

Mr. Matthew Preston, P.E. Project Management Office Southwest Florida Water Management District 7601 Highway 301 North, Building 1 Tampa, FL 33637

Re: Review of 1st Quarter Water Quality Sampling Results June 2015 Sampling Event, Sawgrass Lake Site Restoration Project **Southwest Florida Water Management District** 3200 Gandy Boulevard, St. Petersburg, FL 33702 FDEP Facility ID # COM 301769

Dear Mr. Preston:

At the request of the Southwest Florida Water Management District (the District), Atkins is presenting this review of the results of the first quarterly sampling event (June 2015) for the facility referenced above. This document is designed to comply with the requirements of Sections 8.8 and 8.9 of the Remedial Action Plan (RAP), dated April 2007, and the letter from FDEP (Gary Millington, P.E.) to the District (Jennette Seachrist, P.E.), dated July 8, 2014, regarding water quality monitoring at the above-referenced site.

BACKGROUND

A full description of the site location, physical description of the site, and a more detailed discussion of the site history are provided in Section 2.0 of the RAP, dated April 2007. A full description of the lead shot remediation activities performed at this site is provided in the Remediation Completion Report, dated May 2014. What follows is a brief summary.

The Sawgrass Lake Site Restoration Project occupies a portion of the Sawgrass Lake Water Management Area (WMA), which is a largely wetland area owned by the District and located in Pinellas County, FL. From the 1930s until 2004, the Skyway Trap and Skeet Club (Skyway Gun Club), formerly the Lealman Rod and Gun Club, operated a trap and skeet shooting range, which included the use of lead shot. During that time, the western portion of the Sawgrass Lake WMA received lead shot because it was used as the shot drop zone.

Beginning in 1999, multiple studies of the soil, sediment, surface water, and groundwater of the Sawgrass Lake WMA were performed. These studies included sampling and laboratory analytical testing, which confirmed that the soil, sediment, surface water, and groundwater in the western portion of the Sawgrass Lake site (down-range of the gun club) had been adversely impacted by the lead shot deposited in that area. By 2004, the contamination assessment investigations of the Sawgrass Lake site were largely completed. Elevated concentrations of lead (and some other metals, such as arsenic and antimony) were noted in the soil, sediments, and groundwater of the shot drop zone and areas immediately adjacent to the shot drop zone. In 2004, he Skyway Gun Club entered into an agreement with the District and FDEP, which prohibited the continued trespassing of lead-containing shot onto the District's property.

From 2005 to 2007, the District completed a RAP, which was submitted to FDEP in April 2007. The RAP recommended the excavation and treatment of the lead-impacted soils and sediments from the upland and wetland areas down-range of the Skyway Gun Club. The RAP was approved by the FDEP in December 2007. From 2007 through 2010, the District developed the plans for restoration of the site, including excavation and treatment of lead-impacted media. From 2011 through 2014, the remediation activities recommended in the RAP, as well as additional site restoration activities, were completed by Woodruff & Sons, Inc., the District's construction contractor. The District submitted a Remediation Completion Report to the FDEP in May 2014, which was approved by the FDEP on July 8, 2014. The Remediation Completion Report recommended water quality monitoring at the site, in accordance with Sections 8.8 and 8.9 of the RAP. In the July 8, 2014 letter, the FDEP agreed that remediation of the site was complete, but that water quality monitoring was required in accordance with the RAP.

Section 8.8 of the RAP indicated that four monitoring wells would be installed in the western portion of the District property and would be sampled quarterly (for one year) for certain metals and Total Dissolved Solids (TDS) parameters. The four monitoring wells were installed at the site in 2015. Similarly, Section 8.9 of the RAP indicated that samples of surface water would be collected on a quarterly basis. The surface water samples would be collected from three locations in the lake and one location in Channel 3 upstream of the project area. The surface water samples would be collected quarterly for one year and would be analyzed for lead, hardness, phosphorus, and nitrogen. After one year, the data from the groundwater and surface water sampling programs would be evaluated, and a decision would be made regarding continued monitoring.

This report presents the results of the first quarter of groundwater and surface water sampling at the Sawgrass Lake Site Restoration Project. The groundwater and surface water sampling points are illustrated in **Figure 1**.

FIRST QUARTERLY SAMPLING EVENT (JUNE 2015)

The first quarterly sampling event was conducted on June 11 and June 12, 2015. Groundwater and surface water samples were collected during this event. The groundwater and surface water samples were collected in general accordance with the Florida Department of Environmental

Protection (FDEP) Standard Operating Procedure for Field Activities (SOP 001/01). Sample collection was performed by Atkins personnel, and analysis was performed by Pace Analytical Services, Inc. (Pace). Pace is a NELAC-certified laboratory.

At the time the RAP was prepared, there were five monitoring wells on the project site property (MW-1, MW-2, MW-3, MW-4, and MW-10). All were properly abandoned in 2011, at the beginning of the restoration project, since they would be destroyed by the remediation/restoration activities. After the remediation and restoration activities were completed in 2015, four of the wells were replaced with MW-1R, MW-2R, MW-3R, and MW-4R. Due to the location of the berm, the realignment of the site access road, and the creation of a wetland that encompassed a portion of the former site road, the new (replacement) wells are not located in the exact same locations as the corresponding original wells. The replacement wells are located north, west, or east of the original wells, based on changes to the alignment of the new site access road. MW-10 was not replaced, as that area is now an inaccessible wetland. Groundwater samples were collected from MW-1R, MW-2R, MW-3R, and MW-4R on June 11, 2015.

Groundwater Sample Collection Methodology

Prior to sampling the monitoring wells, each well was purged with a peristaltic pump using the "low-flow" method. A minimum equivalent of one to three well volumes was purged from each well prior to sample collection. Temperature, pH, conductivity, dissolved oxygen (DO), and turbidity measurements were monitored and recorded throughout the purging process to ensure that representative water samples were collected. The groundwater samples were given identifiers which corresponded to the well of origin. The samples were named using a naming convention that consisted of Sawgrass Lake (SL), the well identification number (for example, MW-1R), and the sampling month (0615, in this case). For example, the sample from MW-1R was labeled "SLMW-1R-0615". Depth-to-groundwater measurements were made from the top-of-casing (TOC) at each monitoring well prior to initiating the purging process. The groundwater sampling logs and field equipment calibration logs are provided in **Attachment A**.

Each well was sampled for total arsenic, dissolved arsenic, total lead, dissolved lead, calcium hardness, magnesium hardness, total hardness, and TDS. A duplicate sample was collected from MW-1R. All of the samples were placed in laboratory-prepared containers, placed on ice, and carried to Pace for analysis of the analytes listed above.

Surface Water Sample Collection Methodology

Four sampling locations were selected based on compliance with the RAP and water depths within the lake. The first sample location was in the upland cut canal to the south and the remaining three samples were taken from the southwest area of the lake. The samples were named using a naming convention that consisted of Sawgrass Lake (SL) and the surface water location identification number (for example, SW-1) and the depth at which the sample was collected (for example, -2). The process consisted of collecting three water samples at the canal sampling locations and four samples at the three locations within the lake. Samples were collected based on water depth, including a surface, one-foot, mid-depth and bottom sample. Samples were collected using a Kemmerer water sampler (Figure 1). The device is lowered into the water column to the desired depth, then a weight is dropped down the main line activating two latches which close the outside doors and seal the sample inside the tube without being contaminated by other water.

Each sample was tested for Calcium, Lead, Magnesium, Nitrogen (Kjeldahl, Total), Nitrogen (NO₂ plus NO₃), Phosphorous (Total as P), Total Hardness as CaCO₃, and Total Nitrogen. All of the samples were placed in laboratory-prepared containers, placed on ice, and delivered to Pace for analysis of the analytes listed previously. The surface water field sampling logs are provided in Attachment B.

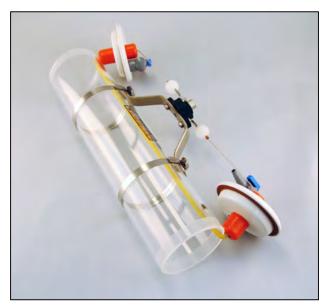


Figure 1. Typical Kemmerer water sampling device.

FIRST QUARTERLY SAMPLING EVENT (JUNE 2015) RESULTS

Groundwater Flow Pattern

Depth to groundwater measurements were collected at the four monitoring wells. The depth to groundwater ranged from 2.82 feet below the TOC at MW-1R to 3.28 feet below the TOC at MW-3R. As the wells are flush-mounted, the TOC elevation is similar to the ground surface elevation. The layout of the monitoring wells parallel to the shoreline of the recently-created open-water wetland area did not lend itself to preparation of a credible groundwater contour map (based solely on the four monitoring wells). It is assumed that the groundwater flow direction is toward the open-water wetland area immediately east across the access road, and ultimately towards Sawgrass

Lake. The groundwater flow direction can be assumed to be eastward, towards Sawgrass Lake, which is consistent with previous studies.

Sampling Results

A description of the detections in the groundwater and surface water is presented below.

Groundwater Analytical Results

A summary of the groundwater analytical results is presented in **Table 1**, and the laboratory analytical reports are provided in **Attachment C**. **Figure 2** illustrates the June 2015 concentrations of arsenic, dissolved arsenic, lead, dissolved lead, and TDS on a map of the project site. Table 1 also provides the corresponding groundwater analytical results from the original monitoring wells for the period from 2000 to 2006.

The concentrations of all of the parameters analyzed in the groundwater were compared to their respective Maximum Contaminant Level (MCL) or Secondary Drinking Water Standard (SDWS) in accordance with the Florida statutes. The MCLs and SDWSs for Drinking Water Standards, Monitoring, and Reporting are promulgated by Chapters 62-550 and 62-777 of the Florida Administrative Code (FAC). Not every parameter has an MCL or SDWS. There were four analytes detected at concentrations that did not comply with their standards – pH, arsenic, lead, and TDS. TDS and pH have SDWS criteria, while the criteria for arsenic and lead are provided as MCLs in Chapter 62-550 FAC. A description of the detection patterns with these four analytes is described below.

- pH The SDWS for pH is any value within the range of 6.5 to 8.5. The pH value at MW-2R (with a reading of 6.44) was slightly less than the standard range of 6.5 (see Attachment **B**). The pH readings at the other three wells were within the standard range.
- Arsenic –The standard (MCL) for arsenic is 0.01 milligrams per liter (mg/L). The total arsenic concentration in MW-3R (0.0324 mg/L) exceeded the standard. The dissolved arsenic concentration at this monitoring well was consistent with the total arsenic concentration, which suggested that groundwater turbidity was not affecting the arsenic concentrations. As shown on **Table 1**, elevated arsenic concentrations had historically been detected at MW-3, which was located in the vicinity of existing well MW-3R. Arsenic was not detected in the other wells during June 2015.
- Lead –The standard (MCL) for lead is 0.015 mg/L. The total lead concentration in MW-3R (0.018 mg/L) slightly exceeded the standard. The dissolved lead concentration at MW-3R (0.0137 mg/L) was slightly less than the standard. Lead was not detected in the other

wells. As shown on **Table 1**, elevated lead concentrations had not previously been detected at MW-3, but elevated lead concentrations had been detected at other wells (such as MW-1 and MW-4).

TDS - The SDWS for TDS is 500 mg/L. The TDS concentrations in the samples collected at all four monitoring wells exceeded the standard. The TDS concentrations ranged from 801 mg/L at MW-2R to 2,280 mg/L at MW-1R. As shown in Table 1, the TDS concentrations in the existing monitoring wells are considerably higher than in the corresponding former wells (sampled in 2006).

Surface Water Analytical Results

A summary of the surface water analytical results is presented in **Table 2**, and the Pace Laboratory analytical report is provided in Attachment D. Table 3 presents a summary of the field measurements collected by Atkins staff with the YSI sonde including: temperature, specific conductivity, salinity, pH, dissolved oxygen (total and %), and turbidity. The data was collected on June 12, 2015 and 0.05 inches of rain was observed the previous day at the St. Pete – Clearwater Airport. Water was discharging over top of both weirs and hydrilla was matted on the surface at sample locations 1, 2 & 3. Also of note is that the contractor still had the box culverts blocked, limiting flow from the canals into the filter marsh. Figure 3 illustrates the June 2015 mean concentrations of lead, hardness, total phosphorus and total nitrogen on a map of the project site. **Table 2** also provides the corresponding analytical results from the original surface water sampling on April 12, 2007.

There were several analytes tested for in the surface water samples. The concentration of every analyte that was detected in the surface water sample was compared to the FDEP surface water quality standards (if a standard existed for that analyte) found in Chapter 62-302, FAC and mean values recorded from pre-construction bench scale sampling.

- Lead the surface water criteria for lead was identified as being ≤8.68 μg/L. All of the surface water samples resulted in readings less than the Laboratory Method Detection Limit (MDL) resulting in no lead detection. The mean value was measured at 10 µg/L prior to construction.
- Total Phosphorus two samples collected at SLSW-1 reported readings of 140 µg/L and 190 µg/L, therefore exceeding the pre-construction lake average of 102 µg/L.
- Total Nitrogen sample values ranged from low of 600 µg/L in the lake to a high of 1500 µg/L in the canal portion of the project.

- Nitrogen, NO₂ plus NO₃ the bench scale mean value was measured at an average of 32.1 µg/L in 2007. Three samples exceeded the average including two samples at SLSW-1 (44 µg/L and 46 μ g/L) and one sample SLSW-3 (36 μ g/L).
- Nitrogen, Kjeldahl, Total all of the samples collected during June 2015 were below the preconstruction mean of 7,863 µg/L. The collected samples ranged from 550 µg/L to 1,500 µg/L.
- Hardness as CaCO₃ collected values ranged from 117,000 μg/L to 189,000 μg/L which were all below the April 2007 mean value of 220,000 µg/L.
- Calcium collected values ranged from 40,400 µg/L to 69,700 µg/L which were all below the previous mean value of 75,500 µg/L.
- Magnesium collected values ranged from 3,040 μg/L to 4,170 μg/L which were all below the previous mean value of 7,813 µg/L.
- pH The SDWS for pH is any value within the range of 6.5 to 8.5. With the exception of a 6.49 pH reading at SLSW-1-1, all of the other pH readings at each measured depth at every sampling location were within the accepted standard range.
- Dissolved Oxygen concentrations of 1.82 mg/L and 1.37 mg/L were measured at location SLSW-1-1 and SLSW-1-3, respectively, which are less than the surface water criteria of ≥5 mg/L. It should be noted that SLSW-1 is located in the North/South canal adjacent to the larger lake body. None of the field measured samples were out of compliance with surface water criteria at the other three surface water sampling locations.
- Salinity –values ranges from 0.16 ppt to 0.18 ppt with little variation between depth and location.
- Specific Conductivity the field measurements collected with the YSI sonde ranged from a low of 342 μ S/cm in the canal to high of 381 μ S/cm in the lake.
- Turbidity values at each site were very consistent between sample locations with a small range from 7.3 NTU to 8.9 NTU.
- Temperature (water) readings increased gradually between morning and afternoon sampling. The initial water temperature was 27.39 °C in the morning and a high of 29.45 °C in the afternoon.

SUMMARY AND CONCLUSIONS

The results of the first quarterly sampling event at the Sawgrass Lake Site Restoration Project were generally consistent with the results of previous (2000 to 2007) sampling events, with some exceptions, as discussed below.

There were four analytes detected in the groundwater that did not comply with their regulatory standards: pH, arsenic, lead, and TDS were detected in the groundwater at concentrations in excess of the regulatory criteria. The low pH finding (at MW-2R) and the slightly elevated lead concentrations (at MW-3R) occurred at only one monitoring well each, and these wells can reasonably be expected to achieve compliance with water quality criteria (regarding these parameters) during the upcoming sampling events. The arsenic concentration at MW-3R was consistent with previous sampling events where elevated arsenic concentrations had been detected. The significantly elevated TDS concentrations detected in all four monitoring wells may be the result of the recent site remediation/restoration activities implemented beginning in 2011, as they have no historical precedent.

There were two analytes measured in the Sawgrass Lake surface water that exceeded the mean bench scale readings from April 12, 2007. The Nitrogen, NO₂ plus NO₃ was elevated at three sample locations (SLSW-1-0, SLSW-1-1, and SLSW-3-0) and were primarily at the top of the of the water column. Total Phosphorus had two samples (SLSW-1-1 and SLSW-1-2) with readings above the bench scale data from 2007. Both of the Phosphorous exceedances were located in the canal portion of the project. All of the samples were tested for lead and every sample returned results below the laboratory MDL which indicates all test results are below the mean bench scale value of 10 µg/L. The total hardness data collected revealed significantly lower readings in the surface water compared to the values determined from the ground water sampling.

Atkins recommends that the analytical results in future sampling events be evaluated closely for any developing trends. After three more quarters of groundwater monitoring and surface water sampling, a decision will be made regarding continued monitoring. At that time, a decision will also be made to determine whether the site owner should pursue a Site Rehabilitation Completion Order with Conditions or without Conditions.

If you have any questions regarding the information presented in this report, please contact us at (813) 477-7275 or bradley.bayne@atkinsglobal.com or bryan.flynn@atkinsglobal.com.

Date

te: 8/19/15

adley J. Dupe

Bradley J. Bayne

Professional Geologist

No. 1733

State of Florida

Date:

Bryan D. Flynn

Professional Engineer

No. 70856

State of Florida

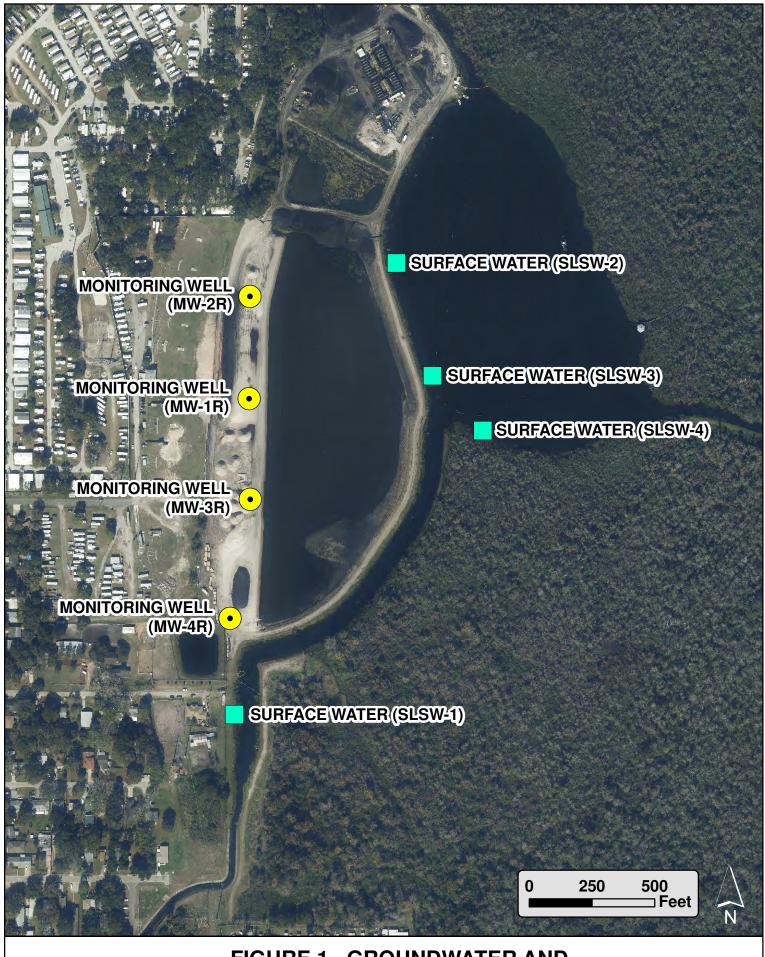


FIGURE 1. GROUNDWATER AND SURFACE WATER SAMPLING LOCATIONS

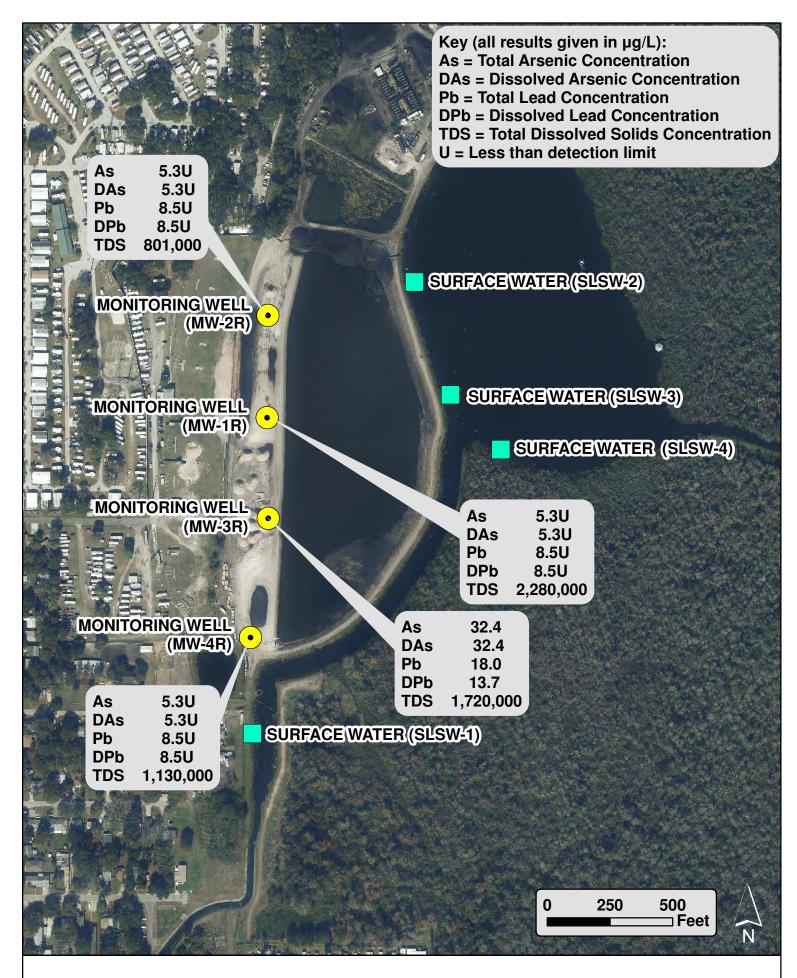


FIGURE 2. JUNE 2015 GROUNDWATER SAMPLING RESULTS

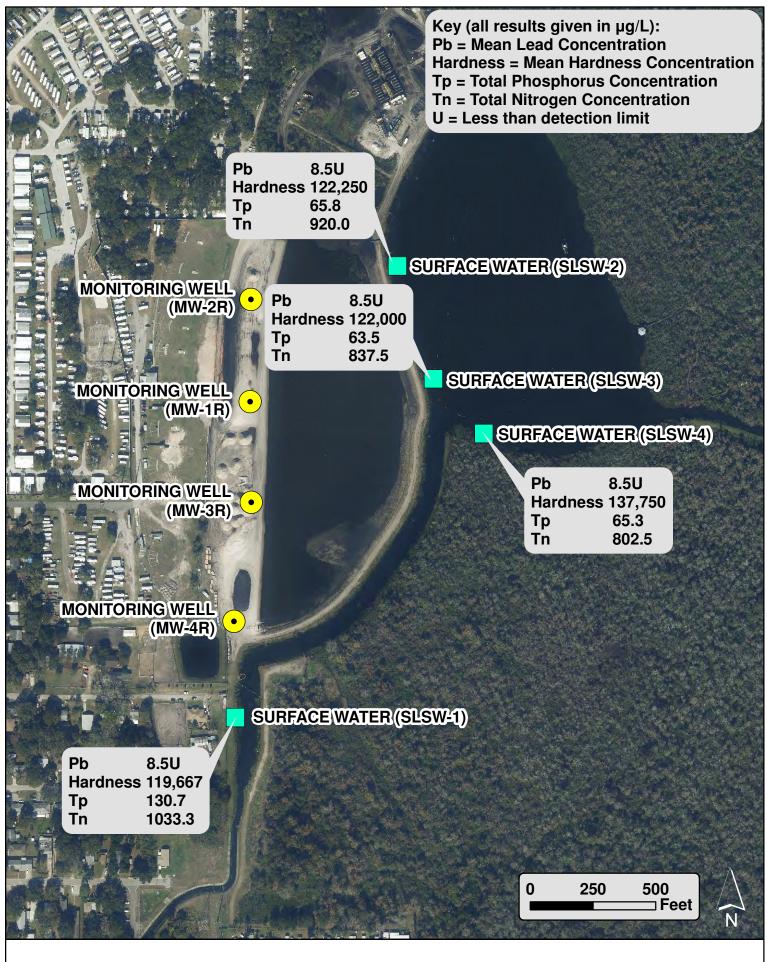


FIGURE 3. JUNE 2015 SURFACE WATER SAMPLING RESULTS

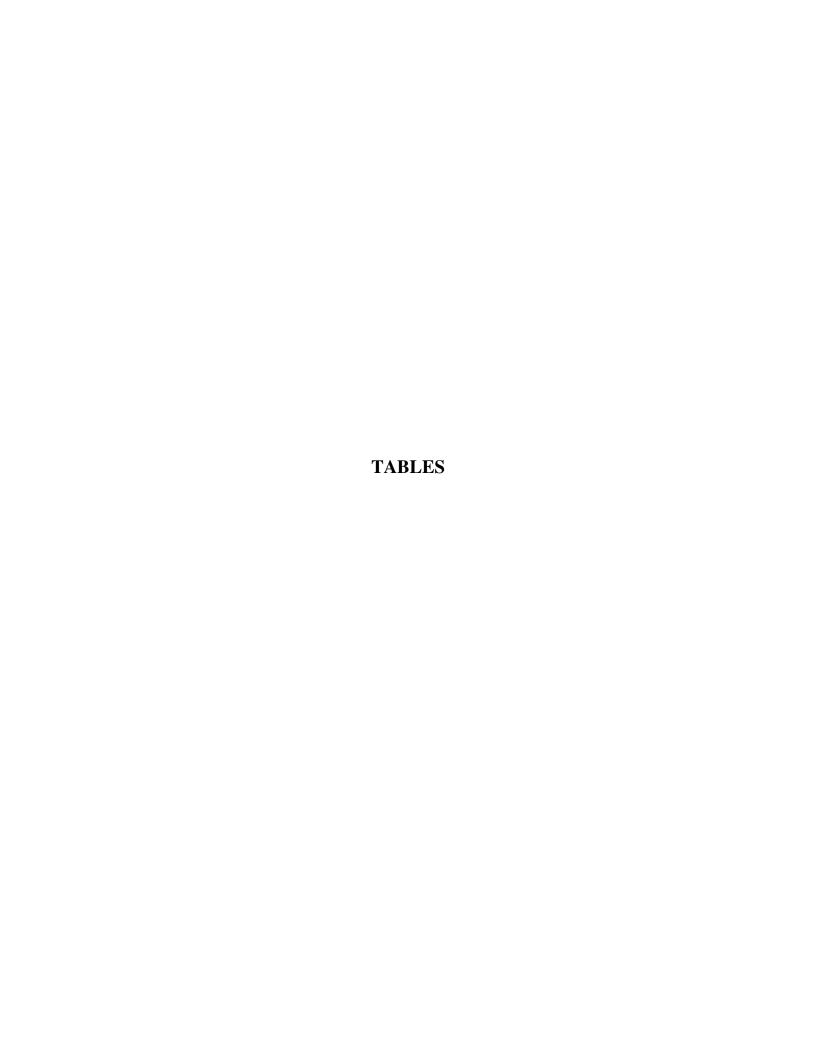


TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL DATA SAWGRASS LAKE SITE RESTORATION PROJECT

Analyte	SLMW-1	SLMW-1#	SLMW-1-R	SLMW-1R- 0615	SLMW-2	SLMW-2-R	SLMW-2R- 0615	SLMW-3	SLMW-3-R	SLMW-3R- 0615	SLMW-4	SLMW-4-R	SLMW-4R- 0615	Groundwater Criteria
Sampling Month	Aug. 2000	Nov. 2002	Mar. 2006	Jun. 2015	Aug. 2000	Mar. 2006	Jun. 2015	Aug. 2000	Mar. 2006	Jun. 2015	Aug. 2000	Mar. 2006	Jun. 2015	
Arsenic	290	230	2.6	5.3 U (5.3 U)	BDL	20	5.3 U	110	29	32.4	18	11	5.3 U	10
Dissolved Arsenic	N/A	N/A	BDL	5.3 U (5.3 U)	N/A	19	5.3 U	N/A	28	32.4	N/A	11	5.3 U	10
Lead	28	34	3.5	8.5 U (8.5 U)	BDL	4.8	8.5 U	BDL	10	18.0	7.2	58	8.5 U	15
Dissolved Lead	N/A	N/A	0.71 I	8.5 U (8.5 U)	N/A	0.87 I	8.5 U	N/A	2.3	13.7 I	N/A	54	8.5 U	15
Calcium Hardness*	N/A	N/A	87.2	416 (405)	N/A	109	165	N/A	272	360	N/A	76.2	207	-
Magnesium Hardness*	N/A	N/A	9.56	130 (135)	N/A	19.3	19	N/A	15.8	40.0	N/A	15.3	70.2	-
Total Hardness*	N/A	N/A	96.76	1,570 (1,570)	N/A	128.3	490	N/A	287.8	1,060	N/A	91.5	805	-
Total Dissolved Solids	N/A	N/A	180,000	2,280,000 (2,250,000)	N/A	220,000	801,000	N/A	430,000	1,720,000	N/A	300,000	1,130,000	500,000

Notes: All results in Micrograms per liter, except for hardness results, which are in mg/l # = Sample name for location SLMW-1 in 2002 was MW-04S as provided in the FDEP 2003 Site Inspection Report

U = After 2006: Less than Laboratory Method Detection Limits (MDL) - MDL is shown

BDL = 2006 or Before: Below Detection Limits, Below Method Detection Limit, or Below Reporting Limit (shown as "U" on laboratory sheets)

Bold = groundwater criteria exceedance N/A = Not Applicable

* = hardness results given in Milligrams per liter Groundwater Criteria = Chapter 62-777 FAC

Duplicate values shown in parenthesis

I = Result is between Method Detection Limit and Practical Quantitation Limit

TABLE 2 SUMMARY OF SURFACE WATER ANALYTICAL DATA SAWGRASS LAKE SITE RESTORATION PROJECT

	Date	Calcium	Lead	Magnesium	Nitrogen, Kjeldahl, Total	Nitrogen, NO2 plus NO3	Phosphorus, Total (as P)	Tot Hardness asCaCO3 (SM 2340B)	Total Nitrogen
Sample ID	Collected	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
GCTL			15						
NADSC			150						
SLSW-1-0	06/12/2015	42,300	5.0 U	3,040	550	46 I	62 I	118,000	600
SLSW-1-1	06/12/2015	44,000	5.0 U	3,270	990	44 I	140	123,000	1,000
SLSW-1-2	06/12/2015	40,800	5.0 U	3,940	1500	30 I	190	118,000	1500
SLSW-2-0	06/12/2015	42,200	5.0 U	4,150	1100	28 I	61 I	123,000	1100
SLSW-2-1	06/12/2015	42,100	5.0 U	4,170	810	25 U	65 I	122,000	830
SLSW-2-3	06/12/2015	41,600	5.0 U	4,070	880	25 U	71 I	121,000	890
SLSW-2-5	06/12/2015	42,300	5.0 U	4,140	840	25 U	66 I	123,000	860
SLSW-3-0	06/12/2015	42,400	5.0 U	4,130	730	36 I	55 I	123,000	770
SLSW-3-1	06/12/2015	42,200	5.0 U	4,100	670	25 U	51 I	122,000	690
SLSW-3-3	06/12/2015	42,200	5.0 U	4,080	770	25 U	55 I	122,000	780
SLSW-3-5	06/12/2015	41,900	5.0 U	4,000	900	25 U	93 I	121,000	910
SLSW-4-0	06/12/2015	42,400	5.0 U	4,110	840	30 I	67 I	123,000	870
SLSW-4-1	06/12/2015	42,100	5.0 U	4,060	840	25 U	65 I	122,000	860
SLSW-4-3	06/12/2015	40,400	5.0 U	3,800	760	25 U	61 I	117,000	770
SLSW-4-5	06/12/2015	69,700	5.0 U	3,760	790	25 U	68 I	189,000	800
Mean Value Bench Scale	4/12/2007	75,500	10	7,813	7,863	32.1	102	220,000	8,188
Class III Surface Water Standard	-	•	<8.68	-	-	-	-	-	-

Notes: All results are reported in micrograms per liter unless otherwise noted

U = Less than Laboratory Method Detection Limit (MDL) - MDL is shown

Bold = Mean Value Bench Scale Exceedance from April 12, 2007 pre-construction sampling

I = Result is between Method Detection Limit and Practical Quanitation Limit

Mean Values by Station

- mount values by elation									
SLSW-1	06/12/2015	42,367	5.0 U	3,417	1,013	40.0	130.7	119,667	1,033
SLSW-2	06/12/2015	42,050	5.0 U	4,133	908	25.8	65.8	122,250	920
SLSW-3	06/12/2015	42,100	5.0 U	4,128	815	27.8	63.5	122,000	838
SLSW-4	06/12/2015	42,125	5.0 U	4,110	780	26.3	65.3	137,750	803

TABLE 3 SUMMARY OF YSI SONDE ANALYTICAL DATA SAWGRASS LAKE SITE RESTORATION PROJECT

	Date	Temperature	Specific Cond.	Salinity	Hď	Dissolved Oxygen	Dissolved Oxygen	Turbidity
Sample ID	Collected	°C	μS/cm	ppt	-	mg/L	%	NTU
SLSW-1-0	06/12/2015	*	*	*	*	*	*	*
SLSW-1-1	06/12/2015	27.39	342	0.16	6.49	1.82	22.3	7.3
SLSW-1-2	06/12/2015	27.40	338	0.16	6.62	1.37	17.3	8.5
SLSW-2-0	06/12/2015	*	*	*	*	*	*	*
SLSW-2-1	06/12/2015	28.56	378	0.18	7.66	6.27	80.9	8.2
SLSW-2-3	06/12/2015	28.55	378	0.18	7.71	6.24	80.5	8.1
SLSW-2-5	06/12/2015	28.47	379	0.18	7.67	5.48	70.5	7.8
SLSW-3-0	06/12/2015	*	*	*	*	*	*	*
SLSW-3-1	06/12/2015	29.40	381	0.18	7.63	7.86	103.0	8.6
SLSW-3-3	06/12/2015	29.34	381	0.18	7.62	7.57	99.2	8.5
SLSW-3-5	06/12/2015	29.36	381	0.18	7.66	7.55	98.8	8.9
SLSW-4-0	06/12/2015	*	*	*	*	*	*	*
SLSW-4-1	06/12/2015	29.45	378	0.18	7.85	7.73	101.3	8.6
SLSW-4-3	06/12/2015	28.86	382	0.18	7.22	5.55	71.6	8.5
SLSW-4-5	06/12/2015	28.86	364	0.17	7.01	3.11	40.0	8.3

 $\underline{\text{Notes:}} \ ^{\star} \ \text{No surface water reading (YSI Sonde must be submerged 1' before reading can occur)}$

Mean Values by Station

SLSW-1	06/12/2015	27.40	340	0.16	6.56	1.60	19.8	7.9
SLSW-2	06/12/2015	28.53	378	0.18	7.68	6.00	77.3	8.0
SLSW-3	06/12/2015	29.37	381	0.18	7.64	7.66	100.3	8.7
SLSW-4	06/12/2015	29.06	375	0.18	7.36	5.46	71.0	8.5

ATTACHMENT A
Groundwater Sampling Logs and Field Equipment Calibration Logs

SITE &	<u> Sawg</u>	rass	-ake	site		TE DCATION:	Pinel	las Pa	irk	· ·			
WELL NO		v - 1		SAMPLE	10: 5L	-mw-				/ 11/15	~		
1			17		PURC	SING DA	TA			, ,, ,,			
WELL VO		TUBINI DIAME	TER (inches):	1/4 DEF	LL SCREEN PTH: 2.7 fe	INTERVAL	STATIC I	DEPTH ER (feet): Z	82 OR BA	E PUMP TYPE ILER: Pe 🕆	staltic		
	t if applicable)	1 WELL VO	•	12.7	feet -		,	Oil Co		= 1.58	gallons		
	NT VOLUME Pot if applicable)	URGE: 1 EQI		. = PUMP VOL	.UME + (TUE	SING CAPACI	TY X T	UBING LENGTH	+ FLOW CELL	VOLUME	(213 gallons		
l .	JMP OR TUBIN WELL (feet):	^G 5		IP OR TUBINO		BUDCIN		BURCING	T	OTAL VOLUMI	Ξ		
		CUMUL.	1	DEPTH		T	COND.	DISSOLVED	, <u> </u>	Green (ganor	10/. 5/D		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle units) μmhos/cm οι μS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)		
11:35	3.0	3.0	01	2.45		26.53		2.18	16.8	Black	None		
11:40	0.5	3.5	0.1	297		26.45	2675	2.09	11.8	Lt. BIK.			
11:45	0.5	4.0	0.1	2.98	6.68	26.42	2680	2,02	9,69				
il.50	0.5	4.5	0.1	247	6.67	26,45	2679	1.81	6.98	<u>V</u>			
11.55	0.5	5.0	0.1	2.98	6.66	26.43	2612	1.52	5.13	Clear	-J/		
12:00	0,5	5.5	0.1	2.97	0.65	26.40	2668	1.48	5.00		Y		
			<u> </u>										
	ACITY (Gallon SIDE DIA. CAI			1" = 0.04; 0006; 3/16"	1.25 " = 0.06 = 0.0014;	5; 2" = 0.10 1/4" = 0.002					= 5.88 = 0.016		
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	P = Bladder P	ump; E	SP = Electric	Submersible Pu	mp; PP = Pe	ristaltic Pump;	O = Other (Specify)		
CAMPLED	DV (DDB)TV / A	CEU INTIONS		OMBIED &		LING DA	NTA	- 					
\sim	BY (PRINT) / A		Kins	SAMPLER(S)	SIGNATURE	(S):	Run	SAMPLING - INITIATED AT	12:00	SAMPLING I	2:20		
PUMP OR	TUBING	-/ /-		TUBING	Di	2 + S		-FILTERED: Y	N N	FILTER SIZE:	μm		
	WELL (feet): ONTAMINATION	ON: PUM		MATERIAL CO	TUBING	·	placed)	on Equipment Type DUPLICATE:	oe:	N			
SAMF	LE CONTAINE	R SPECIFICA			SAMPLE PR	ESERVATIO		INTENDE			MPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (r	nL) FINAL	ANALYSIS AN METHOL			_OW RATE _ per minute)		
				JOLD	7,000	<u> </u>	tinzy pri						
						.							
			\$	೧೯೯	Cho	NO O	4 Cu	stody					
REMARKS	REMARKS:												
MATERIAL	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O ≈ Other (Specify)												
SAMPLING	EQUIPMENT		PP = After Per FPP = Reverse		B ≈ Bail		Bladder Pump;		c Submersible P	ump;			
		R	ren – Meverse	FIOW PERSON	uc rump;	om - otraw	Method (Tubing	Gravity Drain);	O ≈ Other (Sp	ecity)	1		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	Sawa	rass	Lake	site	e SI	ITE DCATION:	Pic	rellas	Par	K	
WELL NO	•	w - 2	_	SAMPLE			- ZR - (6/11/	15
						SING DA					
	R (inches): 2		TER (inches):	'/ ' DEF	LL SCREEN PTH: 3,7 fe	et to 13,7f	STATIC I	DEPTH ER (feet): 2, 9 WELL CAPAC	85 ori	RGE PUMP T BAILER: P	YPE zristaltic
	t if applicable)	I WELL VOL	= {	13,7	feet - 2		feet) X	A 16-	gailons/foo	, , (,-	14 gallons
	NT VOLUME Port of the state of	URGE: 1 EQU	IPMENT VOL.		UME + (TUE	ING CAPACI	TY X T	UBING LENGTH) + FLOW CE	LL VOLUME	_6,213 gallons
INITIAL PL	JMP OR TUBIN	IG r=	FINAL PUM	IP OR TUBING			· · · · · · · · · · · · · · · · · · ·			TOTAL VO	LUME
	WELL (feet):	<u> </u>	DEPTH IN V		5	INITIATE	DAT: (2\7	5 PURGING ENDED AT: DISSOLVED	13,15	PURGED (gallons): 5,0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (µS/cm	OXYGEN (circle units) (mg/l) or % saturation	TURBIDIT' (NTUs)	Y COLO (descril	1
12:55		3.0	<u> Q' </u>	2.96	6.45	26.55	1016	2,01	64.2		
13:00		3.5	0.1	2,95	6.44	26.52	1019	1.89	56.5		ar
13:05		4.0	0.1	2.96		26.54	1029	1.62	32.2		
13.10	0.5	4.5	0.1	2.95		26.56	1036	1.47	26.0		
13.15	0.5	5.0	$+o_{i}$	2,95	6.44	26.61	1039	1.45	19.3	> V	<u> </u>
									<u> </u>		
		-		<u> </u>	-				 		
	+		 							-	
ļ	1	 	+						ļ		
	+	<u> </u>	+		· · · · · · · · · · · · · · · · · · ·						
	PACITY (Gallon				1.25" = 0.00					6" = 1.47;	12" = 5.88
	NSIDE DIA. CAI EQUIPMENT C			3P = Bladder P	= 0.0014; Pump: E	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu	· · · · · · · · · · · · · · · · · · ·	eristaltic Pump	= 0.010; p;	5/8" = 0.016 ther (Specify)
						LING DA	\TA				
1 73	BY (PRINT) / A		ł Kins	SAMPLER(S)	SIGNATURE	E(S):	Run	SAMPLING INITIATED AT	: \3`\5	SAMPLIN ENDED A	IG 13:25
PUMP OR		<u> </u>		TUBING MATERIAL CO		P+S		-FILTERED: Y on Equipment Ty) N	FILTER S	<u> </u>
	CONTAMINATIO	ON: PUMI		~~~~	TUBING		placed)	DUPLICATE:		\bigcirc	
SAM	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE PF	RESERVATIO	N	INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME 1	PRESERVATI USED		TOTAL VOL D IN FIELD (1	nL) PH	ANALYSIS AI	_ 1	CODE	FLOW RATE (mL per minute)
		-									
		 	<	-	< _			15-2-		-	
	*****	 	-	<u>see</u>	710	ain .	OT C	estod	+		
				*******		~					
	······································			h	_						
REMARKS	i;	1									
MATERIAL		AG = Amber 0		Clear Glass;	PE = Poly		PP = Polypropy				Other (Specify)
SAMPLING	S EQUIPMENT		PP = After Peri FPP = Reverse		B = Bail Itic Pump;		Bladder Pump; Method (Tubing		ic Submersible O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	Saw.	aras	s Lak	e 51	te si	TE DCATION:	Pine	Mas F	ark					
WELL NO		u) - 3		1			-3R-			/11/	15			
	111	9	<u> </u>			SING DA		0 615	<u> </u>	// 11/	13			
	R (inches):	TUBIN	TER (inches):	1/4 DEF	LL SCREEN	INTERVAL	STATIC I	ER (feet): ぢょん	OR BA	E PUMP TYPE	\s+altic			
(only fill ou	LUME PURGE: it if applicable)	1 WELL VO	LUME = (TOT	ALWELL DEF	'IM - SIA	TIC DEPTH T	O WATER) X	WELL CAPACI	TY gallons/foot	\	_			
	EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) = O gallons + (0,0026 gallons/foot X feet) + 0, Z gallons = gallons													
INITIAL DI	gallons = gallons = gallons = gallons = gallons = gallons													
DEPTH IN WELL (feet): 6 DEPTH IN WELL (feet): 6 INITIATED AT: 9:30 ENDED AT: 10:20 PURGED (gallons): 5.0														
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (uS/cm	OXYGEN (circle units) mg/D or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)			
10:00	3.0	30	0.1	3.35	6.65	25.58	2456	1.73	11.4	Clear	51t. 5 JHO			
10:05	7	3.5	0.1	3,36	6.66	25.58	2457	1.56	9.69					
10:10		4.0	0.1	3.37	6.66	25,58	2456	1.50	7.91		<u> </u>			
10:15	7-10	4.5	0,1	3.36	6.66		2452	1,49	7,16		None			
10:20	0.5	5.0	0:1	3.36	6.66	25.58	2448	1,44	6.93	V				
	1													
	<u> </u>										-			
	 													
	 PACITY (Gallon ISIDE DIA, CAI			1" = 0.04; 0006; 3/16"	1.25" = 0.06 = 0.0014;	5; 2 " = 0.10 1/4" = 0.002					" = 5.88 " = 0.016			
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	3P = Bladder F			Submersible Pur	mp; PP = Pe	ristaltic Pump;	O = Other	(Specify)			
SAMBLED	BY (PRINT) / A	EER IATION.		CANDLEDO		LING DA	TA							
	d Bay			SAMPLER(S)	SIGNATURE	00.N 6	7 Barra	SAMPLING INITIATED AT	10 25	SAMPLING ENDED AT:	10:30			
PUMP OR		6		TUBING MATERIAL CO	ODE: PP	+ S		-FILTERED: O	N	FILTER SIZE:				
FIELD DEC	CONTAMINATIO	ON: PUM	P Y (N)	TUBING	Y (1)(re	placed)	DUPLICATE:		\odot				
SAME	PLE CONTAINE		TION		SAMPLE PR	ESERVATIO	N	INTENDE			AMPLE PUMP			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (r	nL) FINAL pH	ANALYSIS AN METHOL			FLOW RATE nL per minute)			
				See	Che	in c	o # C	usto	Jul -					
														
-														
REMARKS	,													
NEWARKS	•													
MATERIAL	CODES:	AG = Amber (Glass; CG =	Clear Glass;	PE ≈ Poly	ethylene;	PP = Polypropyl	ene; S = Silicor	ne; T = Teflor	n; O = Othe	r (Specify)			
SAMPLING	EQUIPMENT		PP = After Per	istaltic Pump;	B = Bail	er; BP =	Bladder Pump; Method (Tubing	ESP = Electri	Submersible F	oump;				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	5awa	3 r a 5 5	Lake	. site	. SI	ITE DCATION:	Pine	llas 1	Park		
WELL NO		им —				mw -	4R-		DATE:	6/11/	15
	· · · · · · · · · · · · · · · · · · ·				PURC	SING DA	TA		 		
WELL VO	(ETER (inches):	L WELL DEPT	TH - STA	et to 14	TO WATER) X	DEPTH ER (feet): 2, WELL CAPAC	99 OR CITY		istaltic
	NT VOLUME P ut if applicable)	URGE: 1 EQI	= (UIPMENT VOL.	= PUMP VOLU	JME + (TUE		TY X T	TUBING LENGTH	gallons/foo H) + FLOW CE et) + C · Z		O gallons C 213 gallons
	JMP OR TUBIN WELL (feet):	¹⁶ 5	FINAL PUM DEPTH IN V	P OR TUBING		DUDON	 	5 PURGING ENDED AT	8.55	TOTAL VOLU PURGED (gai	MF
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND, (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	COLOR (describe)	ODOR (describe)
8:35	3.0	3.0	0.1	3.15	6,64	25.29	·	4,10	4.20	6 Clea	1 None
8:40		3.5	0.1	3.16	6.64	1	1547	3,43	3.43		
8:45	0.5	4.0_	0.1		6.63	25,27	1538	3,05	3.76		
2:50	**	4.5	0.1		6.64			1.35	3.05	5	
2:55	0,5	5.0	0.1	3.14	6.63	25.29	1533	1,38	3.16	2 4	$+\Psi$
		<u> </u>									
	 	<u> </u>									
		 						ļ	<u> </u>		
	 	 	 								-
	 	<u> </u>									
			0.75" = 0.02;		1.25" = 0.06						2" = 5.88
	EQUIPMENT (Ft.): 1/8" = 0.00 B = Bailer: B	006; 3/16" = P = Bladder Pυ	0.0014; imp: E	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	· · · · · · · · · · · · · · · · · · ·	0.006; 1/2 Peristaltic Pumi		3" = 0.016 er (Specify)
						LING DA		,	one and and	<u> </u>	1 (opcony)
	BY (PRINT) /A			SAMPLERS	IGNATURE	(S):	Bun	SAMPLING INITIATED A	T. 8:55	SAMPLING ENDED AT:	9:05
PUMP OR		5		TUBING MATERIAL CO	Tade	P+S	FIELD)-FILTERED: (X	D N	FILTER SIZE	
	CONTAMINATION TO THE CONTAMINA	ON: PUM			TUBING	-	placed)	ion Equipment T	~!	N	×
SAMI	PLE CONTAINE	ER SPECIFICA	ATION	S	AMPLE PR	ESERVATIO	N	INTEND	DED S.		AMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	AOTAME E	PRESERVATIV USED	- 1	OTAL VOL D IN FIELD (1	FINAL nL) pH	ANALYSIS A METHO		I	FLOW RATE mL per minute)
		<u> </u>							1		
		-		<u>ee 9</u>	$\exists P$	<u> </u>	ot C	<u>0 + 2 4</u>	du		
									ر		
REMARKS											
KENIAKKS											
MATERIAL	CODES	AG = Amber (Glass: CG = 0	Clear Glass;	PE = Poly	ethylene:	PP ≈ Polypropy	dene; S = Silic	one; T = Tef	flon: $\Omega = \Omega$ th	er (Specify)
	S EQUIPMENT	CODES: A	APP = After Peris	staltic Pump;	B = Bail	er; BP =	Bladder Pump;	ESP = Elect	ric Submersibl	le Pump;	(Opoony)
		R	RFPP = Reverse	Flow Peristalti	c Pump;	SM = Straw	Method (Tubing	Gravity Drain);	O ≈ Other	(Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

INSTRUM	IENT (M	AKE/MOD	oel#) H	lach 210	o Q	INSTRUM	MENT# \3\	10 C 0 Z	.9481
		heck only		(rented					
	IPERATUI	-		TIVITY [] S			☐ ORP	01161611	ימון
🔀 TUF	RBIDITY		RESIDUA	rcr 🗀 🗈	00		HER		_
values, and	the date ti	he standards	s were prep	andards used for co pared or purchased	17				
Stand	ard A	10 N.	TU	provided	by	<u>Peters</u> e	on Envi	LOU WAU	1 91
Stand	ard B	20 N	UTU						
Stand	ard C		·				•		
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS	
6/11/15	1	A	10	10.1	< 1°/0		Init,	ВВ	
1	7:49	В	20	19.9	413/0		Init.	88	1

						#*************************************			1
									1
									1
 					·				
									,
<u></u>									
									}
]
			<u> </u>						
			<u> </u>					· · · · · · · · · · · · · · · · · · ·	
		T						······································	
				·	1				
									
		<u>*</u>							
							-	· · · · · · · · · · · · · · · · · · ·	
	į į		ŀ						1

Page of I

				YSI 55				
PARAME	TER: [c	heck only	one] (rented f	iom P	eterson	Environ	mental)
	PERATU				ALINITY		☐ ORP	
□ TUR	BIDITY		RESIDUA	LCL 🗆 🗆	00	□ OTH	IER	
volues and	the date ti	ha etandarde	Wara nran	ndards used for ca ared or purchased	47			
Standa	ard A	4,0	n pr	ovided b	y Pe	terson '	Environ	men tal
Standa	ard B	7,0	00	ovided b				
	ard C	·			· • · · · · · · · · · · · · · · · · · ·		•	
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONȘE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
6/11/15	7:51	A	4.01	4.01	0%		エハナ	BB
4	7:52	B	7.00	7.01	410/0	Yes	Init.	ВВ
			!					
						:		
	Į							
								
		·				7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7		
					,			
		<u> </u>				:		
		•				· · · · · · · · · · · · · · · · · · ·		
					ſ			

Page	<u></u> of_[
------	--------------

INSTRUM	ENT (M	AKE/MOD	EL#)	YSI	556	INSTRUM	IENT # <u>0</u> 8	3c1008	51
PARAME ¹	TER: [c	heck only	one]	•					
□ТЕМ	PERATUI	re 🕱	CONDUCT	TIVITY (SALINITY	☐ pH	☐ ORP		
TUR	BIDITY		RESIDUAL	CL (□ DO	□ от⊦	IER		_
values, and	the date ti	he standards	were prep	ared or purcha	ased1	the origin of the			
Standa	ard A	1,00	o us	prov	ided by	g Peter	son En	Massik	ent
Standa	ard B			<u> </u>					
Standa	ard C								
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUME! RESPONS		CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS	
6/11/15		A	1,000	1,001	41º/0	}	Init.	ВВ	
									-
									
70.77.74.74.74.74.74.74.74.74.74.74.74.74.									
]
***************************************]
					1			1	1
								, , ,	
									1
		*,							1
									1
									1

Page ______ of______

PARAMETER: [check only one] TEMPERATURE	INSTRUMENT (M	AKE/MOD	EL#)	YSI 5:	56	INSTRUM	MENT # <u>68</u>	2000	§51
STANDARDS: (Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A 8.56 ag/L (100 %) provided by Peterson Standard B Standard B Standard C DATE (Inmin) (A, B, C) VALUE RESPONSE % DEV (YES, NO) (INIT, CONT) INITIALS (Mornin) (A, B, C) VALUE RESPONSE % DOWN (YES, NO) (INIT, CONT) INITIALS (Mornin) A 8.56 8.56 0% Yes Thit, BB	PARAMETER: [c	heck only	one]						
STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A 8.56 Mg/L (100 %) Prov.ded by Peterson Standard B Standard C DATE TIME STD STD INSTRUMENT COLUMN (INT. CONT.) INSTRUMENT (INT. CONT.	TEMPERATUI	RE 🗀	CONDUCT	TIVITY 🔲 S	ALINITY	□рН	☐ ORP		
Standard A 8.56 mg/L (100 %) provided by Peterson Standard B Standard C DATE (tyymmydd) (thr.min) (A.B.C) VALUE RESPONSE % DEV (YES, NO) ((INIT, CONT) INITIALS 6/11/15 7:57 A 8.56 8.56 0% Yes In.t. BB	TURBIDITY		RESIDUAL	_CL 📜 D	0	OTH	IER		
Standard C DATE (tythmodd) (thrmin) (A, B, C)	values, and the date th	he standards	were prep	ared or purchased	<i>t</i>]				
Standard C DATE (tythmodd) (thrmin) (A, B, C)	Standard A	8.56	mg/L	<u> (100 %</u>) pro	vidad 1	oy Pete	sezou	
Standard C DATE (tythmodd) (thrmin) (A, B, C)	Standard B	······································	······			E	my using	iental	
(yy/mm/dd)		····							
					% DEV				[
	6/11/15 7:57	Α	8,56	8.56	0%	Yes	Init.	BB	
									<u> </u>
		····							
		-							

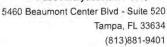
									`
		<u> </u>							
		~~~							
					·				
				: : : : : : : : : : : : : : : : : : :	1		·		: 

# ATTACHMENT B

**Surface Water Sampling Logs** 

alibration Book Number:	- Fe	Cal	ibration Book P	age #:				
ir Temperature: 78° F		Win	nd: 0-/	0 E		-		
ide Stage:		Clo	ud Cover: /	00%		_		
0	Ke Temp- erature	Specific Cond.	Salinity	рН	Dissolved Oxygen	Dissolved Oxygen	Check If	N
Time On Depth (		(µS/cm)	( ppt)	1.10	(mg/L)	(%)	Bottom	7
Station 0824 0.2		342	0.16	6.49	1.92	-		
24 Hr. / ES1 0.5	27.40	338	0.16	4.62	1.37	17.3		2
tratum/ 1.0								
1.5								
tation# SLSW-Z 2.0			-					
/ 2.5								
lt #Lateral Pos 3.0	1							
3.5								
ecchi depth 4.0								
(meters)								
ecchi @ bottom								
5.5								
Vater depth 015 6.0								
(meters) water column depth) 6.5								
			Longitudo					
Latitude Degrees D	ecimal Minutes	I	Longitude Degrees	Decimal	Minutes			
rojected:			82					
rojecteu.			02					
etual: 27	50.233		82	40.5	27			
amples: Check Container Numbers	S L Chec	ck Custody Forn	ns 📙					
Sample Taken	Samples Process	sed Samples I	Preserved	Sediment Sar	mple Taken			
check):								
	_		27	-				
ield Notes:						-		
,~	3' depth	musured	by survey	rod		-		
						-		

Notebook	# 150415DB1 P	roject: <u>S</u>	ingrass Lo	Use Task:	WO	F	Page # 2		
Date:	20,5104112		(yy/mm/dd)	Ну	drolab/YSI Unit	#: golfla	/pha		
Calibratio	n Book Number:_			Ca	libration Book Pa	age #:			
Air Tempe	erature:			Wi	nd:	TE .		-1	
Tide Stag	ge:			Clo	oud Cover: 9	5%		-0	
Reporting Geo Strati	Unit um: Seugrass		erature	Specific Cond.	Salinity	pН	Dissolved Oxygen	Dissolved Oxygen	Check If
Time On	40 - 1	Depth (m)	(C)	(µS/cm)	( ppt)	7 /	(mg/L)	(%)	Bottom NT
Station	0924	0.2	2856	3,78	0.18	7.66	4.27	80,9	□ B.Z
	24 hr. / EST	0.5	18.56	378	0.18	7.71	6.25	80-6	□ 8.1
Stratum/		1.0	23,55	318	0.18	7,71	6.24	80.5	D8d
		1.5	28.47	379	0.18	7.67	5.48	70.5	7.8
Station #	SLSW-2	2.0							
		2.5							
Alt#	Lateral Pos.	3.0							
		3.5							
Secchi dep	oth /	4.0							
occeni dep	(meters)	4.5							
Secchi @ l	hattam 🗆 Vas	5.0							П
Seccii @ i	bottom L Yes								П
a	1 =	5.5				_			
Water dep	(meters)	6.0							
(water colun	nn depth)	6.5				-	-		Ц
	Latitude Degrees	Deci	mal Minutes	. 1	Longitude Degrees	Decimal	Minutes		
Projected:		-		-	82				
Actual:	27	5	0.494		82	40,4	123		
Samples:	Check Container	Numbers	Check	Custody Forn	ns 🗍				
Samples.	Sample Tak		amples Processe			Sediment San	nple Taken		
(check):									
Field Notes	s:								
-	depth in	ugured.	7.3						
-									
Signed			Date	_	Signed	Dat	e		


Calibration Book Number:_ Air Temperature:	/			ibration Book P					
Tide Stage:	/				50%				
Reporting Unit Geo Stratum: Saugras	Lake	Temp- erature	Specific Cond.	Salinity	рН	Dissolved Oxygen	Dissolved Oxygen	Check If	NTU
Time On Station 1249	Depth (m)	29.40	(µS/cm)	( ppt)	7.63	(mg/L)	103.0	Bottom_	8.6
24 hr. / EST	0.5	29.39	381	0.18	7.61	171	101.1		8,6
Stratum/	1.0	29.34	381	0.18	7.62	7,57	99,2		8,5
Stratum/	1.5	29,36	381	0.18	7,66	1,55	98.8		8,9
Station# SLSW-3	_ 2613								0, 1
, ,	2.5								
Alt # Lateral Pos	3.0						_		
/	3.5								
Secchi depth (meters)	4.0						-		
(meters)	4.5						_		
Secchi @ bottom	5.0								
	5.5								
Water depth (meters)	6.0				_		-		
(water column depth)	6.5					-			
Latitude Degrees	Deci	nal Minutes	Г	Longitude Degrees	Decimal	Minutes			
Projected:			_	82					
27		50 H22		02	16	200			
Actual:		50.427	-	82		01399			
Samples: Check Container	Numbers [	Check	Custody Form	is 🗆					
Sample Tal	ken S	amples Processe	i Samples F	reserved	Sediment San	nple Taken			
(check):									
Field Notes:									
			d	epth m	egsured	6.2'			

Notebook	# 150415DB1 F	Project: Sa	ugrass La	the Task:	Wa	1	Page # 4			
Date: 7	015/06/	12	(yy/mm/dd)	Ну	drolab/YSI Unit	#: golf/	apple			
Calibration	Book Number:_	/		Cal	libration Book P	Page #:				
Air Temper	rature:			Wi		E		-/-		
Tide Stage	:			Clo	oud Cover: 2	50%		-		
Reporting I Geo Stratus		Depth (m)	Temp- erature (C)	Specific Cond. (µS/cm)	Salinity ( ppt)	рН	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Check If Bottom	NT
Time On Station	1314	0.2	29.45	378	0.18	7.85	7.73	101.3	Dottom	8.6
	24 hr. / EST	_	29.38	382			8,57,7	T- 3-1		
	/	0.5	28.86		6.18	7.67	5,55			8.6
Stratum/	-/-	1.0		382	0:18	7,22	7	40.0	_	8.5
C. 7 14 7 5	cicul II	1.5	28.36	364	0.17	7.01	3.11			8.3
Station #	SLSW 4	2.0	28.30	361	0.17	6.92	2,33	30.0		8.3
	1 /	2.5	28.14	371	0.18	10:77	1,36	17,6		0
Alt #/1	Lateral Pos.	_ 3,6	27.82	367	0.17	6.58	6.56	7.1	Y	13-1
	1	3.5								
Secchi dept	h (meters)	4.0								
	(meters)	4.5								
Secchi @ bo	ottom    Yes	5.0								
		5.5								
Water dept	h 2,8	6.0								
(water column	(meters)	6.5								
	Latitude				Longitude					
	Degrees	Deci	mal Minutes	Г	Degrees	Decimal	Minutes			
Projected:					82					
Projected:		-		No.	02	-				
Actual:	27	50	0.399		82	40.3	65			
Actual.		_		-	- 02	-				
Samples:	Check Container	Numbers	Check	Custody Form	ns 🗌					
	Sample Tak	cen S	amples Processe	ed Samples F	reserved	Sediment San	ple Taken			
(check):	П		П		П					
	_									
Field Notes:		1		7	1 22 20					
		dept	In wear	sured a	t 11.4					
_										
Signed			Date	_	Signed	Dat	e			

# ATTACHMENT C

**Groundwater Laboratory Analytical Reports** 







June 25, 2015

Matt Starr Atkins North America 4030 West Boy Scout Blvd., Su Tampa, FL 33607

RE: Project: Sawgrass Lake GW

Pace Project No.: 35192673

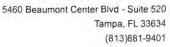
### Dear Matt Starr:

Enclosed are the analytical results for sample(s) received by the laboratory on June 11, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Palmer for Mike Valder


SA Palmer

mike.valder@pacelabs.com

Project Manager

**Enclosures** 







#### CERTIFICATIONS

Project:

Sawgrass Lake GW

Pace Project No.:

35192673

**Ormond Beach Certification IDs** 

8 East Tower Circle, Ormond Beach, FL 32174

Alabama Certification #: 41320 Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079

Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity
Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383

Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maryland Certification: #346

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 Nevada Certification: FL NELAC Reciprocity New Hampshire Certification #: 2958 New Jersey Certification #: FL765 New York Certification #: 11608 North Carolina Environmental Certificate #: 667

Pennsylvania Certification #: 68-00547

Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity
US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165 Washington Certification #: C955

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

Tampa Certification IDs

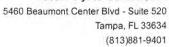
5460 Beaumont Center Blvd, Ste 520, Tampa, FL 33634

Florida Certification #: E84809





# SAMPLE SUMMARY


Project:

Sawgrass Lake GW

Pace Project No.:

35192673

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35192673001	SLMW-4R-0615	Water	06/11/15 09:05	06/11/15 15:00
35192673002	SLMW-3R-0615	Water	06/11/15 10:30	06/11/15 15:00
35192673003	SLMW-1R-0615	Water	06/11/15 12:20	06/11/15 15:00
35192673004	DUP A - 0615	Water	06/11/15 12:20	06/11/15 15:00
35192673005	SLMW-2R-0615	Water	06/11/15 13:15	06/11/15 15:00





# SAMPLE ANALYTE COUNT

Project:

Sawgrass Lake GW

Pace Project No.:

35192673

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
35192673001	SLMW-4R-0615	EPA 6010	SAM	2	PASI-Tp
		EPA 6010	SAM	5	PASI-Tp
		SM 2540C	CLS	1	PASI-O
35192673002	SLMW-3R-0615	EPA 6010	SAM	2	PASI-Tp
		EPA 6010	SAM	5	PASI-Tp
		SM 2540C	CLS	1	PASI-O
35192673003	SLMW-1R-0615	EPA 6010	SAM	2	PASI-Tp
		EPA 6010	SAM	5	PASI-Tp
		SM 2540C	CLS	1	PASI-O
35192673004	DUP A - 0615	EPA 6010	SAM	2	PASI-Tp
		EPA 6010	SAM	5	PASI-Tp
		SM 2540C	CLS	1	PASI-O
35192673005	SLMW-2R-0615	EPA 6010	SAM	2	PASI-Tp
		EPA 6010	SAM	5	PASI-Tp
		SM 2540C	CLS	1	PASI-O



## **ANALYTICAL RESULTS**

Project:

Sawgrass Lake GW

Pace Project No.:

Date: 06/25/2015 01:09 PM

35192673

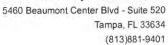
Sample: SLMW-4R-0615	Lab ID:	35192673001	Collected	d: 06/11/15	09:05	Received: 06/	/11/15 15:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepai	ration Metho	od: EPA	A 3010			
Arsenic, Dissolved	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 17:08	7440-38-2	
Lead, Dissolved	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 17:08	7439-92-1	
6010 MET ICP, Tampa	Analytical	Method: EPA 6	010 Prepai	ration Metho	od: EPA	A 3010			
Arsenic	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 16:39	7440-38-2	
Calcium	207000	ug/L	500	250	1	06/15/15 09:15	06/15/15 14:57	7440-70-2	
Lead	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 16:39	7439-92-1	
Magnesium	70200	ug/L	2500	1250	5	06/15/15 09:15	06/15/15 15:16	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	805000	ug/L	16500	8000	5	06/15/15 09:15	06/15/15 15:16		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	1130	mg/L	10.0	10.0	1		06/15/15 23:55		



Project:

Sawgrass Lake GW

Pace Project No.:


35192673

Sample:	SLMW-3R-0615
---------	--------------

Date: 06/25/2015 01:09 PM

Collected: 06/11/15 10:30 Received: 06/11/15 15:00 Matrix: Water

Sample: SLMW-3R-0615	Lab ID:	3519267300	2 Collecte	d: U6/11/15	10:30	Received: 06/	11/15 15:00 1018	atrix. vvater	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA	6010 Prepa	ration Metho	od: EP/	A 3010			
Arsenic, Dissolved	32.4	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 17:10	7440-38-2	
Lead, Dissolved	13.7 1	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 17:10	7439-92-1	
6010 MET ICP, Tampa	Analytical	Method: EPA	6010 Prepa	ration Metho	od: EP/	A 3010			
Arsenic	32.4	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 16:41	7440-38-2	
Calcium	360000	ug/L	2500	1250	5	06/15/15 09:15	06/15/15 15:18	7440-70-2	
Lead	18.0	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 16:41	7439-92-1	
Magnesium	40000	ug/L	2500	1250	5	06/15/15 09:15	06/15/15 15:18	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	1060000	ug/L	16500	8000	5	06/15/15 09:15	06/15/15 15:18		
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	1720	mg/L	10.0	10.0	1		06/15/15 23:55		





Project:

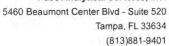
Date: 06/25/2015 01:09 PM

Sawgrass Lake GW

Pace Project No.: 35192673

Sample: SLMW-1R-0615	Lab ID:	35192673003	Collected	d: 06/11/15	12:20	Received: 06/	/11/15 15:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Metho	od: EP/	A 3010			
Arsenic, Dissolved	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/24/15 16:28	7440-38-2	
Lead, Dissolved	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 17:12	7439-92-1	
6010 MET ICP, Tampa	Analytical	Method: EPA 6	010 Prepa	ration Metho	od: EP/	A 3010			
Arsenic	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/24/15 15:40	7440-38-2	
Calcium	416000	ug/L	5000	2500	10	06/15/15 09:15	06/15/15 15:20	7440-70-2	
Lead	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 16:43	7439-92-1	
Magnesium	130000	ug/L	5000	2500	10	06/15/15 09:15	06/15/15 15:20	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	1570000	ug/L	33000	16000	10	06/15/15 09:15	06/15/15 15:20		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	2280	mg/L	20.0	20.0	1		06/15/15 23:55		




Project: Sawgrass Lake GW

Date: 06/25/2015 01:09 PM

Pace Project No.: 35192673

Sample: DUP A - 0615 Lab ID: 35192673004 Collected: 06/11/15 12:20 Received: 06/11/15 15:00 Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA	A 6010 Prepar	ration Metho	od: EP	A 3010			
Arsenic, Dissolved	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 17:14	7440-38-2	
Lead, Dissolved	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 17:14	7439-92-1	
6010 MET ICP, Tampa	Analytical	Method: EPA	A 6010 Prepar	ation Metho	od: EP	A 3010			
Arsenic	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 16:45	7440-38-2	
Calcium	405000	ug/L	5000	2500	10	06/15/15 09:15	06/15/15 15:22	7440-70-2	
_ead	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 16:45	7439-92-1	
Magnesium	135000	ug/L	5000	2500	10	06/15/15 09:15	06/15/15 15:22	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	1570000	ug/L	33000	16000	10	06/15/15 09:15	06/15/15 15:22		
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	2250	mg/L	20.0	20.0	1		06/15/15 23:55		





Project:

Sawgrass Lake GW

Pace Project No.:

Date: 06/25/2015 01:09 PM

35192673

Sample: SLMW-2R-0615	Lab ID:	35192673005	Collected	d: 06/11/15	13:15	Received: 06/	11/15 15:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepar	ration Meth	od: EPA	A 3010			
Arsenic, Dissolved	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 17:16	7440-38-2	
Lead, Dissolved	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 17:16	7439-92-1	
6010 MET ICP, Tampa	Analytical	Method: EPA 6	010 Prepai	ration Meth	od: EPA	3010			
Arsenic	5.3 U	ug/L	10.0	5.3	1	06/15/15 09:15	06/15/15 16:47	7440-38-2	
Calcium	165000	ug/L	500	250	1	06/15/15 09:15	06/15/15 15:05	7440-70-2	
Lead	8.5 U	ug/L	15.0	8.5	1	06/15/15 09:15	06/15/15 16:47	7439-92-1	
Magnesium	19000	ug/L	500	250	1	06/15/15 09:15	06/15/15 15:05	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	490000	ug/L	3300	1600	1	06/15/15 09:15	06/15/15 15:05		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	801	mg/L	5.0	5.0	1		06/15/15 23:55		





Project:

Sawgrass Lake GW

Pace Project No.:

35192673

QC Batch:

TAMP/5793

Analysis Method:

EPA 6010

QC Batch Method: EPA 3010 Analysis Description:

6010 MET Filtered

Associated Lab Samples:

35192673001, 35192673002, 35192673003, 35192673004, 35192673005

METHOD BLANK: 1242384

Matrix: Water

Associated Lab Samples:

35192673001, 35192673002, 35192673003, 35192673004, 35192673005

Blank

Reporting

	Parameter
Arsenic, Dis	solved
Lead, Disso	lved

Units ug/L

ug/L

Units

ug/L

Result 5.3 U 8.5 U

Limit Analyzed 06/15/15 16:49 10.0

15.0

Qualifiers

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Date: 06/25/2015 01:09 PM

1242385

ug/L

ug/L

Spike Conc. 250

LCS Result 236

LCS % Rec 95

06/15/15 16:49

% Rec Limits

Qualifiers

Arsenic, Dissolved Lead, Dissolved

Arsenic, Dissolved

Lead, Dissolved

ug/L

250

250

250

270

108

80-120 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

1242386

5.3 U

8.5 U

1242387

MSD MS 35192673001 Spike Spike Conc. Units Result Conc.

MS Result

250

253

250

250

MSD MS % Rec Result

250

262

MSD % Rec

100

105

100

101

% Rec Max Limits RPD

75-125

RPD Qual 75-125 0 20

> 4 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

Sawgrass Lake GW

Pace Project No.:

35192673

QC Batch:

TAMP/5792

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3010

Analysis Description:

6010 MET Tampa

Associated Lab Samples:

35192673001, 35192673002, 35192673003, 35192673004, 35192673005

METHOD BLANK: 1242379

Matrix: Water

Date: 06/25/2015 01:09 PM

Associated Lab Samples: 35192673001, 35192673002, 35192673003, 35192673004, 35192673005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	ug/L	5.3 U	10.0	06/15/15 16:24	
Calcium	ug/L	250 U	500	06/15/15 14:49	
Lead	ug/L	8.5 U	15.0	06/15/15 16:24	
Magnesium	ug/L	250 U	500	06/15/15 14:49	
Tot Hardness asCaCO3 (SM 2340B	ug/L	1600 U	3300	06/15/15 14:49	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	250	244	98	80-120	
Calcium	ug/L	12500	12200	98	80-120	
Lead	ug/L	250	278	111	80-120	
Magnesium	ug/L	12500	12000	96	80-120	
Tot Hardness asCaCO3 (SM 2340B	ug/L	82700	79900	97	80-120	

MATRIX SPIKE & MATRIX SPIKE	KE DUPLI	CATE: 12423	81		1242382							
Parameter	Units	35192673001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	ug/L	5.3 U	250	250	249	252	99	101	75-125	1	20	
Calcium	ug/L	207000	12500	12500	217000	219000	83	97	75-125	1	20	
Lead	ug/L	8.5 U	250	250	236	254	95	102	75-125	7	20	
Magnesium	ug/L	70200	12500	12500	82900	82000	101	94	75-125	1	20	
Tot Hardness asCaCO3 (SM 2340B	ug/L	805000	82700	82700	883000	884000	95	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:

Sawgrass Lake GW

Pace Project No.:

35192673

QC Batch:

WET/31385

Analysis Method:

SM 2540C

QC Batch Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Associated Lab Samples:

35192673001, 35192673002, 35192673003, 35192673004, 35192673005

METHOD BLANK: 1242707

Matrix: Water

Associated Lab Samples:

35192673001, 35192673002, 35192673003, 35192673004, 35192673005

Blank

Reporting

Parameter

Units

Result Limit

Analyzed

Qualifiers

**Total Dissolved Solids** 

mg/L

5.0 U

5.0 06/15/15 23:52

LABORATORY CONTROL SAMPLE: 1242708

Spike

LCS

LCS % Rec % Rec Limits

Qualifiers

Total Dissolved Solids

Units mg/L

mg/L

Conc. 300 Result 298

103

770

90-110

SAMPLE DUPLICATE: 1242709

Parameter

Parameter

Units

92253917001 Result

Dup Result

RPD

99

Max RPD

Qualifiers

5 J(D6)

5

SAMPLE DUPLICATE:

Total Dissolved Solids

1242710

Parameter

35192525001 Units

mg/L

Result

110

Dup Result

RPD

Max RPD

Qualifiers

Total Dissolved Solids

Date: 06/25/2015 01:09 PM

776

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

### **QUALIFIERS**

Project:

Sawgrass Lake GW

Pace Project No.:

35192673

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **LABORATORIES**

PASI-O Pace Analytical Services - Ormond Beach

PASI-Tp Pace Analytical Services - Tampa

# **ANALYTE QUALIFIERS**

Date: 06/25/2015 01:09 PM

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Compound was analyzed for but not detected.

J(D6) Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory

control limits.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Sawgrass Lake GW

Pace Project No.: 35192673

Date: 06/25/2015 01:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35192673001	SLMW-4R-0615	EPA 3010	TAMP/5793	EPA 6010	TAMP/5798
35192673002	SLMW-3R-0615	EPA 3010	TAMP/5793	EPA 6010	TAMP/5798
35192673003	SLMW-1R-0615	EPA 3010	TAMP/5793	EPA 6010	TAMP/5798
35192673004	DUP A - 0615	EPA 3010	TAMP/5793	EPA 6010	TAMP/5798
35192673005	SLMW-2R-0615	EPA 3010	TAMP/5793	EPA 6010	TAMP/5798
35192673001	SLMW-4R-0615	EPA 3010	TAMP/5792	EPA 6010	TAMP/5797
35192673002	SLMW-3R-0615	EPA 3010	TAMP/5792	EPA 6010	TAMP/5797
35192673003	SLMW-1R-0615	EPA 3010	TAMP/5792	EPA 6010	TAMP/5797
35192673004	DUP A - 0615	EPA 3010	TAMP/5792	EPA 6010	TAMP/5797
35192673005	SLMW-2R-0615	EPA 3010	TAMP/5792	EPA 6010	TAMP/5797
35192673001	SLMW-4R-0615	SM 2540C	WET/31385		
35192673002	SLMW-3R-0615	SM 2540C	WET/31385		
35192673003	SLMW-1R-0615	SM 2540C	WET/31385		
35192673004	DUP A - 0615	SM 2540C	WET/31385		
35192673005	SLMW-2R-0615	SM 2540C	WET/31385		

for Ca-Mo Hardness (N/V) run Filtora Run Filtered Ph GALY. For Ast Samples Do not SAMPLE CONDITIONS (N/A) Cooler ö balead Custody Regulatory Agency State / Location (N/A) Received on Residual Chlorine (YIM) Page: 1 TEMP in C eted accurately 1000 TIME Requested Analysis Filtered (Y/N) 11/10 7 DATE C DATE Signed 7 vlossid dq.sA 0109 7 Fleyno 2 7 A ACCEPTED BY ! AFFILIATION Pace Project Manager: mike.valder@pacelabs.com Pace Profile #: 6964 line 6 7 LDS 6010 As,Pb.Ca.Mg T-hardr Athins Hithins MO#:35192673 Analyses Test N/A Melhanol Nazszos Preservatives HOPN HCI 4 N 4 4 ниоз Company Name: 5000 2002 HSZON 07 60 Pace Quote: TIME Address: Unpreserved 35192673 WTG611113.156/11113:25/293 WTG 6/11 112:00/6/11/12:20/2/93 w c SAMPLER NAME AND SIGNATURE # OF CONTAINERS 10:30 26 6/11/15 PRINT Name of SAMPLER: 727-UZ4-6716 Sawgrass Lake GW SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 90,0 VTG6/11 12:00 6/11 12:00 BOUNDE TIME END TIME DATE WTG (6/11/10:296/11 Broan Flynn ME 6/11 8:55/6/11 COLLECTED bradles, bowned afterns, com RELINQUISHED BY ! AFFILIATION Report To: Math Grant Copy To: B Mar 3 START DATE (G=GRAB C=COMP) SAMPLE TYPE Rurchaso Orger # MATRIX CODE (see valid codes to left) -0615 561F 3R-0615 CODE DW WY WW WW WW AR AR AR 10615 **Empty Containers** MATRIX
Drinking Water
Water
Water
Water
Product
Soli/Solid
Old
Witer
Witer
Tissue 1 1901 Joka 78 727-409-0733 P-1 MW-4R 4030 West Boy Scout Blvd., Su ADDITIONAL COMMENTS letals for total & dissolved=T-Hardness.As.Pb.Ca.Mg 1 (A-Z, 0-9 / , -) Sample Ids must be unique LM, Mmotthew-starr@atkinsglobal.com 1 3 E One Character per box. SAMPLE ID 200 3 8 000 Tampa, FL 33607 ATKINS Global equired Client Information Pace Analytical SI r Requested Due Date: lo filters needed

ddress:

7 10

 $\infty$ 6

5 9

ITEM #

12

# ATTACHMENT D

**Surface Water Laboratory Analytical Reports** 





June 19, 2015

Matt Starr Atkins North America 4030 West Boy Scout Blvd., Su Tampa, FL 33607

RE: Project: Sawgrass Lake SW

Pace Project No.: 35192803

### Dear Matt Starr:

Enclosed are the analytical results for sample(s) received by the laboratory on June 12, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Palmer for

Mike Valder mike.valder@pacelabs.com

Mula W. Palmen

**Project Manager** 

**Enclosures** 







### **CERTIFICATIONS**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

**Ormond Beach Certification IDs** 

8 East Tower Circle, Ormond Beach, FL 32174

Alabama Certification #: 41320 Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity
Louisiana Environmental Certificate #: 05007

Maryland Certification: #346

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236

Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 Nevada Certification: FL NELAC Reciprocity New Hampshire Certification #: 2958 New Jersey Certification #: FL765 New York Certification #: 11608

North Carolina Environmental Certificate #: 667 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264

South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

Washington Certification #: C955 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity



## **SAMPLE SUMMARY**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35192803001	SLSW-1-0	Water	06/12/15 08:44	06/12/15 14:35
35192803002	SLSW-1-1	Water	06/12/15 08:48	06/12/15 14:35
35192803003	SLSW-2-0	Water	06/12/15 09:31	06/12/15 14:35
35192803004	SLSW-2-1	Water	06/12/15 12:35	06/12/15 14:35
35192803005	SLSW-2-3	Water	06/12/15 12:42	06/12/15 14:35
35192803006	SLSW-2-5	Water	06/12/15 12:44	06/12/15 14:35
35192803007	SLSW-3-0	Water	06/12/15 12:56	06/12/15 14:35
35192803008	SLSW-3-1	Water	06/12/15 12:59	06/12/15 14:35
35192803009	SLSW-3-3	Water	06/12/15 13:01	06/12/15 14:35
35192803010	SLSW-3-5	Water	06/12/15 13:04	06/12/15 14:35
35192803011	SLSW-4-0	Water	06/12/15 13:21	06/12/15 14:35
35192803012	SLSW-4-0 DUP	Water	06/12/15 13:24	06/12/15 14:35
35192803013	SLSW-4-1	Water	06/12/15 13:27	06/12/15 14:35
35192803014	SLSW-4-3	Water	06/12/15 13:30	06/12/15 14:35
35192803015	SLSW-4-5	Water	06/12/15 13:33	06/12/15 14:35
35192803016	SLSW-1-2	Water	06/12/15 08:50	06/12/15 14:35



# **SAMPLE ANALYTE COUNT**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
35192803001	SLSW-1-0	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803002	SLSW-1-1	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803003	SLSW-2-0	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
5192803004	SLSW-2-1	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
	EPA 351.2	CLS	1	PASI-O	
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
5192803005	SLSW-2-3	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803006	SLSW-2-5	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
5192803007	SLSW-3-0	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803008	SLSW-3-1	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O



# **SAMPLE ANALYTE COUNT**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803009	SLSW-3-3	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803010	SLSW-3-5	EPA 200.7	СКЈ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803011	SLSW-4-0	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
5192803012	SLSW-4-0 DUP	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803013	SLSW-4-1	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803014	SLSW-4-3	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O
35192803015	SLSW-4-5	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O



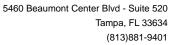


# **SAMPLE ANALYTE COUNT**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 365.4	CLS	1	PASI-O
35192803016	SLSW-1-2	EPA 200.7	CKJ	4	PASI-O
		TKN+NOx Calculation	CLS	1	PASI-O
		EPA 351.2	CLS	1	PASI-O
		EPA 353.2	KEK	1	PASI-O
		EPA 365.4	CLS	1	PASI-O




Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-1-0	Lab ID:	35192803001	Collected	d: 06/12/15	08:44	Received: 06/	/12/15 14:35 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	42300	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:07	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 14:07	7439-92-1	
Magnesium	3040	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:07	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	118000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 14:07		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.60	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.55	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 16:53	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.046 I	mg/L	0.050	0.025	1		06/16/15 09:42		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.062 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 16:53	7723-14-0	





Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-1-1	Lab ID:	35192803002	Collected	d: 06/12/15	08:48	Received: 06/	12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	44000	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:24	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 14:24	7439-92-1	
Magnesium	3270	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:24	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	123000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 14:24		
Total Nitrogen Calculation	Analytical	Method: TKN+I	NOx Calcul	ation					
Total Nitrogen	1.0	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.99	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 16:54	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.044 I	mg/L	0.050	0.025	1		06/16/15 09:43		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.14	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 16:54	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-2-0	Lab ID:	35192803003	Collected	d: 06/12/1	5 09:31	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	42200	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:28	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 14:28	7439-92-1	
Magnesium	4150	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:28	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	123000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 14:28		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcula	ation					
Total Nitrogen	1.1	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.1	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 16:55	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.028 I	mg/L	0.050	0.025	1		06/16/15 09:47		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.061 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 16:55	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-2-1	Lab ID:	35192803004	Collecte	d: 06/12/15	5 12:35	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	42100	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:33	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 14:33	7439-92-1	
Magnesium	4170	ug/L	500	250	1	06/17/15 13:29	06/18/15 14:33	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	122000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 14:33		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.83	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.81	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 16:57	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 09:48		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.065 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 16:57	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-2-3	Lab ID:	35192803005	Collecte	d: 06/12/15	5 12:42	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	41600	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:00	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:00	7439-92-1	
Magnesium	4070	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:00	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	121000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:00		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.89	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.88	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 16:58	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 09:49		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.071 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 16:58	7723-14-0	



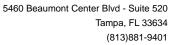
Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-2-5	Lab ID:	35192803006	Collected	d: 06/12/1	5 12:44	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	42300	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:05	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:05	7439-92-1	
Magnesium	4140	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:05	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	123000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:05		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcula	ation					
Total Nitrogen	0.86	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.84	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 16:59	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 09:51		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.066 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 16:59	7723-14-0	






Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-3-0	Lab ID:	35192803007	Collected	d: 06/12/15	12:56	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	42400	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:09	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:09	7439-92-1	
Magnesium	4130	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:09	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	123000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:09		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.77	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.73	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:03	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.036 I	mg/L	0.050	0.025	1		06/16/15 09:52		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.055 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:03	7723-14-0	





Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-3-1	Lab ID:	35192803008	Collecte	d: 06/12/1	12:59	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	42200	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:13	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:13	7439-92-1	
Magnesium	4100	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:13	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	122000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:13		
Total Nitrogen Calculation	Analytical	Method: TKN+I	NOx Calcul	ation					
Total Nitrogen	0.69	mg/L	0.50	0.086	1		06/17/15 14:32		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.67	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:05	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 09:53		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.051 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:05	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-3-3	Lab ID:	35192803009	Collected	d: 06/12/1	5 13:01	Received: 06/	12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	42200	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:18	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:18	7439-92-1	
Magnesium	4080	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:18	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	122000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:18		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcula	ation					
Total Nitrogen	0.78	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.77	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:14	7727-37-9	J(D6)
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 09:54		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.055 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:14	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-3-5	Lab ID:	35192803010	Collected	d: 06/12/1	5 13:04	Received: 06/	12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	41900	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:22	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:22	7439-92-1	
Magnesium	4000	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:22	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	121000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:22		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcula	ation					
Total Nitrogen	0.91	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.90	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:21	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 09:58		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.093 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:21	7723-14-0	





Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-4-0	Lab ID:	35192803011	Collected	d: 06/12/1	5 13:21	Received: 06/	/12/15 14:35 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	42400	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:39	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:39	7439-92-1	
Magnesium	4110	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:39	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	123000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:39		
<b>Total Nitrogen Calculation</b>	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.87	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.84	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:23	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.030 I	mg/L	0.050	0.025	1		06/16/15 10:02		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.067 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:23	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-4-0 DUP	Lab ID:	35192803012	Collected	d: 06/12/1	5 13:24	Received: 06/	12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	42500	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:43	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:43	7439-92-1	
Magnesium	4130	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:43	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	123000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:43		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcula	ation					
Total Nitrogen	0.85	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.84	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:24	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 10:03		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.060 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:24	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-4-1	Lab ID:	35192803013	Collected	d: 06/12/1	13:27	Received: 06/	12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	42100	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:48	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:48	7439-92-1	
Magnesium	4060	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:48	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	122000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:48		
<b>Total Nitrogen Calculation</b>	Analytical	Method: TKN+I	NOx Calcula	ation					
Total Nitrogen	0.86	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.84	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:25	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 10:05		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.065 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:25	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-4-3	Lab ID:	35192803014	Collecte	d: 06/12/15	5 13:30	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	40400	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:52	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:52	7439-92-1	
Magnesium	3800	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:52	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	117000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:52		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.77	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.76	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:27	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 10:06		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.061 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:27	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-4-5	Lab ID:	35192803015	Collecte	d: 06/12/1	5 13:33	Received: 06/	12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Calcium	69700	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:56	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 15:56	7439-92-1	
Magnesium	3760	ug/L	500	250	1	06/17/15 13:29	06/18/15 15:56	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	189000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 15:56		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcul	ation					
Total Nitrogen	0.80	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	aration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.79	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:28	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.025 U	mg/L	0.050	0.025	1		06/16/15 10:07		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	aration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.068 I	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:28	7723-14-0	



Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Sample: SLSW-1-2	Lab ID:	35192803016	Collected	d: 06/12/1	08:50	Received: 06/	/12/15 14:35 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 MET ICP	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Calcium	40800	ug/L	500	250	1	06/17/15 13:29	06/18/15 16:01	7440-70-2	
Lead	5.0 U	ug/L	10.0	5.0	1	06/17/15 13:29	06/18/15 16:01	7439-92-1	
Magnesium	3940	ug/L	500	250	1	06/17/15 13:29	06/18/15 16:01	7439-95-4	
Tot Hardness asCaCO3 (SM 2340B	118000	ug/L	3300	1600	1	06/17/15 13:29	06/18/15 16:01		
Total Nitrogen Calculation	Analytical	Method: TKN+	NOx Calcula	ation					
Total Nitrogen	1.5	mg/L	0.50	0.086	1		06/17/15 15:09		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.5	mg/L	0.50	0.086	1	06/16/15 11:55	06/16/15 17:29	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2						
Nitrogen, NO2 plus NO3	0.030 I	mg/L	0.050	0.025	1		06/16/15 10:09		
365.4 Phosphorus, Total	Analytical	Method: EPA 3	65.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.19	mg/L	0.10	0.050	1	06/16/15 11:55	06/16/15 17:29	7723-14-0	

(813)881-9401



### **QUALITY CONTROL DATA**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

QC Batch: MPRP/24751 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 MET

Associated Lab Samples: 35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007,

35192803008, 35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014,

35192803015, 35192803016

METHOD BLANK: 1244235 Matrix: Water

Associated Lab Samples: 35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007,

35192803008, 35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014,

35192803015, 35192803016

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Calcium	ug/L	250 U	500	06/18/15 13:36	
Lead	ug/L	5.0 U	10.0	06/18/15 13:36	
Magnesium	ug/L	250 U	500	06/18/15 13:36	
Tot Hardness asCaCO3 (SM 2340B	ug/L	1600 U	3300	06/18/15 13:36	

LABORATORY CONTROL SAMPLE:	1244236	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Calcium	ug/L	12500	12000	96	85-115	
Lead	ug/L	250	250	100	85-115	
Magnesium	ug/L	12500	11400	91	85-115	
Tot Hardness asCaCO3 (SM 2340B	ug/L	82700	76800	93	85-115	

MATRIX SPIKE & MATRIX SPII	KE DUPLIC	CATE: 12442		1244238								
		35192443001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	// Nec	RPD		Qual
							701100					
Calcium	ug/L	236000	12500	12500	241000	245000	39	74	70-130	2	20	J(M1)
Lead	ug/L	5.0 U	250	250	221	220	88	88	70-130	0	20	
Magnesium	ug/L	557000	12500	12500	548000	561000	-76	33	70-130	2	20	J(M1), I
Tot Hardness asCaCO3 (SM 2340B	ug/L	2880000	82700	82700	2860000	2920000	-33	48	70-130	2	20	_

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	ATE: 12442	39		1244240							
			MS	MSD								
		35193068001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	ug/L	127000	12500	12500	143000	138000	128	95	70-130	3	20	
Lead	ug/L	5.0 U	250	250	239	239	96	96	70-130	0	20	
Magnesium	ug/L	133000	12500	12500	150000	145000	138	96	70-130	4	20	J(M1)
Tot Hardness asCaCO3 (SM 2340B	ug/L	862000	82700	82700	973000	941000	134	96	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: Sawgrass Lake SW

Pace Project No.: 35192803

QC Batch: WETA/47352 Analysis Method: EPA 351.2 QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007, Associated Lab Samples:

35192803008

METHOD BLANK: 1243287 Matrix: Water

35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007, Associated Lab Samples:

35192803008

Blank Reporting Units Qualifiers Parameter Result Limit Analyzed Nitrogen, Kjeldahl, Total mg/L 0.086 U 0.50 06/16/15 16:31

LABORATORY CONTROL SAMPLE: 1243288

Units

mg/L

Units

LCS LCS Spike % Rec Conc. Result % Rec Limits Qualifiers 20.5 102 90-110 20

MATRIX SPIKE SAMPLE:

Parameter

Parameter

Nitrogen, Kjeldahl, Total

1243290

MS 35192654003 Spike MS % Rec Result Result % Rec Limits Qualifiers Conc.

2.8 Nitrogen, Kjeldahl, Total 20 23.0 101 90-110 mg/L

SAMPLE DUPLICATE: 1243289

Date: 06/19/2015 12:13 PM

35192654003 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers Nitrogen, Kjeldahl, Total mg/L 2.8 2.7 4 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: Sawgrass Lake SW

Pace Project No.: 35192803

QC Batch: WETA/47354 Analysis Method: EPA 351.2 QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Units

mg/L

Units

mg/L

35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014, 35192803015, Associated Lab Samples:

35192803016

METHOD BLANK: 1243305 Matrix: Water

35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014, 35192803015, Associated Lab Samples: Blank

35192803016

Reporting Units Qualifiers Parameter Result Limit Analyzed Nitrogen, Kjeldahl, Total mg/L 0.086 U 0.50 06/16/15 17:12

Spike

Conc.

20

35192803009

Result

LABORATORY CONTROL SAMPLE: 1243306

Parameter

Parameter

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

Date: 06/19/2015 12:13 PM

MATRIX SPIKE SAMPLE: 1243308 MS 35192803009 Spike MS % Rec Result Result % Rec Limits Qualifiers Parameter Units Conc. 0.77 Nitrogen, Kjeldahl, Total 20 21.4 103 90-110 mg/L SAMPLE DUPLICATE: 1243307

0.77

LCS

Result

20.3

Dup

Result

1.2

LCS

% Rec

101

RPD

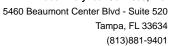
44

% Rec

Limits

90-110

Max


RPD

Qualifiers

Qualifiers

20 J(D6)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: Sawgrass Lake SW

Pace Project No.: 35192803

Nitrogen, NO2 plus NO3

Date: 06/19/2015 12:13 PM

QC Batch: WETA/47346 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Associated Lab Samples: 35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007,

35192803008, 35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014,

35192803015, 35192803016

METHOD BLANK: 1243118 Matrix: Water

Associated Lab Samples: 35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007,

35192803008, 35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014,

35192803015, 35192803016

Reporting Blank Parameter Limit Qualifiers Units Result Analyzed Nitrogen, NO2 plus NO3 0.025 U 0.050 06/16/15 09:34 mg/L LABORATORY CONTROL SAMPLE: 1243119 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, NO2 plus NO3 2 2.1 103 mg/L 90-110 MATRIX SPIKE SAMPLE: 1243121 35192767001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, NO2 plus NO3 8.3 11.5 79 80-120 J(M1),L mg/L MATRIX SPIKE SAMPLE: 1243123 35192803009 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.025 U Nitrogen, NO2 plus NO3 mg/L 2 2.0 98 80-120 SAMPLE DUPLICATE: 1243120 35192767001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers Nitrogen, NO2 plus NO3 8.3 8.3 20 1 mg/L SAMPLE DUPLICATE: 1243122 35192803009 Dup Max RPD RPD Parameter Units Result Qualifiers Result

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


0.025 U

0.025 U

mg/L

### **REPORT OF LABORATORY ANALYSIS**

20





Project: Sawgrass Lake SW

Pace Project No.: 35192803

QC Batch: WETA/47353 Analysis Method: EPA 365.4

QC Batch Method: EPA 365.4 Analysis Description: 365.4 Phosphorus

Associated Lab Samples: 35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007,

35192803008

METHOD BLANK: 1243297 Matrix: Water

Associated Lab Samples: 35192803001, 35192803002, 35192803003, 35192803004, 35192803005, 35192803006, 35192803007,

35192803008

Phosphorus, Total (as P)

Blank Reporting
Result
Limit Analyzed Qualifiers

O.050 U

O.10 06/16/15 17:06

LABORATORY CONTROL SAMPLE: 1243298

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phosphorus, Total (as P) mg/L 4.1 102 90-110 4

MATRIX SPIKE SAMPLE: 1243300

MS 35192654003 Spike MS % Rec Units Result Result % Rec Limits Qualifiers Parameter Conc. 0.062 I Phosphorus, Total (as P) 4 4.1 100 80-120

Phosphorus, Total (as P) mg/L 0.062 I 4 4.1 100 80-120

SAMPLE DUPLICATE: 1243299

Date: 06/19/2015 12:13 PM

Phosphorus, Total (as P)

The parameter and the properties of the parameter and the

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: Sawgrass Lake SW

Pace Project No.: 35192803

QC Batch: WETA/47355 Analysis Method: EPA 365.4 QC Batch Method: EPA 365.4 Analysis Description: 365.4 Phosphorus

Units

Units

mg/L

35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014, 35192803015, Associated Lab Samples:

35192803016

METHOD BLANK: 1243313 Matrix: Water

35192803009, 35192803010, 35192803011, 35192803012, 35192803013, 35192803014, 35192803015, Associated Lab Samples: Blank

35192803016

Reporting Units Qualifiers Parameter Result Limit Analyzed Phosphorus, Total (as P) mg/L 0.050 U 0.10 06/16/15 17:53

Spike

Conc.

LABORATORY CONTROL SAMPLE: 1243314

Parameter

Parameter

Phosphorus, Total (as P)

Date: 06/19/2015 12:13 PM

Phosphorus, Total (as P) mg/L 4.2 104 90-110 4 MATRIX SPIKE SAMPLE: 1243316 MS 35192803009 Spike MS % Rec Result Result % Rec Limits Qualifiers Parameter Units Conc. 0.055 I Phosphorus, Total (as P) 4 4.2 104 80-120 mg/L SAMPLE DUPLICATE: 1243315

Dup

Result

0.059 I

LCS

Result

LCS

% Rec

**RPD** 

% Rec

Limits

Max

RPD

20

Qualifiers

Qualifiers

35192803009

Result

0.055 I

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

### **QUALIFIERS**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **LABORATORIES**

PASI-O Pace Analytical Services - Ormond Beach

### **ANALYTE QUALIFIERS**

Date: 06/19/2015 12:13 PM

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Compound was analyzed for but not detected.

J(D6) Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS)

recovery.

L Off-scale high. Actual value is known to be greater than value given.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35192803001	SLSW-1-0	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
35192803002	SLSW-1-1	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803003	SLSW-2-0	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803004	SLSW-2-1	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803005	SLSW-2-3	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803006	SLSW-2-5	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803007	SLSW-3-0	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803008	SLSW-3-1	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803009	SLSW-3-3	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803010	SLSW-3-5	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803011	SLSW-4-0	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803012	SLSW-4-0 DUP	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803013	SLSW-4-1	EPA 200.7	MPRP/24751	EPA 200.7	ICP/15101
5192803014	SLSW-4-3	EPA 200.7	MPRP/24751		ICP/15101
5192803015	SLSW-4-5	EPA 200.7	MPRP/24751		ICP/15101
5192803016	SLSW-1-2	EPA 200.7	MPRP/24751		ICP/15101
5192803001	SLSW-1-0	TKN+NOx Calculation	WET/31435		
5192803002	SLSW-1-1	TKN+NOx Calculation	WET/31435		
5192803003	SLSW-2-0	TKN+NOx Calculation	WET/31435		
5192803004	SLSW-2-1	TKN+NOx Calculation	WET/31435		
5192803005	SLSW-2-3	TKN+NOx Calculation	WET/31435		
5192803006	SLSW-2-5	TKN+NOx Calculation	WET/31435		
5192803007	SLSW-3-0	TKN+NOx Calculation	WET/31435		
5192803008	SLSW-3-1	TKN+NOx Calculation	WET/31435		
5192803009	SLSW-3-3	TKN+NOx Calculation	WET/31441		
5192803010	SLSW-3-5	TKN+NOx Calculation	WET/31441		
5192803011	SLSW-4-0	TKN+NOx Calculation	WET/31441		
5192803012	SLSW-4-0 DUP	TKN+NOx Calculation	WET/31441		
5192803013	SLSW-4-1	TKN+NOx Calculation	WET/31441		
5192803014	SLSW-4-3	TKN+NOx Calculation	WET/31441		
5192803015	SLSW-4-5	TKN+NOx Calculation	WET/31441		
5192803016	SLSW-1-2	TKN+NOx Calculation	WET/31441		
5192803001	SLSW-1-0	EPA 351.2	WETA/47352		WETA/473
5192803002	SLSW-1-1	EPA 351.2	WETA/47352		WETA/473
5192803003	SLSW-2-0	EPA 351.2	WETA/47352		WETA/473
5192803004	SLSW-2-1	EPA 351.2	WETA/47352		WETA/473
5192803005	SLSW-2-3	EPA 351.2	WETA/47352	EPA 351.2	WETA/473
5192803006	SLSW-2-5	EPA 351.2	WETA/47352	EPA 351.2	WETA/473
5192803007	SLSW-3-0	EPA 351.2	WETA/47352	EPA 351.2	WETA/473
5192803008	SLSW-3-1	EPA 351.2	WETA/47352	EPA 351.2	WETA/473
5192803009	SLSW-3-3	EPA 351.2	WETA/47354	EPA 351.2	WETA/473
5192803010	SLSW-3-5	EPA 351.2	WETA/47354	EPA 351.2	WETA/473
5192803011	SLSW-4-0	EPA 351.2	WETA/47354	EPA 351.2	WETA/473
5192803012	SLSW-4-0 DUP	EPA 351.2	WETA/47354	EPA 351.2	WETA/473
5192803013	SLSW-4-1	EPA 351.2	WETA/47354	EPA 351.2	WETA/473
5192803014	SLSW-4-3	EPA 351.2	WETA/47354	EPA 351.2	WETA/473
5192803015	SLSW-4-5	EPA 351.2	WETA/47354	EPA 351 2	WETA/473



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Sawgrass Lake SW

Pace Project No.: 35192803

Date: 06/19/2015 12:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35192803016	SLSW-1-2	EPA 351.2	WETA/47354	EPA 351.2	WETA/47368
35192803001	SLSW-1-0	EPA 353.2	WETA/47346		
35192803002	SLSW-1-1	EPA 353.2	WETA/47346		
35192803003	SLSW-2-0	EPA 353.2	WETA/47346		
35192803004	SLSW-2-1	EPA 353.2	WETA/47346		
35192803005	SLSW-2-3	EPA 353.2	WETA/47346		
35192803006	SLSW-2-5	EPA 353.2	WETA/47346		
35192803007	SLSW-3-0	EPA 353.2	WETA/47346		
35192803008	SLSW-3-1	EPA 353.2	WETA/47346		
35192803009	SLSW-3-3	EPA 353.2	WETA/47346		
35192803010	SLSW-3-5	EPA 353.2	WETA/47346		
35192803011	SLSW-4-0	EPA 353.2	WETA/47346		
35192803012	SLSW-4-0 DUP	EPA 353.2	WETA/47346		
35192803013	SLSW-4-1	EPA 353.2	WETA/47346		
35192803014	SLSW-4-3	EPA 353.2	WETA/47346		
35192803015	SLSW-4-5	EPA 353.2	WETA/47346		
35192803016	SLSW-1-2	EPA 353.2	WETA/47346		
35192803001	SLSW-1-0	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803002	SLSW-1-1	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803003	SLSW-2-0	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803004	SLSW-2-1	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803005	SLSW-2-3	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803006	SLSW-2-5	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803007	SLSW-3-0	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803008	SLSW-3-1	EPA 365.4	WETA/47353	EPA 365.4	WETA/47367
35192803009	SLSW-3-3	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803010	SLSW-3-5	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803011	SLSW-4-0	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803012	SLSW-4-0 DUP	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803013	SLSW-4-1	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803014	SLSW-4-3	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803015	SLSW-4-5	EPA 365.4	WETA/47355	EPA 365.4	WETA/47369
35192803016	SLSW-1-2	EPA 365.4	WETA/47355		WETA/47369

WO#: 35192803

Pace Analytical

st Document ds must be completed accurately.

5	Company: ATKINS Global R	Report To: Matt Starr	Matt Starr			A	Attention:	Attention:				l		Γ	_	rage.		5	N
Address:	Scout Blvd Su					C	Company Name	ame.						T					
						) A	Address.	ame.					1	+					- 1
	insglobal.com	Purchase Order #:	#			α.	Pace Quote:	6.						+		Regn	Regulatory Agency	JCy	
Phone:	9-0733 Fax.	Project Name:	Sawgr	Sawgrass Lake SW		Ä	ace Projec	Pace Project Manager:	mike.va	alder@pa	mike.valder@pacelabs.com,	Ë.				Stat	State / Location	u	
ted	Requested Due Date:	Project #:				P	Pace Profile #:		6964 line 5								FL		
-			-									Request	Requested Analysis Filtered (Y/N)	is Filterec	(A/N)	T			
	MATRIX	CODE		COLLECTED	СТЕР	NO		Preservatives	atives	N/A									
	SAMPLE ID Soursoid	A N M M IS G	O 8AAĐ=Đ)	START	END O					taoT	ON+ ² ON+N					(N/X) au			
	One Character per box. Wipo (A-Z, 0-9 / , -) Othor Sample Ids must be unique	W AR TO T	SAMPLE TYPE	DATE TIME	DATE TIME	SAMPLE TEMP #	H2SO4	нсі ниоз	Na2S2O3 Methanol	Olher	eseylsnA XT) negoviiV-T ordeed9 leteT	Z00.7 Pb,Ca,M				Residual Chlori			
	SLSW-1-0		1/00)	I.							×	×							
	SLSW-1-1			8480							, marin	1							
	StsW-2-0			18 60							=								
	SLSW-2-1		-32	1235						3									
	SLSW-2-3			1242															
	SLSW-2-5			1244						Ξí		41176							l l
	SLSW-3-0			1256						E									
-	SLSW-3-1			1259															
	SLSW-3-3			1301															
	SLSW-3.5			1304															
	0-te-MS75			1321															
_	SLSW-4-0 DUP			7281 W							7	_							9
1	ADDITIONAL COMMENTS	RELI	NQUISHED	RELINQUISHED BY / AFFILIATION	N DATE	re	TIME		ACCEPT	TED BY / A	ACCEPTED BY / AFFILIATION	L. N		DATE	TIME		SAMPLE	SAMPLE CONDITIONS	S
	Empty Containers	Is Ald	B	03	4 dela	1	080	1	280	X	35	3							-
D,d	Metals=Pb,Ca,Mg,Total hardness	Y	Visi	N N	J 672	700	1531	M	N	!	F		, g	6-12-16	1831	51	X	~	
		all	1	ACE	6/12	R	21:00	1	A	Ö	Ke		9	SIJOIN	933	505	7	て	-
		,														1199			-
				SAMPLE	SAMPLER NAME AND SIGNATURE	SNATUR	ш									0	uo p		_
Pan				SIGN	ATURE of SAMPLER:	PLER:	Essica	1. Hud	rospa		PAG	TE Signe	t			ni 9M.	свілес	stody oler V)	mples (N)
je 3							sum	Allish	þ		20%	2017/00/	112			ЭT	901	uD se2 oD	11)

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

SAMPLE 10 Secure Colonial Samples (1997)  SAMPLE 10 Secure (1997)  SAMP	Tampa, FL 33607  Ted Due Date:  Ted Due Date:  SAMPLE ID  One Character per box.  (A-Z, 0-9) + ) A Michael Control	# att	Attent	on:		Ī		
PLE ID MARIE TO THE PROPERTY OF THE PROPERTY O	Tampa, FL 33607  matthew.starr@atkinsglobal.com 727-409-0733 Fax  led Due Date:  SAMPLE ID One Character per box. (A-Z, 0-91, -1) Sample Ids must be unique Tampa Matter Sample Ids must be unique Tampa Matter Matt	#	Сомр					
PLE ID  Profession  Profession	SAMPLE ID  One Character per box.  Sample Ids must be unique  Tangaa, FL 33607  WANTRIX  ON WANT	#	The second secon	any Name:				
PLE ID  Supposed Loads  Policy Character  Policy	T27-409-0733 Fax  T27-409-0733 Fax  ted Due Date:  MATRIX  MAT	#	Addre	:88:			Regulatory Agency	
PLE ID  **STATE TO THE PARTY CONTRICTOR  **PROPERTY CONTRICTOR  **PR	T27-409-0733   Fax led Due Date:  MAYTRIX Drinking W Water Wat Water Water Water Water Water Wat Water W	Т	Pace (	Quote:				
PLE ID  The property of the pr	AMPLE ID Sulfiscing Waste Wat Product Sulfiscing Character per box. Air (A-Z, 0-9-1, -) Guide Total Brands be unique Total Brands		Pace		pacelabs.com,		State / Location	
PLE ID  Williams to be sold to be	SAMPLE ID  One Character per box.  (A-Z, 0-9 1, -)  Sample lds must be unique	#:	Pace	-1	A Proposition O	Mary Carrett Prince	권	
PLE ID  The state of the continues of th	SAMPLE ID One Character per box.  Sample lds must be unique				E	Analysis Filtered (1/N)	E	
The property of the property o	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique	NOO=	NO	Preservatives				
The part of the	One Character per box. Who Air (A-Z, 0-9 / , -) Other Sample Ids must be unique	(see valid cod	T COLLECTIO		8110°4NO		Je (Y/V)	
4-5 4-5 4-5 4-5 4-5 4-5 4-8 1330 4-1 1-2 1330 1330 1-2 1-2 1330 1330 1-2 1-2 1330 1330 1-2 1-3 1330 1-2 1-3 1330 1-2 1-3 1330 1-2 1-3 1330 1-2 1-3 1330 1-2 1-3 1330 1-2 1-3 1330 1-2 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1-3 1330 1	Open.	AMPTRIX CODE	E E SAMPLE TEMP A # OF CONTAINE	Methanol NaSS203 NaOH HCI HNO3 H2O4	XT) negoniN-T Total Phospho		Residual Chlorin	
7-3  1-2  1-2  1-3  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35  1-35	4 MSTS	1502			×			
Fig. 23  1-2  1-2  1-2  1-2  1-2  1-3-3  1-2  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3  1-3-3	-t MSTS	1336						
Emply Containers  Fellowushed by vapellation date and scouring the part of the	SISW 4	(333						
COMMATCOMMENTS  REINOUTSHED BY IAPPLIATION  DATE  THE  ADCEPTED BY APPLIATION  DATE  THE  SAMPLE CONDITIONS  FRINTING ON CONTRACT  COLUMN TO COLUMN THE CONDITIONS  STAMPLER NAME AND SIGNATURE  STAMPLER NAME AND SIGNATUR	565W 1							
Empty Containers    Fig. 100   Fi	5							
Empty Containers  RELINGUISHED BY LAFFILLATION  DATE  TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER: A STUL AL AND STORM PORTOR  STORMATION ACCEPTED BY LAFFILLATION  DATE  TIME  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER: A STUL AL AND STORMATION  STORMATION ACCEPTED BY LAFFILLATION  STORMATION ACCEPTED BY LAFFILLATION  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER: A STUL AL AND STORMATION  STORMATION ACCEPTED BY LAFFILLATION  STORMATION ACCEPTED BY LAFFILLATION  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER: A STUL AL AND STORMATION  STORMATION ACCEPTED BY LAFFILLATION  STORMATION ACCEPTED BY LAFFILLATIO	9			_				
Empty Containers  Relinquished by Africation  Relinquished	7			_				
Empty Containers  Relinguished by I Affiliation  Empty Containers  Figure 4 (10)   10 cm	8					X.		
Empty Containers  Relinduished by 1 Afrillation  Empty Containers  Relinduished by 1 Afrillation  DATE TIME ACCEPTED BY 1 Afrillation  DATE TIME SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: ASSULE AFFILIATION  DATE TIME SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: ASSULE AFFILIATION  DATE TIME SAMPLE CONDITIONS  SAMPLE NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  DATE TIME SAMPLE CONDITIONS  SAMPLE NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME ASSULT AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT NAME ASSULT AFFILIATION  SAMPLER NAME ASSULT AFFILIATION  SAMPLE	6					Z.		
Empty Containers  Relinquished by (Africation)  Empty Containers  Relinquished by (Africation)  Date Time Sample Conditions  The Aggerted by (Africation)  Relinquished by (Africation)  Date Time Sample Conditions  Relinquished by (Africation)  Re	10				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
Empty Containers  Relinquished by Lafellation  Date time sample conditions  Empty Containers  The conditions  Empty Containers  The conditions  Sampler Name and Signature  PRINT Name of Sampler: Assign Activity  Sampler Name of Sampler Name of Sampler: Assign Activity  Sampler Name of Sampler Name of Sampler: Assign Activity  Sampler Name of Sampler Name o	11	>						
Empty Containers  Empty Contai	12							
Empty Containers  The part of	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION			/ AFFILIATION			LIONS
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: ASSILL AL AND SON	Empty Containers	11. 11. Day	6/2/1/C 081	2 Cheny	4136r			-
SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER:  PRINT NAME NAME NAME NAME NAME NAME NAME NAME	tals=Pb,Ca,Mg,Total hardness	the the	; ;	The 1	Pour !		1 bil	
SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: A STICLE A HUCKST STICE A S	)			TINE DE	See (		>	
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:  SIGNATURE of SAMP							Trad	
PRINT Name of SAMPLER: A STICK A AND ISSUE OF STICK A STICK A STICK ASTICK ASTI		SAMPLER NAME	AND SIGNATURE					
	Pa	PRINT Name	7	ice A. Had	i Live		bevied (V	səldu



### Document Name: Sample Condition Upon Receipt Form Document No.; F-FL-C-007 rev. 06

Document Revised: August 11, 2014 Issuing Authority Pace Flonda Quality Office

# Sample Condition Upon Receipt Form (SCUR)

Table Number._

Client Name: ATV	KINS Project #35192803
Courier: Fed Ex UPS USPS Client Commerce	oral Pace Other
Tracking #	
	eals intact: Dyes 7 no Date and Injtials of person examining
Packing Material: Bubble Wrap Bubble Bags None	(0)12/16
Thermometer Used Type of Ice: (M	
	(Temp should be above freezing to 6°C). If below 0°C, then
Cooler Temperature C (Visual) (Correction	on Factor) (Actual) sample frozen?
Receipt of samples satisfactory:	□Yes □No  Rush TAT requested on COC:
If yes, then all conditions below were met:	If no, then mark box & describe issue (use comments area if necessary):
Chain of Custody Present	The triangle of the control is a control in a control is a control in a control is a control is a control in a control is a control in a contro
Chain of Custody Filled Out	
Relinquished Signature & Sampler Name COC	
Samples Arrived within Hold Time	
Sufficient Volume	
Correct Containers Used Containers Intact	
Softaniers intast	
Sample Labels match COC (sample IDs & date/time of collection)	
Il containers pending processuries are found to be in	No Labels: U No Time/Date on Labels. U
<ul> <li>containers needing preservation are found to be in compliance with EPA recommendation.</li> </ul>	
No Headspace in VOA Vials ( >6mm):	O .
A CONTRACTOR AND	
Client Notification/ Resolution:	Appendix and the second
	e/Time:
Comments/ Resolution (use back for additional comments):	
	E.V.
Project Manager Review:	Date:
Finished Product I	Information Only
P. Sample ID:	Size & Qty of Bottles Received
	x 5 Gal
roduction Code:	x 2.5 Gal x 1 Gal
ate/Time Opened:	x 1 Liter
Define Design	x 500 mL
umber of Unopened Bottles Remaining:	x 250 mL x Other:
Extra Sample in Shed: Yes No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2