320	320	550	550	550	550	550	550	550	550	550	550
	Time (HH:MM)	15:31	13:36	08:35	08:30	13:24	17:07	09:44	12:03	80:60	10:23	14:41	08:23	12:14	15:59	14:40	09:53	14:14	13:21	12:17
	Date (MM/ DD/YYYY) (07/03/2019	07/08/2019	07/09/2019	07/10/2019	07/10/2019	07/10/2019	07/11/2019	07/11/2019	07/12/2019	07/30/2019	07/30/2019	08/01/2019	08/01/2019	08/01/2019	08/05/2019	08/06/2019	08/06/2019	08/07/2019	08/08/2019
	Monitor Well SID No.	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412	918412
Water	0.	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37

Table H2. Laboratory analyses results for the water quality samples collected at the ROMP TR 19-3A well site in Hernando County, Florida.

[No., number; SID, Station Identification; MM/DD/YYYY, month/day/year; HH:MM, hour:minute; ft, foot or feet; bls, below land surface; SU, standard units; μ S/cm, microsiemens per centimeter; mg/L, miligrams per liter; ug/L, micrograms per liter; Cl⁻, chloride; SO₄²⁻, sulfate; Ca²⁺, calcium; Mg²⁺, magnesium; Na⁺, sodium; K⁺, potassium; Fe²⁺, iron; Sr²⁺, strontium; Si, silicon; SiO₂, silicon dioxide; CaCo₃, calcium carbonate; WL, water level; N1, Test is not NELAC certified by this laboratory. Certification was not required; I, Value is between the method detection limit and the laboratory practical quantitation limit, which is four times the detection limit; U, the analyte was not detected in the sample at the estimated detection limit (EDL)]

							MAJOR	ANIONS
Water Quality Sample No.	Monitor Well SID No.	Date (MM/DD/YYYY)	Time (HH:MM)	Sample Interval (ft bls)	pH (SU) ^{№1}	Specific Conduc- tance (µmhos/cm)	Cl [.] (mg/L)	SO ₄ ²⁻ (mg/L)
1	918411	05/23/2019	09:12	80-100	7.5	285.9	6.54	0.16 ^I
2	918411	05/28/2019	09:25	140-160	7.9	199.7	4.51	0.32
3	918411	05/28/2019	16:12	200-220	7.62	254.1	6.04	0.66
4	918411	05/29/2019	15:22	260-280	7.72	280.4	4.6	3.94
5	918411	06/03/2019	10:19	320-340	7.79	285.3	4.59	4.36
6	918411	06/04/2019	15:50	380-400	8.04	291.7	4.68	6.42
7	918412	07/08/2019	09:50	380-400	7.85	305.6	5.14	5.14
8	918412	07/10/2019	09:30	440-460	7.8	284.6	4.73	6.59
9	918412	07/11/2019	13:12	500-520	7.92	299.5	4.59	7.09
10	918412	07/31/2019	09:33	560-580	7.96	342.4	4.59	29.4
11	918412	08/05/2019	10:07	620-640	7.66	657	22	170
12	918412	08/06/2019	16:17	680-700	7.55	1,234	50.7	479
13	918412	08/07/2019	09:25	680-700	7.51	1,117	43.9	413
14	918412	09/03/2019	12:59	670-740	7.4	1,751	63.8	826
15	918412	10/01/2019	14:47	670-711	8.79	1,311	51.4	591

Table H2. Laboratory analyses results for the water quality samples collected at the ROMP TR 19-3A well site in Hernando County, Florida.

[No., number; SID, Station Identification; MM/DD/YYYY, month/day/year; HH:MM, hour:minute; ft, foot or feet; bls, below land surface; SU, standard units; μ S/cm, microsiemens per centimeter; mg/L, milligrams per liter; ug/L, micrograms per liter; Cl⁻, chloride; SO₄²⁻, sulfate; Ca²⁺, calcium; Mg²⁺, magnesium; Na⁺, sodium; K⁺, potassium; Fe²⁺, iron; Sr²⁺, strontium; Si, silicon; SiO₂, silicon dioxide; CaCo₃, calcium carbonate; WL, water level; N1, Test is not NELAC certified by this laboratory. Certification was not required; I, Value is between the method detection limit and the laboratory practical quantitation limit, which is four times the detection limit; U, the analyte was not detected in the sample at the estimated detection limit (EDL)]

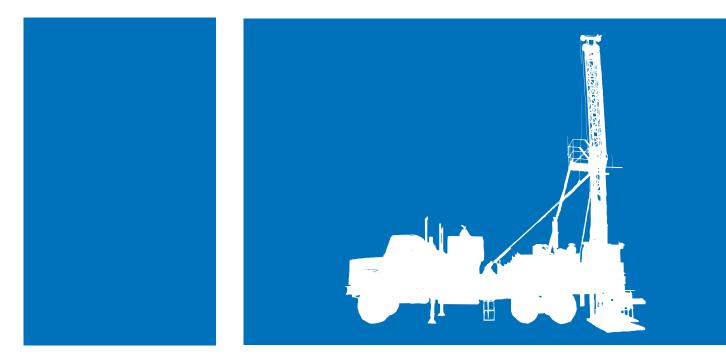
	, ,	5			1			()]	
	I	MAJOR	CATION	S			Total Dis-	Total Alka-	
Ca²+ (mg/L)	Mg²+ (mg/L)	Na⁺ (mg/L)	K⁺ (mg/L)	Fe ²⁺ (ug/L)	Sr²⁺ (mg/L) ^{№1}		solved Solids (mg/L)		
54.5	1.03	3.4	0.19 ¹	816.	0.091	7.06	167	137	
38.1	0.81	3.13	0.23 ^I	34.7	0.079	7.17	124	99.5	
47.2	1.77	3.13	0.2 ^I	266	0.078	7.54	150	127	
46.6	5.56	2.97	0.3	18.3	0.197	8.78	164	143	
43.	7.93	3.23	1.13	15.9	0.266	10	170	140	Initial WL test interval most likely not at equalibrium
44.7	7.55	2.85	0.53	9.73 ¹	0.227	9.36	161	142	
49.6	6.98	3.76	0.48	8.5 ^U	0.24	8.66	177	556	
42.7	8.6	3.07	0.52	8.5 ^U	0.164	8.7	162	142	
43.5	9.28	2.87	0.52	9.13 ¹	0.208	9.34	165	148	
47.4	7.76	3.12	0.91	8.5 ^U	22.1	10.4	224	144	Purged packed interval from 15:39 to 16:30 on 7/30, and from 06:45 to 09:43 on 7/31
80.8	16.2	15.4	2.11	246	42	11.5	472	139	
174	42.9	32.6	3.25	252	21	12.9	929	132	
153	38.3	28.5	2.82	427	19.9	12.5	868	132	
287	58.2	41.9	3.84	338	16.1	12.9	1,470	127	Final 4-inch casing set at 630 feet bls, open interval from 630 ft to 740 ft bls.
197.	35.5	39.	5.94	8.5 ^U	16.4	13.3	1,050	60	Finished well. Collected sample after back- plug from 740 ft to 711 ft set.

Table H3. The equivalent weight and percent equivalent weight for select ions and the water type for water quality samples collected at the ROMP TR 19-3A well site in Hernando County, Florida

[SID, Station Identification; No., number; ft, foot or feet; bls, below land surface; meq/L, milliequivalents per Liter; %, percent; Cl¹, chloride; SO₄², sulfate; Ca²⁺, calcium; Mg²⁺, magnesium; Na⁺, sodium; K⁺, potassium; HCO₄¹⁻, bicarbonate]

	Water					CAT	CATIONS						ANIONS	SNC			
	Quality Samule	Sample Interval (ft.	Ca^{2+}	2 ⁺	${ m Mg}^{2+}$	g ²⁺	Na^+	+_	\mathbf{K}^{+}	+ .	HC0 ₃	03-	Cŀ	<u>+</u>	SO_4^{2-}	4	
SID	No.	bls)	meq/L	%	meq/L	%	meq/L	%	meq/L	%	meq/L	%	meq/L	%	meq/L	%	Water Type
8411	1	80-100	2.720	91.90	0.085	2.86	0.148	5.00	0.005	0.16	2.245	92.28	0.184	7.58	0.003	0.14	Calcium Bicarbonate
8411	7	140-160	1.901	90.03	0.067	3.16	0.136	6.45	0.006	0.28	1.631	92.41	0.127	7.21	0.007	0.38	Calcium Bicarbonate
8411	б	200-220	2.355	80.08	0.146	5.51	0.136	5.15	0.005	0.19	2.081	91.87	0.170	7.52	0.014	0.61	Calcium Bicarbonate
8411	4	260-280	2.325	79.52	0.458	15.65	0.129	4.42	0.008	0.26	2.344	91.71	0.130	5.08	0.082	3.21	Calcium Bicarbonate
8411	S	320-240	2.146	72.16	0.653	21.94	0.140	4.72	0.029	0.97	2.294	91.24	0.129	5.15	0.091	3.61	Calcium Bicarbonate
8411	9	380-400	2.231	74.49	0.621	20.75	0.124	4.14	0.014	0.45	2.327	89.75	0.132	5.09	0.134	5.16	Calcium Bicarbonate
8412	٢	380-400	2.475	76.61	0.574	17.78	0.164	5.06	0.012	0.38	9.112	97.31	0.145	1.55	0.107	1.14	Calcium Bicarbonate
8412	8	440-460	2.131	71.29	0.708	23.68	0.134	4.47	0.013	0.44	2.327	89.58	0.133	5.14	0.137	5.28	Calcium Bicarbonate
8412	6	500-520	2.171	70.54	0.764	24.82	0.125	4.06	0.013	0.43	2.426	89.75	0.129	4.79	0.148	5.46	Calcium Bicarbonate
8412	10	560-580	2.365	64.50	0.639	17.41	0.136	3.70	0.023	0.63	2.360	76.09	0.129	4.17	0.612	19.74	Calcium Bicarbonate
8412	11	620-640	4.032	57.21	1.333	18.91	0.670	9.50	0.054	0.77	2.278	35.38	0.621	9.64	3.540	54.98	Calcium Sulfate
8412	12	680-700	8.683	61.18	3.530	24.87	1.418	9.99	0.083	0.59	2.163	15.95	1.430	10.54	9.973	73.51	Calcium Sulfate
8412	13	680-700	7.635	60.82	3.152	25.11	1.240	9.88	0.072	0.57	2.163	18.03	1.238	10.32	8.599	71.65	Calcium Sulfate
8412	14	670-740	14.322	66.93	4.789	22.38	1.823	8.52	0.098	0.46	2.081	9.87	1.800	8.54	17.198	81.59	Calcium Sulfate
8412	15	670-711	9.831	65.65	2.921	19.51	1.696	11.33	0.152	1.01	0.983	6.67	1.450	9.84	12.305	83.49	Calcium Sulfate

140 Well Construction and Water Quality at the ROMP TR 19-3A... Well Site in Hernando County, Florida


 Table H4. Select molar ratios for water quality samples collected at the ROMP TR 19-3A well site in Hernando County,

 Florida

[SID, Station Identification; No., number; Cl⁻, chloride; SO₄²⁻, sulfate; Ca²⁺, calcium; Mg²⁺, magnesium; Na⁺, sodium; HCO₃⁻, bicarbonate; total alkalinity is used as HCO₃⁻ because it is assumed CO₃⁻² and H₂CO₃ are negligible based on groundwater pH at this site because hydroxyl ions are insignificant in groundwaterand carbonate ions are typically not present if pH is less than 8.3 standard units (SU) (Hem, 1985)]

SID	Water Quality Sample No.	Open Interval (ft bls)	Cl ⁻ :SO ₄ ²⁻	Ca ²⁺ :HCO ₃ -	Ca ²⁺ :Mg ²⁺	Cl:HCO ₃ -	Na ⁺ :HCO ₃ -	Na ⁺ :Cl ⁻	SO ₄ ²⁻ :HCO ₃ ⁻
918411	1	80-100	110.76	0.61	32.09	0.08	0.07	0.80	0.00
918411	2	140-160	38.19	0.58	28.53	0.08	0.08	1.07	0.00
918411	3	200-220	24.80	0.57	16.17	0.08	0.07	0.80	0.00
918411	4	260-280	3.16	0.50	5.08	0.06	0.06	1.00	0.02
918411	5	320-240	2.85	0.47	3.29	0.06	0.06	1.09	0.02
918411	6	380-400	1.98	0.48	3.59	0.06	0.05	0.94	0.03
918412	7	380-400	2.71	0.14	4.31	0.02	0.02	1.13	0.01
918412	8	440-460	1.94	0.46	3.01	0.06	0.06	1.00	0.03
918412	9	500-520	1.75	0.45	2.84	0.05	0.05	0.96	0.03
918412	10	560-580	0.42	0.50	3.70	0.05	0.06	1.05	0.13
918412	11	620-640	0.35	0.88	3.02	0.27	0.29	1.08	0.78
918412	12	680-700	0.29	2.01	2.46	0.66	0.66	0.99	2.31
918412	13	680-700	0.29	1.76	2.42	0.57	0.57	1.00	1.99
918412	14	670-740	0.21	3.44	2.99	0.86	0.88	1.01	4.13
918412	15	670-711	0.24	5.00	3.37	1.47	1.73	1.17	6.26

