January 7, 2016

# **ATKINS**

Mr. Matthew Preston, P.E. Project Management Office Southwest Florida Water Management District 7601 Highway 301 North, Building 1 Tampa, FL 33637

# Re: Review of 3rd Quarter Water Quality Sampling Results December 2015 Sampling Event, Sawgrass Lake Site Restoration Project Southwest Florida Water Management District 3200 Gandy Boulevard, St. Petersburg, FL 33702 FDEP Facility ID # COM\_301769

Dear Mr. Preston:

At the request of the Southwest Florida Water Management District (the District), Atkins is presenting this review of the results of the third quarterly sampling event (December 2015) for the facility referenced above. This document is designed to comply with the requirements of Sections 8.8 and 8.9 of the Remedial Action Plan (RAP), dated April 2007, and the letter from FDEP (Gary Millington, P.E.) to the District (Jennette Seachrist, P.E.), dated July 8, 2014, regarding water quality monitoring at the above-referenced site.

### BACKGROUND

A full description of the site location, physical description of the site, and a more detailed discussion of the site history are provided in Section 2.0 of the RAP, dated April 2007. A full description of the lead shot remediation activities performed at this site is provided in the Remediation Completion Report, dated May 2014. What follows is a brief summary.

The Sawgrass Lake Site Restoration Project occupies a portion of the Sawgrass Lake Water Management Area (WMA), which is a largely wetland area owned by the District and located in Pinellas County, FL. From the 1930s until 2004, the Skyway Trap and Skeet Club (Skyway Gun Club), formerly the Lealman Rod and Gun Club, operated a trap and skeet shooting range, which included the use of lead shot. During that time, the western portion of the Sawgrass Lake WMA received lead shot because it was used as the shot drop zone.

Beginning in 1999, multiple studies of the soil, sediment, surface water, and groundwater of the Sawgrass Lake WMA were performed. These studies included sampling and laboratory analytical testing, which confirmed that the soil, sediment, surface water, and groundwater in the western

portion of the Sawgrass Lake site (down-range of the gun club) had been adversely impacted by the lead shot deposited in that area. By 2004, the contamination assessment investigations of the Sawgrass Lake site were largely completed. Elevated concentrations of lead (and some other metals, such as arsenic and antimony) were noted in the soil, sediments, and groundwater of the shot drop zone and areas immediately adjacent to the shot drop zone. In 2004, he Skyway Gun Club entered into an agreement with the District and FDEP, which prohibited the continued trespassing of lead-containing shot onto the District's property.

From 2005 to 2007, the District completed a RAP, which was submitted to FDEP in April 2007. The RAP recommended the excavation and treatment of the lead-impacted soils and sediments from the upland and wetland areas down-range of the Skyway Gun Club. The RAP was approved by the FDEP in December 2007. From 2007 through 2010, the District developed the plans for restoration of the site, including excavation and treatment of lead-impacted media. From 2011 through 2014, the remediation activities recommended in the RAP, as well as additional site restoration activities, were completed by Woodruff & Sons, Inc., the District's construction contractor. The District submitted a Remediation Completion Report to the FDEP in May 2014, which was approved by the FDEP on July 8, 2014. The Remediation Completion Report recommended water quality monitoring at the site, in accordance with Sections 8.8 and 8.9 of the RAP. In the July 8, 2014 letter, the FDEP agreed that remediation of the site was complete, but that water quality monitoring was required in accordance with the RAP.

Section 8.8 of the RAP indicated that four monitoring wells would be installed in the western portion of the District property and would be sampled quarterly (for one year) for certain metals and Total Dissolved Solids (TDS) parameters. The four monitoring wells were installed at the site in 2015. Similarly, Section 8.9 of the RAP indicated that samples of surface water would be collected on a quarterly basis. The surface water samples would be collected from three locations in the lake and one location in Channel 3 upstream of the project area. The surface water samples would be collected quarterly for one year and would be analyzed for lead, hardness, phosphorus, and nitrogen. After one year, the data from the groundwater and surface water sampling programs would be evaluated, and a decision would be made regarding continued monitoring.

The first quarterly sampling event at the Sawgrass Lake Site Restoration Project was conducted in June 2015, the second quarterly sampling event was performed in September 2015, and the third (most recent) quarterly sampling event was performed in December 2015. This report presents the results of the third quarter of groundwater and surface water sampling at the Sawgrass Lake Site Restoration Project. The groundwater and surface water sampling locations are illustrated in **Figure 1**.

#### THIRD QUARTERLY SAMPLING EVENT (DECEMBER 2015)

The third quarterly sampling event was conducted on December 15, 2015. Groundwater and surface water samples were collected during this event. The groundwater and surface water samples were collected in general accordance with the Florida Department of Environmental Protection (FDEP) Standard Operating Procedure for Field Activities (SOP 001/01). Sample collection was performed by Atkins personnel, and analysis was performed by Pace Analytical Services, Inc. (Pace). Pace is a NELAC-certified laboratory.

At the time the RAP was prepared, there were five monitoring wells on the project site property (MW-1, MW-2, MW-3, MW-4, and MW-10). All were properly abandoned in 2011, at the beginning of the restoration project, since they would be destroyed by the remediation/restoration activities. After the remediation and restoration activities were completed in 2015, four of the wells were replaced with MW-1R, MW-2R, MW-3R, and MW-4R. Due to the location of the berm, the realignment of the site access road, and the creation of a wetland that encompassed a portion of the former site road, the new (replacement) wells are not located in the exact same locations as the corresponding original wells. The replacement wells are located north, west, or east of the original wells, based on changes to the alignment of the new site access road. MW-10 was not replaced, as that area is now an inaccessible wetland. Groundwater samples were collected from MW-1R, MW-2R, MW-3R, and MW-4R on December 15, 2015.

### Groundwater Sample Collection Methodology

Prior to sampling the monitoring wells, each well was purged with a peristaltic pump using the "low-flow" method. A minimum equivalent of one to three well volumes was purged from each well prior to sample collection. Temperature, pH, conductivity, dissolved oxygen (DO), and turbidity measurements were monitored and recorded throughout the purging process to ensure that representative water samples were collected. The groundwater samples were given identifiers which corresponded to the well of origin. The samples were named using a naming convention that consisted of Sawgrass Lake (SL), the well identification number (for example, MW-1R), and the sampling month (1215, in this case). For example, the sample from MW-1R was labeled "SLMW-1R-1215". Depth-to-groundwater measurements were made from the top-of-casing (TOC) at each monitoring well prior to initiating the purging process. The groundwater sampling logs and field equipment calibration logs are provided in **Attachment A**.

Each well was sampled for total arsenic, dissolved arsenic, total lead, dissolved lead, calcium hardness, magnesium hardness, total hardness, and TDS. A duplicate sample was collected from MW-1R. All of the samples were placed in laboratory-prepared containers, placed on ice, and carried to Pace for analysis of the analytes listed above.

#### Surface Water Sample Collection Methodology

Four sampling locations were selected based on compliance with the RAP and water depths within the lake. The first sample location was in the upland cut canal to the south and the remaining three samples were taken from the southwest area of the lake. The samples were named using a naming convention that consisted of Sawgrass Lake (SL) and the surface water location identification number (for example, SW-1) and the depth (in feet) at which the sample was collected (for example, -2). The process consisted of collecting four water samples at the canal sampling location and four samples at the other three locations within the lake. Samples were collected based on water depth, including a surface, one-foot, mid-depth and bottom sample. Samples were collected using a Kemmerer water sampler (see photo below). The device is lowered into the water column to the desired depth, then a weight is dropped down the main line activating two latches which close the outside doors and seal the sample inside the tube without being contaminated by other water.

Each sample was tested for Arsenic, Calcium, Lead, Magnesium, Nitrogen (Kjeldahl, Total), Nitrogen (NO<sub>2</sub> plus NO<sub>3</sub>), Phosphorous (Total as P), Total Hardness as CaCO<sub>3</sub>, and Total Nitrogen. All of the samples were placed in laboratory-prepared containers, placed on ice, and delivered to Pace for analysis of the analytes listed previously. The surface water field sampling sheets and YSI calibration logs are provided in **Attachment B**.



Typical Kemmerer water sampling device.

#### THIRD QUARTERLY SAMPLING EVENT RESULTS (DECEMBER 2015)

#### **Groundwater Flow Pattern**

Depth to groundwater measurements were collected at the four monitoring wells. The depth to groundwater ranged from 3.04 feet below the TOC at MW-2R to 3.61 feet below the TOC at MW-3R. The water table was up to 0.81 feet lower than during the previous sampling event. As the wells are flush-mounted, the TOC elevation is similar to the ground surface elevation. The layout of the monitoring wells parallel to the shoreline of the open-water wetland area did not lend itself to preparation of a credible groundwater contour map (based solely on the four monitoring wells). It is assumed that the groundwater flow direction is toward the open-water wetland area immediately east across the access road, and ultimately towards Sawgrass Lake. The groundwater flow direction can be assumed to be eastward, towards Sawgrass Lake, which is consistent with previous studies.

#### Sampling Results

A description of the detections in the groundwater and surface water is presented below.

#### **Groundwater Analytical Results**

A summary of the groundwater analytical results is presented in **Table 1**, and the laboratory analytical reports are provided in **Attachment C**. **Figure 2** illustrates the December 2015 concentrations of arsenic, dissolved arsenic, lead, dissolved lead, and TDS on a map of the project site. **Table 1** also provides the corresponding groundwater analytical results from the original monitoring wells for the period from 2000 to 2006, as well as the results from the prior quarterly sampling events.

The concentrations of all of the parameters analyzed in the groundwater were compared to their respective Maximum Contaminant Level (MCL) or Secondary Drinking Water Standard (SDWS) in accordance with the Florida statutes. The MCLs and SDWSs for Drinking Water Standards, Monitoring, and Reporting are promulgated by Chapters 62-550 and 62-777 of the Florida Administrative Code (FAC). Not every parameter has an MCL or SDWS. There were two analytes detected at concentrations that did not comply with their standards – pH and TDS. Note that neither lead nor arsenic were detected in the groundwater during this sampling event. TDS and pH have SDWS criteria, as provided as an MCL in Chapter 62-550 FAC. A description of the detection patterns with these two analytes is described below.

- pH The SDWS for pH is any value within the range of 6.5 to 8.5. The pH readings for all of the wells were less than the SDWS range. The pH values ranged from 6.11 at MW-2R to 6.41 at MW-3R (see **Attachment A**). Except for MW-3R, the pH readings at all of the wells were lower than during the previous sampling event.
- TDS The SDWS for TDS is 500 mg/L. The TDS concentrations in the samples collected at all four monitoring wells exceeded the standard. The TDS concentrations ranged from 599 mg/L at MW-4R to 2,290 mg/L at MW-1R. As shown in **Table 1**, the TDS concentrations in the existing monitoring wells are considerably higher than in the corresponding former wells (sampled in 2006). However, from September 2015 to December 2015, there were notable decreases in the TDS concentrations at all of the wells except MW-1R (which remained relatively high, at 2,290 mg/L). The decreases in TDS concentrations from September 2015 to December 2015 to

With the exception of the specific results discussed above, the groundwater quality results from the December 2015 sampling event were in the same general range as the results from the June and September 2015 sampling events. It was noted that conductivity readings were on the order four times higher in the groundwater (at MW-1R, for example) than in the surface water, and the total hardness values in the groundwater were on the order of five times higher than the surface water.

### Surface Water Analytical Results

A summary of the surface water analytical results is presented in **Table 2**, and the Pace Laboratory analytical report is provided in **Attachment D**. **Table 3** presents a summary of the field measurements collected by Atkins staff with the YSI sonde including: temperature, specific conductivity, salinity, pH, dissolved oxygen (total and %), and turbidity. The data were collected on December 15, 2015 and 0.0 inches of rain was observed the previous day at the St. Pete – Clearwater Airport. The non-native plant, Hydrilla (*Hydrilla verticillata*) was also observed in the lake during the sampling. **Figure 3** illustrates the December 2015 mean concentrations of lead, hardness, total phosphorus, and total nitrogen on a map of the project site. **Table 2** also provides the corresponding analytical results compared to the original surface water sampling on April 12, 2007.

There were several analytes tested for in the surface water samples. The concentration of every analyte that was detected in the surface water sample was compared to the FDEP surface water quality standards (if a standard existed for that analyte) found in Chapter 62-302, FAC and mean values recorded from pre-construction bench scale sampling.

- Arsenic testing of this heavy metal was added to the surface water sampling for the third quarter sampling in addition to the second quarter. All of the 16 samples were undetected for arsenic.
- Lead the surface water criteria for lead was identified as being ≤8.68 µg/L. All of the surface water samples resulted in readings less than the Laboratory Method Detection Limit (MDL), resulting in no lead detection. The mean value was measured at 10 µg/L prior to construction.
- Total Phosphorus all four samples collected at station SLSW-1 reported a readings between 150  $\mu$ g/L and 200  $\mu$ g/L, therefore exceeding the mean value bench scale of 102  $\mu$ g/L recorded during the April 2007 sampling. The three remaining stations had readings below the bench scale value at all of the sampled water depths.
- Total Nitrogen sample values ranged from a low of 870  $\mu$ g/L in the lake to a high of 1,400  $\mu$ g/L in the canal portion of Sawgrass Lake, which were all below the mean value bench scale reading of 8,188  $\mu$ g/L.
- Nitrogen, NO<sub>2</sub> plus NO<sub>3</sub> the mean value bench scale was measured at an average of 32.1 µg/L in 2007. All four samples exceeded the average at station SLSW-1 (ranging from 72 µg/L to 84 µg/L). The three remaining stations had readings below the bench scale value at all of the sampled water depths.
- Nitrogen, Kjeldahl, Total all of the samples collected during December 2015 were below the pre-construction mean of 7,863  $\mu$ g/L. The collected samples ranged from 870  $\mu$ g/L to 1,300  $\mu$ g/L.
- Hardness as CaCO<sub>3</sub> collected values ranged from 170,000 µg/L to 197,000 µg/L, which were all below the April 2007 mean value of 220,000 µg/L.
- Calcium collected values ranged from 57,900  $\mu$ g/L to 66,900  $\mu$ g/L, which were all below the mean bench scale value of 75,500  $\mu$ g/L.
- Magnesium collected values ranged from 5,890  $\mu$ g/L to 7,240  $\mu$ g/L, which were all below the previous mean bench scale value of 7,813  $\mu$ g/L.
- pH The SDWS for pH is any value within the range of 6.5 to 8.5. All of the pH readings at each measured depth at every sampling location were within the accepted SDWS standard range.

- Dissolved Oxygen concentrations ranged from 0.60 mg/L to 8.85 mg/L. The surface water criteria for dissolved oxygen is ≥5 mg/L. All of the readings in the North/South canal were less than 5 mg/L. The lowest dissolved oxygen levels in the other samples were primarily recorded near the bottom of the respective water column.
- Salinity –values ranges from 0.24 ppt to 0.27 ppt, with little variation between depth and location.
- Specific Conductivity the field measurements collected with the YSI sonde ranged from a low of 491  $\mu$ S/cm to high of 567  $\mu$ S/cm at sample station SLSW-1-4 in the canal portion of the lake.
- Turbidity values at each site were very consistent between sample locations, with a small range from 6.0 NTU to 14.1 NTU.
- Temperature (water) readings were between 21.00 °C at depth and 23.51 °C at the surface of the lake.

### SUMMARY AND CONCLUSIONS

The results of the third quarterly sampling event at the Sawgrass Lake Site Restoration Project were generally consistent with the results of the prior two quarterly sampling events (in June and September 2015) and with previous (2000 to 2007) sampling events, with some exceptions, as discussed below.

There were two analytes detected in the groundwater that did not comply with their regulatory standards: pH and TDS were detected in the groundwater at concentrations in that did not comply with their regulatory criteria. Lead was (again) not detected in the groundwater samples, and notably, this was the first sampling event during which arsenic was also not detected in any of the groundwater samples. Unlike previous sampling events, findings of low pH (ranging from 6.11 to 6.41) were identified at all of the monitoring wells. TDS concentrations were higher than the pre-2011 data collected from the corresponding wells. The significantly elevated TDS concentrations detected in all four monitoring wells may be the result of the recent site remediation/restoration activities implemented beginning in 2011, as they have no historical precedent. However, the TDS concentrations in most of the monitoring wells decreased significantly between the September 2015 sampling event and December 2015 sampling event.

There were two analytes measured in the surface water that exceeded the mean bench scale readings from April 12, 2007 during the December 15, 2015 sampling event. The Nitrogen,  $NO_2$  plus  $NO_3$  was elevated at four sample locations (all four samples at station SLSW-1). These

samples were also elevated during the September 2015 sampling event, as shown in **Table 2**. The results for Total Phosphorus had four samples with a reading above the bench scale data from 2007, all of which were at station SLSW-1 as well. The Phosphorus samples at Station SLSW-1 have also had previously elevated readings during the June and September 2015 sampling events, as shown in **Table 2**. During the December 2015 sampling event, there was extensive vegetation covering the water column in the canal portion of the lake where these elevated values occurred. All of the samples were tested for arsenic and lead, with each sample returning results that were less than the laboratory MDLs. Arsenic testing was not part of the original RAP surface water testing, but was added by Atkins for the  $2^{nd}$  and  $3^{rd}$  quarter monitoring events to compare with the groundwater results, with no detections at any surface water locations. Therefore, arsenic will be removed for the  $4^{th}$  quarter surface water sampling event. As observed previously in the June and September 2015 sampling events, the total hardness and conductivity data collected in December 2015 revealed significantly lower readings in the surface water compared to the values determined from the groundwater sampling.

Atkins recommends that the analytical results from the next sampling event be evaluated closely for any developing trends. After one more quarter of groundwater monitoring and surface water sampling, a decision will be made regarding continued monitoring. At that time, a decision will also be made to determine whether the site owner should pursue a Site Rehabilitation Completion Order *with Conditions* or *without Conditions*.

If you have any questions regarding the information presented in this report, please contact Atkins at (813) 477-7275 or <u>bradley.bayne@atkinsglobal.com</u>.

eleg & Buyn

Date: <u>1-7-16</u> Bradley I. Bayne Professional Geologist No. 1733 State of Florida

國際

TABLES

#### TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL DATA SAWGRASS LAKE SITE RESTORATION PROJECT

| Analyte                                                                                                              | SLMW-1                                              | SLMW-1#                                           | SLMW-1-R                                                                                | SLMW-1R-0615                                                                       | SLMW-1R-0915                                                         | SLMW-1R-1215                                       | SLMW-2                                            | SLMW-2-R                                                             | SLMW-2R-<br>0615                                                      | SLMW-2R-<br>0915                                                     | SLMW-2R-<br>1215                      | Groundwater<br>Criteria |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|-------------------------|
| Sampling Month                                                                                                       | Aug. 2000                                           | Nov. 2002                                         | Mar. 2006                                                                               | Jun. 2015                                                                          | Sept. 2015                                                           | Dec. 2015                                          | Aug. 2000                                         | Mar. 2006                                                            | Jun. 2015                                                             | Sept. 2015                                                           | Dec. 2015                             |                         |
| Arsenic                                                                                                              | 290                                                 | 230                                               | 2.6                                                                                     | 5.3 U (5.3 U)                                                                      | 13.3 (15.2)                                                          | 5.3 U (5.3 U)                                      | BDL                                               | 20                                                                   | 5.3 U                                                                 | 5.3 U                                                                | 5.3 U                                 | 10                      |
| Dissolved Arsenic                                                                                                    | N/A                                                 | N/A                                               | BDL                                                                                     | 5.3 U (5.3 U)                                                                      | 5.3 U (5.3 U)                                                        | 5.3 U (5.3 U)                                      | N/A                                               | 19                                                                   | 5.3 U                                                                 | 5.3 U                                                                | 5.3 U                                 | 10                      |
| Lead                                                                                                                 | 28                                                  | 34                                                | 3.5                                                                                     | 8.5 U (8.5 U)                                                                      | 8.5 U (8.5 U)                                                        | 8.5 U (8.5 U)                                      | BDL                                               | 4.8                                                                  | 8.5 U                                                                 | 8.5 U                                                                | 8.5 U                                 | 15                      |
| Dissolved Lead                                                                                                       | N/A                                                 | N/A                                               | 0.71 I                                                                                  | 8.5 U (8.5 U)                                                                      | 8.5 U (8.5 U)                                                        | 8.5 U (8.5 U)                                      | N/A                                               | 0.87 I                                                               | 8.5 U                                                                 | 8.5 U                                                                | 8.5 U                                 | 15                      |
| Calcium Hardness*                                                                                                    | N/A                                                 | N/A                                               | 87.2                                                                                    | 416 (405)                                                                          | 596 (590)                                                            | 387 (378)                                          | N/A                                               | 109                                                                  | 165                                                                   | 477                                                                  | 201                                   | -                       |
| Magnesium Hardness*                                                                                                  | N/A                                                 | N/A                                               | 9.56                                                                                    | 130 (135)                                                                          | 78.1 (74.2)                                                          | 133 (135)                                          | N/A                                               | 19.3                                                                 | 19                                                                    | 17.5                                                                 | 36.6                                  | -                       |
| Total Hardness*                                                                                                      | N/A                                                 | N/A                                               | 96.76                                                                                   | 1,570 (1,570)                                                                      | 1,810 (1,780)                                                        | 1,510 (1,500)                                      | N/A                                               | 128.3                                                                | 490                                                                   | 1,260                                                                | 653                                   | -                       |
| Total Dissolved Solids                                                                                               | N/A                                                 | N/A                                               | 180,000                                                                                 | 2,280,000 (2,250,000)                                                              | 2,530,000 (2,630,000)                                                | 2,290,000 (2,160,000)                              | N/A                                               | 220,000                                                              | 801,000                                                               | 1,920,000                                                            | 1,020,000                             | 500,000                 |
|                                                                                                                      |                                                     |                                                   | SI MW-3B-                                                                               | SI MW-3B-                                                                          | SI MW-3B-                                                            |                                                    | SI MW-4-R                                         | SI MW-4R-                                                            | SI MW-4R-                                                             | SI MW-4R-                                                            | Groundwater                           |                         |
| Analyte                                                                                                              | SLMW-3                                              | SLMW-3-R                                          | SLMW-3R-<br>0615                                                                        | SLMW-3R-<br>0915                                                                   | SLMW-3R-<br>1215                                                     | SLMW-4                                             | SLMW-4-R                                          | SLMW-4R-<br>0615                                                     | SLMW-4R-<br>0915                                                      | SLMW-4R-<br>1215                                                     | Groundwater<br>Criteria               |                         |
| Sampling Month                                                                                                       | Aug. 2000                                           | Mar. 2006                                         | 0615<br>Jun. 2015                                                                       | 0915<br>Sept. 2015                                                                 | 1215<br>Dec. 2015                                                    | Aug. 2000                                          | Mar. 2006                                         | 0615<br>Jun. 2015                                                    | 0915<br>Sept. 2015                                                    | 1215<br>Dec. 2015                                                    | Criteria                              |                         |
| Sampling Month<br>Arsenic                                                                                            | Aug. 2000<br><b>110</b>                             | Mar. 2006<br><b>29</b>                            | 0615<br>Jun. 2015<br><b>32.4</b>                                                        | 0915<br>Sept. 2015<br><b>31.3</b>                                                  | 1215<br>Dec. 2015<br>5.3 U                                           | Aug. 2000<br>18                                    | Mar. 2006                                         | 0615<br>Jun. 2015<br>5.3 U                                           | 0915<br>Sept. 2015<br>5.3 U                                           | 1215<br>Dec. 2015<br>5.3 U                                           | Criteria<br>10                        |                         |
| Sampling Month<br>Arsenic<br>Dissolved Arsenic                                                                       | Aug. 2000<br><b>110</b><br>N/A                      | Mar. 2006<br>29<br>28                             | 0615<br>Jun. 2015<br><b>32.4</b><br><b>32.4</b>                                         | 0915<br>Sept. 2015<br><b>31.3</b><br><b>30.4</b>                                   | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U                                  | Aug. 2000<br><b>18</b><br>N/A                      | Mar. 2006<br>11<br>11                             | 0615<br>Jun. 2015<br>5.3 U<br>5.3 U                                  | 0915<br>Sept. 2015<br>5.3 U<br>5.3 U                                  | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U                                  | Criteria                              |                         |
| Sampling Month<br>Arsenic<br>Dissolved Arsenic<br>Lead                                                               | Aug. 2000<br><b>110</b><br>N/A<br>BDL               | Mar. 2006<br>29<br>28<br>10                       | 0615<br>Jun. 2015<br><b>32.4</b><br><b>32.4</b><br><b>18.0</b>                          | 0915<br>Sept. 2015<br><b>31.3</b><br><b>30.4</b><br>8.5 U                          | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U                         | Aug. 2000<br>18<br>N/A<br>7.2                      | Mar. 2006<br>11<br>11<br>58                       | 0615<br>Jun. 2015<br>5.3 U<br>5.3 U<br>8.5 U                         | 0915<br>Sept. 2015<br>5.3 U<br>5.3 U<br>8.5 U                         | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U                         | Criteria<br>10<br>10<br>15            |                         |
| Sampling Month<br>Arsenic<br>Dissolved Arsenic<br>Lead<br>Dissolved Lead                                             | Aug. 2000<br>110<br>N/A<br>BDL<br>N/A               | Mar. 2006<br>29<br>28<br>10<br>2.3                | 0615<br>Jun. 2015<br><b>32.4</b><br><b>32.4</b><br><b>18.0</b><br>13.7 I                | 0915<br>Sept. 2015<br><b>31.3</b><br><b>30.4</b><br>8.5 U<br>8.5 U                 | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U       | Aug. 2000<br>18<br>N/A<br>7.2<br>N/A               | Mar. 2006<br>11<br>11<br>58<br>54                 | 0615<br>Jun. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>8.5 U       | 0915<br>Sept. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>8.5 U       | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>8.5 U       | Criteria<br>10<br>10<br>15<br>15      |                         |
| Sampling Month<br>Arsenic<br>Dissolved Arsenic<br>Lead<br>Dissolved Lead<br>Calcium Hardness*                        | Aug. 2000<br>110<br>N/A<br>BDL<br>N/A<br>N/A        | Mar. 2006<br>29<br>28<br>10<br>2.3<br>272         | 0615<br>Jun. 2015<br>32.4<br>32.4<br>18.0<br>13.7 I<br>360                              | 0915<br>Sept. 2015<br><b>31.3</b><br><b>30.4</b><br>8.5 U<br>8.5 U<br>8.5 U<br>400 | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>232         | Aug. 2000<br>18<br>N/A<br>7.2<br>N/A<br>N/A        | Mar. 2006<br>11<br>11<br>58<br>54<br>76.2         | 0615<br>Jun. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>207         | 0915<br>Sept. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>313         | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>113         | Criteria<br>10<br>10<br>15<br>15<br>- |                         |
| Sampling Month<br>Arsenic<br>Dissolved Arsenic<br>Lead<br>Dissolved Lead<br>Calcium Hardness*<br>Magnesium Hardness* | Aug. 2000<br>110<br>N/A<br>BDL<br>N/A<br>N/A<br>N/A | Mar. 2006<br>29<br>28<br>10<br>2.3<br>272<br>15.8 | 0615<br>Jun. 2015<br><b>32.4</b><br><b>32.4</b><br><b>18.0</b><br>13.7 I<br>360<br>40.0 | 0915<br>Sept. 2015<br><b>31.3</b><br><b>30.4</b><br>8.5 U<br>8.5 U<br>400<br>29.4  | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>232<br>17.0 | Aug. 2000<br>18<br>N/A<br>7.2<br>N/A<br>N/A<br>N/A | Mar. 2006<br>11<br>11<br>58<br>54<br>76.2<br>15.3 | 0615<br>Jun. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>207<br>70.2 | 0915<br>Sept. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>313<br>27.5 | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>113<br>12.3 | Criteria<br>10<br>10<br>15<br>15      |                         |
| Sampling Month<br>Arsenic<br>Dissolved Arsenic<br>Lead<br>Dissolved Lead<br>Calcium Hardness*                        | Aug. 2000<br>110<br>N/A<br>BDL<br>N/A<br>N/A        | Mar. 2006<br>29<br>28<br>10<br>2.3<br>272         | 0615<br>Jun. 2015<br>32.4<br>32.4<br>18.0<br>13.7 I<br>360                              | 0915<br>Sept. 2015<br><b>31.3</b><br><b>30.4</b><br>8.5 U<br>8.5 U<br>8.5 U<br>400 | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>232         | Aug. 2000<br>18<br>N/A<br>7.2<br>N/A<br>N/A        | Mar. 2006<br>11<br>11<br>58<br>54<br>76.2         | 0615<br>Jun. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>207         | 0915<br>Sept. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>313         | 1215<br>Dec. 2015<br>5.3 U<br>5.3 U<br>8.5 U<br>8.5 U<br>113         | Criteria<br>10<br>10<br>15<br>15<br>- |                         |

Notes: All results in Micrograms per liter, except for hardness results, which are in mg/l

# = Sample name for location SLMW-1 in 2002 was MW-04S as provided in the FDEP 2003 Site Inspection Report

U = After 2006: Less than Laboratory Method Detection Limits (MDL) - MDL is shown

BDL = 2006 or Before: Below Detection Limits, Below Method Detection Limit, or Below Reporting Limit (shown as "U" on laboratory sheets)

**Bold** = groundwater criteria exceedance

N/A = Not Applicable

\* = hardness results given in Milligrams per liter

Groundwater Criteria = Chapter 62-777 FAC

Duplicate values shown in parenthesis

I = Result is between Method Detection Limit and Practical Quantitation Limit

# TABLE 2 SUMMARY OF SURFACE WATER ANALYTICAL DATA SAWGRASS LAKE SITE RESTORATION PROJECT

|                                  |           | SLSW-1-0   |           |           | SLSW-1-1   |           |           | SLSW-1-2   |           |           | SLSW-1-3   |           |           | SLSW-1-4   |      |
|----------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|------|
| Parameter                        | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. |
| Arsenic (µg/L)                   | *         | 5.0 U      | 5.0 U     | *         | 5.0 U      | 5.0 U     | *         | 5.0 U      | 5.0 U     |           | 5.0 U      | 5.0 U     |           | 5.0 U      |      |
| Calcium (µg/L)                   | 42,300    | 63,400     | 64,200    | 44,000    | 62,500     | 66,900    | 40,800    | 62,700     | 66,100    |           | 62,500     | 66,300    |           | 62,800     |      |
| Lead (µg/L)                      | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | z         | 5.0 U      | 5.0 U     | z         | 5.0 U      | 7    |
| Magnesium (µg/L)                 | 3,040     | 4,960      | 7,230     | 3,270     | 5,010      | 7,240     | 3,940     | 4,990      | 7,240     | lot       | 4,970      | 7,170     | <u>e</u>  | 4,990      | IOT  |
| Nitrogen, Kjeldahl, Total (µg/L) | 550       | 620        | 930       | 990       | 980        | 1,200     | 1,500     | 500        | 1,300     | Tes       | 690        | 1,200     | Tes       | 600        | e    |
| Nitrogen, NO2 plus NO3 (μg/L)    | 46 I      | 150        | 84        | 44 I      | 350        | 72        | 30 I      | 170        | 83        | stec      | 170        | 84        | stec      | 170        | stec |
| Phosphorus, Total (as P) (µg/L)  | 62 I      | 69 I       | 170       | 140       | 130        | 150       | 190       | 53 I       | 210       | _         | 84 I       | 200       | _         | 71 I       | _    |
| Total Hardness asCaCO3 (μg/L)    | 118,000   | 179,000    | 190,000   | 123,000   | 177,000    | 197,000   | 118,000   | 177,000    | 195,000   |           | 177,000    | 195,000   |           | 177,000    |      |
| Total Nitrogen (µg/L)            | 600       | 770        | 1,000     | 1,000     | 1,300      | 1,200     | 1,500     | 670        | 1,400     |           | 860        | 1,300     |           | 770        |      |

|                                  |           | SLSW-2-0   |           |           | SLSW-2-1   |           |           | SLSW-2-3   |           | SLSW-2-5  |            |           |  |
|----------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|--|
| Parameter                        | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 |  |
| Arsenic (µg/L)                   | *         | 5.0 U      | 5.0 U     |  |
| Calcium (µg/L)                   | 42,200    | 46,300     | 59,100    | 42,100    | 45,900     | 59,100    | 41,600    | 42,200     | 59,200    | 42,300    | 41,800     | 58,400    |  |
| Lead (µg/L)                      | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     |  |
| Magnesium (µg/L)                 | 4,150     | 3,450      | 6,190     | 4,170     | 3,430      | 6,270     | 4,070     | 3,060      | 6,050     | 4,140     | 3,030      | 6,340     |  |
| Nitrogen, Kjeldahl, Total (µg/L) | 1,100     | 620        | 900       | 810       | 640        | 870       | 880       | 580        | 920       | 840       | 610        | 910       |  |
| Nitrogen, NO2 plus NO3 (µg/L)    | 28 I      | 25 U       | 25 U      | 25 U      | 25 U       | 25 U      | 25 U      | 25 U       | 25 U      | 25 U      | 25 U       | 25 U      |  |
| Phosphorus, Total (as P) (µg/L)  | 61 I      | 50 U       | 50 U      | 65 I      | 50 U       | 54 I      | 71        | 50 U       | 50 U      | 66 I      | 59 I       | 58 I      |  |
| Total Hardness asCaCO3 (µg/L)    | 123,000   | 130,000    | 173,000   | 122,000   | 129,000    | 173,000   | 121,000   | 118,000    | 173,000   | 123,000   | 117,000    | 172,000   |  |
| Total Nitrogen (μg/L)            | 1,100     | 630        | 910       | 830       | 640        | 870       | 890       | 590        | 920       | 860       | 620        | 910       |  |

|                                  |           | SLSW-3-0   |           |           | SLSW-3-1   |           |           | SLSW-3-3   |           | SLSW-3-5  |            |           |  |
|----------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|--|
| Parameter                        | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 |  |
| Arsenic (µg/L)                   | *         | 5.0 U      | 5.0 U     |  |
| Calcium (µg/L)                   | 42,400    | 41,800     | 58,400    | 42,200    | 41,200     | 58,000    | 42,200    | 42,700     | 58,500    | 41,900    | 42,600     | 58,800    |  |
| Lead (µg/L)                      | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     |  |
| Magnesium (µg/L)                 | 4,130     | 3,050      | 6,060     | 4,100     | 3,040      | 6,100     | 4,080     | 3,120      | 6,020     | 4,000     | 3,100      | 6,050     |  |
| Nitrogen, Kjeldahl, Total (µg/L) | 730       | 710        | 870       | 670       | 710        | 890       | 770       | 670        | 950       | 900       | 660        | 880       |  |
| Nitrogen, NO2 plus NO3 (µg/L)    | 36 I      | 35 I       | 25 U      | 25 U      | 25 U       | 25 U      | 25 U      | 25 U       | 25 U      | 25 U      | 25 U       | 25 U      |  |
| Phosphorus, Total (as P) (µg/L)  | 55 I      | 69 I       | 50 I      | 51 I      | 61 I       | 53 I      | 55 I      | 66 I       | 50 U      | 93 I      | 63 I       | 50 U      |  |
| Total Hardness asCaCO3 (µg/L)    | 123,000   | 117,000    | 171,000   | 122,000   | 115,000    | 170,000   | 122,000   | 120,000    | 171,000   | 121,000   | 119,000    | 172,000   |  |
| Total Nitrogen (μg/L)            | 770       | 750        | 870       | 690       | 720        | 890       | 780       | 670        | 950       | 910       | 660        | 880       |  |

|                                  |           | SLSW-4-0   |           |           | SLSW-4-1   |           |           | SLSW-4-3   |           |           | SLSW-4-5   |           |           | SLSW-4-9   |      |
|----------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|------|
| Parameter                        | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. |
| Arsenic (µg/L)                   | *         | 5.0 U      | 5.0 U     | *         | 5.0 U      | 5.0 U     | *         |            |           | *         | 5.0 U      | 5.0 U     |           | 5.0 U      | 5.0  |
| Calcium (µg/L)                   | 42,400    | 41,400     | 58,300    | 42,100    | 42,000     | 57,900    | 40,400    |            |           | 69,700    | 39,500     | 58,300    |           | 43,300     | 58,4 |
| Lead (µg/L)                      | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U     | 5.0 U     | 7          | 7         | 5.0 U     | 5.0 U      | 5.0 U     | 7         | 5.0 U      | 5.0  |
| Magnesium (μg/L)                 | 4,110     | 3,020      | 6,050     | 4,060     | 3,040      | 6,100     | 3,800     | Vot        | Vot       | 3,760     | 2,910      | 6,080     | lot       | 3,280      | 5,89 |
| Nitrogen, Kjeldahl, Total (µg/L) | 840       | 590        | 910       | 840       | 570        | 930       | 760       | Te         | Te        | 790       | 720        | 940       | Te        | 770        | 96   |
| Nitrogen, NO2 plus NO3 (μg/L)    | 30 I      | 310        | 25 U      | 25 U      | 25 U       | 25 U      | 25 U      | ste        | ste       | 25 U      | 25 U       | 25 U      | ster      | 25 U       | 25   |
| Phosphorus, Total (as P) (μg/L)  | 67 I      | 70 I       | 53 I      | 65 I      | 50 U       | 58 I      | 61        | <u>0</u>   | <u>0</u>  | 68 I      | 66 I       | 55 I      | <u> </u>  | 78 I       | 73   |
| Total Hardness asCaCO3 (µg/L)    | 123,000   | 116,000    | 170,000   | 122,000   | 118,000    | 170,000   | 117,000   |            |           | 189,000   | 111,000    | 171,000   |           | 122,000    | 170, |
| Total Nitrogen (µg/L)            | 870       | 900        | 910       | 860       | 580        | 930       | 770       |            |           | 800       | 720        | 940       |           | 770        | 96   |

Notes: All results are reported in micrograms per liter unless otherwise noted

U = Less than Laboratory Method Detection Limit (MDL) - MDL is shown

Bold = Mean Value Bench Scale Exceedance from April 12, 2007 pre-construction sampling

I = Result is between Method Detection Limit and Practical Quanitation Limit

\* = Arsenic not tested for during June 2015 sampling

| . 2015     |  |
|------------|--|
|            |  |
|            |  |
| Z          |  |
| Not Tested |  |
| este       |  |
| ä.         |  |
|            |  |
|            |  |

| Mean Value Bench Scale | Class III Surface |
|------------------------|-------------------|
| April 2007             | Water Standard    |
| 13.3                   | ≤ 50              |
| 75,500                 | -                 |
| 10                     | < 8.68            |
| 7,813                  | -                 |
| 7,863                  | -                 |
| 32.1                   | -                 |
| 102                    | -                 |
| 220,000                | -                 |
| 8,188                  | -                 |
|                        |                   |

| Class III Surface |
|-------------------|
| Water Standard    |
| ≤ 50              |
| -                 |
| < 8.68            |
| -                 |
| -                 |
| -                 |
| -                 |
| -                 |
| -                 |
|                   |

| Mean Value Bench Scale | Class III Surface |
|------------------------|-------------------|
| April 2007             | Water Standard    |
| 13.3                   | ≤ 50              |
| 75,500                 | -                 |
| 10                     | < 8.68            |
| 7,813                  | -                 |
| 7,863                  | -                 |
| 32.1                   | -                 |
| 102                    | -                 |
| 220,000                | -                 |
| 8,188                  | -                 |

| Class III Surface |
|-------------------|
| Water Standard    |
| ≤ 50              |
| -                 |
| <8.68             |
| -                 |
| -                 |
| -                 |
| -                 |
| -                 |
| -                 |
|                   |

| . 2015 |
|--------|
| .0 U   |
| ,400   |
| .0 U   |
| ,890   |
| 960    |
| 5 U    |
| 73 I   |
| 0,000  |
| 960    |
|        |

# TABLE 3 SUMMARY OF YSI SONDE ANALYTICAL DATA SAWGRASS LAKE SITE RESTORATION PROJECT

|                               | SLSW-1-0  |            |           | SLSW-1-1  |            |           | SLSW-1-2  |            |           |           | SLSW-1-3   |           | SLSW-1-4  |            |           |
|-------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|
| Parameter                     | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 |
| Temperature (°C)              | *         | *          | *         | 27.39     | 29.08      | 23.51     | 27.40     | 29.03      | 23.36     |           | 28.91      | 21.24     |           | 28.83      | 21.00     |
| Specific Conductivity (µS/cm) | *         | *          | *         | 342       | 464        | 529       | 338       | 464        | 529       | 7         | 464        | 546       | 7         | 470        | 567       |
| Salinity (ppt)                | *         | *          | *         | 0.16      | 0.22       | 0.25      | 0.16      | 0.22       | 0.26      | Vot       | 0.22       | 0.26      | Vot       | 0.22       | 0.27      |
| рН                            | *         | *          | *         | 6.49      | 7.10       | 7.00      | 6.62      | 7.14       | 6.90      | Te        | 7.14       | 6.73      | Τe        | 7.04       | 6.71      |
| Dissolved Oxygen (mg/L)       | *         | *          | *         | 1.82      | 2.74       | 3.17      | 1.37      | 2.84       | 2.67      | ste       | 2.80       | 0.81      | ste       | 2.13       | 0.60      |
| Dissolved Oxygen (%)          | *         | *          | *         | 22.3      | 21.1       | 37.2      | 17.3      | 37         | 31.3      | <u>a</u>  | 36.4       | 9.1       | 8         | 27.3       | 6.8       |
| Turbidity (NTU)               | *         | *          | *         | 7.3       | 7.4        | 13.6      | 8.5       | 7.2        | 14.1      |           | 7.1        | 7.4       |           | 7.8        | 6.0       |

Notes: \* No surface water reading (YSI Sonde must be submerged 1' before reading can occur)

|                               |           | SLSW-2-0   |           |           | SLSW-2-1   |           |           | SLSW-2-3   |           |           | SLSW-2-5   |   |
|-------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|---|
| Parameter                     | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | D |
| Temperature (°C)              | *         | *          | *         | 28.56     | 29.42      | 23.17     | 28.55     | 29.08      | 23.14     | 28.47     | 28.99      |   |
| Specific Conductivity (µS/cm) | *         | *          | *         | 378       | 337        | 492       | 378       | 337        | 492       | 379       | 336        |   |
| Salinity (ppt)                | *         | *          | *         | 0.18      | 0.16       | 0.24      | 0.18      | 0.16       | 0.24      | 0.18      | 0.16       |   |
| рН                            | *         | *          | *         | 7.66      | 7.05       | 7.64      | 7.71      | 6.90       | 7.58      | 7.67      | 6.84       |   |
| Dissolved Oxygen (mg/L)       | *         | *          | *         | 6.27      | 5.99       | 8.65      | 6.24      | 4.60       | 8.44      | 5.48      | 3.96       |   |
| Dissolved Oxygen (%)          | *         | *          | *         | 80.9      | 78.3       | 101.4     | 80.5      | 59.8       | 98.8      | 70.5      | 51.3       |   |
| Turbidity (NTU)               | *         | *          | *         | 8.2       | 7.0        | 8.8       | 8.1       | 22.2       | 8.6       | 7.8       | 29.3       |   |

Notes: \* No surface water reading (YSI Sonde must be submerged 1' before reading can occur)

|                               |           | SLSW-3-0   |           |           | SLSW-3-1   |           |           | SLSW-3-3   |           |           | SLSW-3-5   |    |
|-------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|----|
| Parameter                     | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | De |
| Temperature (°C)              | *         | *          | *         | 29.40     | 29.35      | 23.24     | 29.34     | 29.10      | 23.11     | 29.36     | 28.47      |    |
| Specific Conductivity (µS/cm) | *         | *          | *         | 381       | 331        | 491       | 381       | 336        | 492       | 381       | 329        |    |
| Salinity (ppt)                | *         | *          | *         | 0.18      | 0.16       | 0.24      | 0.18      | 0.16       | 0.24      | 0.18      | 0.16       |    |
| рН                            | *         | *          | *         | 7.63      | 7.19       | 7.82      | 7.62      | 6.91       | 7.67      | 7.66      | 6.65       |    |
| Dissolved Oxygen (mg/L)       | *         | *          | *         | 7.86      | 6.46       | 8.85      | 7.57      | 1.50       | 8.25      | 7.55      | 0.52       |    |
| Dissolved Oxygen (%)          | *         | *          | *         | 103.0     | 84.5       | 103.7     | 99.2      | 19.4       | 96.5      | 98.8      | 6.7        |    |
| Turbidity (NTU)               | *         | *          | *         | 8.6       | 6.9        | 9.0       | 8.5       | 7.1        | 8.9       | 8.9       | 7.8        |    |

Notes: \* No surface water reading (YSI Sonde must be submerged 1' before reading can occur)

|                               |           | SLSW-4-0   |           |           | SLSW-4-1   |           |           | SLSW-4-3   |           |           | SLSW-4-5   |           |           | SLSW-4-9   |           |
|-------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|
| Parameter                     | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 | June 2015 | Sept. 2015 | Dec. 2015 |
| Temperature (°C)              | *         | *          | *         | 29.45     | 29.60      | 23.15     | 28.86     | 29.21      | 23.03     | 28.86     | 28.11      | 22.94     |           | 26.52      | 22.05     |
| Specific Conductivity (µS/cm) | *         | *          | *         | 378       | 328        | 491       | 382       | 329        | 493       | 364       | 317        | 494       | -         | 989        | 496       |
| Salinity (ppt)                | *         | *          | *         | 0.18      | 0.15       | 0.24      | 0.18      | 0.15       | 0.24      | 0.17      | 0.15       | 0.24      | Vot       | 0.49       | 0.24      |
| рН                            | *         | *          | *         | 7.85      | 6.79       | 7.82      | 7.22      | 6.58       | 7.74      | 7.01      | 6.04       | 7.58      | Te        | 5.23       | 6.95      |
| Dissolved Oxygen (mg/L)       | *         | *          | *         | 7.73      | 7.70       | 8.67      | 5.55      | 5.36       | 7.72      | 3.11      | 1.58       | 7.39      | ste       | 0.29       | 2.06      |
| Dissolved Oxygen (%)          | *         | *          | *         | 101.3     | 101.0      | 101.5     | 71.6      | 69.4       | 90.1      | 40.0      | 20.1       | 86.2      | <u>o</u>  | 3.6        | 23.6      |
| Turbidity (NTU)               | *         | *          | *         | 8.6       | 6.6        | 8.7       | 8.5       | 6.9        | 8.5       | 8.3       | 6.9        | 8.6       |           | 15.5       | 9.8       |

Notes: \* No surface water reading (YSI Sonde must be submerged 1' before reading can occur)

| Dec. 2015 |
|-----------|
| 23.11     |
| 493       |
| 0.24      |
| 7.50      |
| 8.12      |
| 95.0      |
| 8.9       |

| Dec. 2015 |
|-----------|
| 22.93     |
| 493       |
| 0.24      |
| 7.52      |
| 7.10      |
| 82.4      |
| 9.2       |

FIGURES



SURFACE WATER SAMPLING LOCATIONS



FIGURE 2. DECEMBER 2015 GROUNDWATER SAMPLING RESULTS



FIGURE 3. DECEMBER 2015 SURFACE WATER SAMPLING RESULTS

# ATTACHMENT A

# **Groundwater Sampling Logs and Field Equipment Calibration Logs**

| SITE<br>NAME:                                 | Sawa                            | rass 1                                       | ake                             | Site                                      | S                         | TE<br>DCATION:                | Pir                                             | rellas                                                             | Park                                 |                            |                                |
|-----------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------|-------------------------------------------|---------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|----------------------------|--------------------------------|
| WELL NO                                       |                                 | - 1R                                         |                                 | SAMPLE                                    | ID: SL                    |                               | -1R-1                                           |                                                                    |                                      | 115/1                      | 5                              |
|                                               |                                 | -                                            |                                 | 4                                         |                           | SING DA                       |                                                 |                                                                    |                                      | 1 - 1 -                    |                                |
| WELL<br>DIAMETER<br>WELL VOI<br>(only fill ou |                                 | TUBINO<br>DIAME                              | TER (inches):<br>UME = (TOT     | 14 DEI                                    | PTH - STA                 | TIC DEPTH T                   | OWATER) X                                       | ER (feet):                                                         | 1 > OR BA                            | EPUMP TYPE                 | staltic                        |
| EQUIPME<br>(only fill ou                      | NT VOLUME P<br>t if applicable) | URGE: 1 EQU                                  | IPMENT VOL.                     | = PUMP VOI<br>= O g                       | allons + (Ou              |                               | feet) X<br>TY X TI<br>ons/foot X 5              | UBING LENGTH                                                       | gallons/foot<br>+ FLOW CELL<br>+ 0.2 | VOLUME                     | gallons<br>214<br>gallons      |
| INITIAL PU<br>DEPTH IN                        | WELL (feet):                    | 65.5                                         | FINAL PUM<br>DEPTH IN \         | P OR TUBING<br>WELL (feet):               | ° 5.5                     | PURGIN                        | G AT: 9:5                                       |                                                                    |                                      | OTAL VOLUM<br>URGED (gallo |                                |
| TIME                                          | VOLUME<br>PURGED<br>(gallons)   | CUMUL.<br>VOLUME<br>PURGED<br>(gallons)      | PURGE<br>RATE<br>(gpm)          | DEPTH<br>TO<br>WATER<br>(feet)            | pH<br>(standard<br>units) | TEMP.<br>(°C)                 | COND.<br>(circle units)<br>µmhos/cm<br>or µS/cm | DISSOLVED<br>OXYGEN<br>(circle units)<br>(mg/L) or<br>% saturation | TURBIDITY<br>(NTUs)                  | COLOR<br>(describe)        | ODOR<br>(describe)             |
| 10:20                                         | 3,0                             | 3.0                                          | 0.1                             | 3.31                                      | 6,52                      | 23,95                         | 2282                                            | 1.03                                                               | 7.13                                 | Black                      | None                           |
| 10:25                                         | 0.5                             | 3,5                                          | 0.1                             | 3,30                                      | 6.45                      | 23,95                         | 2273                                            | 0.71                                                               | 6.89                                 | Lt. BIK                    |                                |
| 10:30                                         | 0.5                             | 4,0                                          | 0.1                             | 3,31                                      | 6.38                      | 23.95                         | 2271                                            | 0.56                                                               | 5.65                                 |                            |                                |
| 10:35                                         | 0.5                             | 4.5                                          | 0.1                             | 3.30                                      | 6.36                      | 23.94                         | 2288                                            | 0.53                                                               | 5.36                                 | V                          |                                |
| 10:40                                         | 0.5                             | 5.0                                          | 0.1                             | 3.31                                      | 6.35                      | 23,93                         | 2299                                            | 0.50                                                               | 4.62                                 | Clear                      |                                |
| 10:45                                         | 0.5                             | 5.5                                          | 0.1                             | 3.31                                      | 6.34                      | 23.93                         | 2296                                            | 0.47                                                               | 5.28                                 | *                          | V                              |
| TUBING IN                                     |                                 | s Per Foot): 0<br>PACITY (Gal./F<br>CODES: B | t.): 1/8" = 0.0                 | 1" = 0.04;<br>006; 3/16"<br>P = Bladder F | Pump; E                   | 1/4" = 0.002<br>SP = Electric | 6; <b>5/16"</b> = 0.<br>Submersible Pur         | 004; <b>3/8"</b> = 0.                                              |                                      |                            | = 5.88<br>= 0.016<br>(Specify) |
| SAMPLED                                       | BY (PRINT) / A                  | FEILIATION:                                  |                                 | SAMPLER(S)                                |                           | LING DA                       | ATA                                             |                                                                    | 1.0                                  |                            |                                |
| Brad                                          | Bayne                           |                                              | ins                             | IS                                        | m                         | 25                            | n                                               | SAMPLING<br>INITIATED AT                                           |                                      | SAMPLING L                 |                                |
| PUMP OR                                       | WELL (feet):                    | 5.5                                          |                                 | MATERIAL CI                               | ODE: HD                   | PE +S                         |                                                 | -FILTERED: Y                                                       |                                      | FILTER SIZE:               | μm                             |
| FIELD DEC                                     | ONTAMINATIO                     | ON: PUM                                      | -                               |                                           | TUBING                    | -                             | placed)                                         | DUPLICATE:                                                         | D                                    | N                          |                                |
| SAMP                                          |                                 | R SPECIFICA                                  | TION                            | 1                                         | SAMPLE PR                 | ESERVATIO                     | N                                               | INTENDE                                                            |                                      |                            | MPLE PUMP                      |
| SAMPLE<br>ID CODE                             | #<br>CONTAINERS                 | MATERIAL<br>CODE                             | VOLUME                          | PRESERVAT<br>USED                         | IVE T<br>ADDE             | OTAL VOL<br>D IN FIELD (n     | FINAL<br>pH                                     | ANALYSIS AM<br>METHOI                                              |                                      |                            | LOW RATE<br>L per minute)      |
|                                               |                                 |                                              | Sea                             | Ch                                        | nain                      | of                            | cust                                            | ody                                                                |                                      |                            |                                |
|                                               |                                 |                                              |                                 | -                                         |                           |                               |                                                 |                                                                    |                                      |                            |                                |
| REMARKS:                                      |                                 |                                              |                                 |                                           |                           |                               |                                                 |                                                                    |                                      |                            |                                |
| MATERIAL                                      | CODES:                          | AG = Amber G                                 | ilass; CG =                     | Clear Glass;                              | PE = Poly                 | ethylene;                     | PP = Polypropyle                                | ene; S = Silico                                                    | ne; T = Teflon                       | ; O = Other                | (Specify)                      |
| SAMPLING                                      | EQUIPMENT                       |                                              | PP = After Peri<br>PP = Reverse |                                           | B = Bail                  | er; BP =                      | Bladder Pump;<br>Method (Tubing                 | ESP = Electri                                                      | c Submersible P<br>0 = Other (Sp     | ump;                       |                                |
| OTES: 1.                                      | The above of                    |                                              |                                 | ALC ALCOLUMN PROVIDENT                    |                           |                               | er 62-160, F.A                                  |                                                                    |                                      |                            |                                |

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

Revision Date: February 12, 2009

| SITE<br>NAME:                                                                                                   | Sawo                                           | TASS                                    | Lake                      | Site                                        |                                            | TE<br>DCATION:              | Pine                                            | 211/45                                                           | Park                                    |                              |                                      |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|---------------------------|---------------------------------------------|--------------------------------------------|-----------------------------|-------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|------------------------------|--------------------------------------|
| WELL NO:                                                                                                        | m                                              | w-2                                     | R                         | SAMPLE                                      | ID: SL                                     | mw-                         | 2R-1                                            | 215                                                              | DATE: 12                                | 15/15                        | 5                                    |
|                                                                                                                 |                                                |                                         |                           |                                             |                                            | SING DA                     | TA                                              |                                                                  |                                         |                              |                                      |
| WELL<br>DIAMETER                                                                                                | (inches): 2                                    | TUBING<br>DIAMET                        | ER (inches):              | 14 DEP                                      | L SCREEN                                   | et to 13.7 fe               | STATIC I                                        | ER (feet): 3:C                                                   | OR BA                                   | LER: Per                     | stattic                              |
| (only fill out                                                                                                  | if applicable)                                 |                                         | = ( 1                     | 3.7                                         | feet- 3                                    | .04                         | feet) X                                         | WELL CAPACI                                                      | gallons/foot                            |                              | gallons                              |
|                                                                                                                 | IT VOLUME PU<br>if applicable)                 | RGE: 1 EQU                              | PMENT VOL.                | = PUMP VOL                                  | UME + (TUB<br>allons + ( $O$               | 0026<br>gallo               | ns/foot x 5                                     | UBING LENGTH)<br>feet)                                           | + D.Z                                   | gallons =                    | , Z13<br>gallons                     |
|                                                                                                                 | MP OR TUBING<br>WELL (feet):                   | 5                                       | Landa C. S. Sana Y. Y. S. | P OR TUBING                                 | 5                                          | PURGIN                      | G AT: 11:0                                      |                                                                  |                                         | OTAL VOLUM<br>URGED (gallo   |                                      |
| TIME                                                                                                            | VOLUME<br>PURGED<br>(gallons)                  | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm)    | DEPTH<br>TO<br>WATER<br>(feet)              | pH<br>(standard<br>units)                  | TEMP.<br>( <sup>o</sup> C)  | COND.<br>(circle units)<br>µmhos/cm<br>or µS/cm | DISSOLVED<br>OXYGEN<br>(circle units)<br>mg/L or<br>% saturation | TURBIDITY<br>(NTUs)                     | COLOR<br>(describe)<br>Light | ODOR<br>(describe)                   |
| 11:35                                                                                                           | 3.0                                            | 3.0                                     | 0.1                       | 3.35                                        | 6.33                                       | 24.08                       | 1209                                            | 1.01                                                             | 12,2                                    | Black                        | None                                 |
| 1:40                                                                                                            | 0.5                                            | 3.5                                     | 0.1                       | 3,34                                        | 6.24                                       | 24.07                       | 1200                                            | 0.76                                                             | 12.0                                    | Clear                        |                                      |
| 11:45                                                                                                           | 0.5                                            | 4.0                                     | 0.1                       | 3.34                                        | 6,20                                       | 24.07                       | 1197                                            | 0.61                                                             | 10.6                                    |                              |                                      |
| 11:50                                                                                                           | 0.5                                            | 4.5                                     | 0,1                       | 3,35                                        | 6.17                                       | 24.04                       | 1195                                            | 0.40                                                             | 9.89                                    |                              | 1.1                                  |
| 11:55                                                                                                           | 0.5                                            | 5.0                                     | 0.1                       | 3.33                                        | 6.14                                       | 24.05                       | 1190                                            | 0.36                                                             | 9.28                                    |                              |                                      |
| 12:00                                                                                                           | 0,5                                            | 5,5                                     | 0.1                       | 3.34                                        | 6.12                                       | 24.03                       | 1195                                            | 0.29                                                             | 8.68                                    |                              |                                      |
| 12:05                                                                                                           | 0.5                                            | 6.0                                     | 0.1                       | 3,35                                        | 6.11                                       | 24.04                       | 1197                                            | 0,28                                                             | 7.70                                    | V                            | Y                                    |
| TUBING IN                                                                                                       | ACITY (Gallons<br>SIDE DIA. CAP<br>EQUIPMENT C | ACITY (Gal./F                           | it.): 1/8" = 0.0          | 1" = 0.04;<br>0006; 3/16"<br>BP = Bladder F | <b>1.25"</b> = 0.0<br>= 0.0014;<br>Pump; E | 1/4" = 0.002                |                                                 | .004; 3/8" = 0                                                   | The sum offer this is the second of the |                              | " = 5.88<br>" = 0.016<br>r (Specify) |
|                                                                                                                 |                                                |                                         |                           |                                             |                                            | LING DA                     | ATA                                             |                                                                  |                                         |                              |                                      |
| Brach                                                                                                           | & Bayn                                         | Δ.                                      | rkins                     | SAMPLER(S)                                  | ISIGNATUR                                  | E(S):                       | Bup                                             | SAMPLING<br>INITIATED A                                          |                                         |                              | 12:07                                |
| PUMP OR                                                                                                         | TUBING<br>WELL (feet):                         | 5                                       |                           | TUBING MATERIAL C                           | ODE: HD                                    | PETS                        |                                                 | o-FILTERED: (Y<br>ion Equipment Ty                               |                                         | FILTER SIZE                  | :μm                                  |
| Contraction of the second s | ONTAMINATIO                                    | DN: PUM                                 | -                         |                                             | TUBING                                     | 0                           | eplaced)                                        | DUPLICATE:                                                       | Y (                                     | N                            |                                      |
| SAMF                                                                                                            | LE CONTAINE                                    | R SPECIFICA                             | TION                      |                                             | SAMPLE PR                                  | RESERVATIO                  | N                                               | INTEND                                                           |                                         |                              | AMPLE PUMP                           |
| SAMPLE<br>ID CODE                                                                                               | #<br>CONTAINERS                                | MATERIAL<br>CODE                        | VOLUME                    | PRESERVAT<br>USED                           | IVE ADDE                                   | TOTAL VOL<br>ED IN FIELD (I | FINAL<br>mL) pH                                 | ANALYSIS A<br>METHO                                              |                                         |                              | FLOW RATE<br>nL per minute)          |
|                                                                                                                 |                                                |                                         | see                       | cha                                         | àin                                        | of c                        | custo                                           | du                                                               |                                         |                              |                                      |
|                                                                                                                 |                                                |                                         |                           |                                             |                                            |                             |                                                 | 3                                                                |                                         |                              |                                      |
|                                                                                                                 |                                                |                                         |                           | -                                           | -                                          |                             |                                                 | 1                                                                |                                         |                              |                                      |
| REMARKS                                                                                                         | :                                              |                                         |                           |                                             |                                            |                             |                                                 | 1                                                                |                                         |                              |                                      |
| MATERIAL                                                                                                        | CODES:                                         | AG = Amber                              | Glass; CG =               | Clear Glass;                                | PE = Pol                                   | yethylene;                  | PP = Polyprop                                   | ylene; S = Silic                                                 | one; T = Teflo                          | n; O = Othe                  | er (Specify)                         |
| SAMPLING                                                                                                        | EQUIPMENT                                      | F                                       | FPP = Revers              | eristaltic Pump;<br>se Flow Perista         | Itic Pump;                                 | SM = Straw                  |                                                 | g Gravity Drain);                                                | ric Submersible I<br>0 = Other (S       |                              |                                      |
| NOTES: 1.                                                                                                       | The above                                      | do not cons                             | titute all of             | the informat                                | ion require                                | ed by Chap                  | ter 62-160, F.                                  | A.C.                                                             |                                         |                              |                                      |

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

| SITE<br>NAME:           | Sawa                           | Tass                                    | Lak                    | e sit                          | e s                       | ITE<br>OCATION:                           | 1                                                      | Pinella                                                                 | as Par              | -K                          |                                           |
|-------------------------|--------------------------------|-----------------------------------------|------------------------|--------------------------------|---------------------------|-------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|---------------------|-----------------------------|-------------------------------------------|
| WELL NO:                |                                | nu-                                     |                        | SAMPLE                         |                           | LMW                                       | - 3R - 1                                               |                                                                         |                     | 115/1                       | 5                                         |
|                         |                                |                                         |                        |                                | PUR                       | GING DA                                   | TA                                                     |                                                                         |                     |                             |                                           |
| WELL<br>DIAMETER        |                                |                                         | TER (inches):          | 14 DEI                         | TH - STA                  | eet to 13.1 f                             | eet TO WAT                                             | ER (feet): 3,6                                                          | DI PURGI<br>OR BA   | E PUMP TYPE                 | istaltic                                  |
| (only fill out          | if applicable)                 |                                         |                        | 3.1                            | feet                      | 3,61                                      | feet) X<br>TY X T                                      | UBING LENGTH)                                                           | gallons/foot        | VOLUME                      | gallons<br>0,214<br>gallons               |
|                         | MP OR TUBIN<br>WELL (feet):    | <sup>6</sup> 515                        |                        | MP OR TUBING<br>WELL (feet):   |                           | 1                                         |                                                        | 10.0% 10.0 ST 1.                                                        |                     | OTAL VOLUN<br>PURGED (gallo |                                           |
| TIME                    | VOLUME<br>PURGED<br>(gallons)  | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm) | DEPTH<br>TO<br>WATER<br>(feet) | pH<br>(standard<br>units) | темр.<br>( <sup>°</sup> С)                | COND.<br>(circle units)<br>μmhos/cm<br><u>or</u> μS/cm | DISSOLVED<br>OXYGEN<br>(circle units)<br>mg/L <u>or</u><br>% saturation | TURBIDITY<br>(NTUs) | COLOR<br>(describe)         | ODOR<br>(describe)<br>Slight              |
| 9:15                    | 3.0                            | 3.0                                     | 0.1                    | 3,79                           | 6.48                      | 24.17                                     | 1304                                                   | 0.53                                                                    | 1.71                | Elear                       |                                           |
| 9:20                    | 0.5                            | 315                                     | 0.1                    | 3.78                           | 6.45                      | 24,19                                     | 1307                                                   | 0.44                                                                    | 1.31                |                             | V                                         |
| 9:25                    | 0.5                            | 4.0                                     | 0.1                    | 3,79                           | 6.43                      | 24,19                                     | 1312                                                   | 0.40                                                                    | 0.91                |                             | None                                      |
| 9:30                    | 0.5                            | 4.5                                     | 0.1                    | 3.80                           | 6.42                      | 24,19                                     | 1315                                                   | 0.41                                                                    | 0.89                |                             |                                           |
| 9:35                    | 015                            | 5.0                                     | 0.1                    | 3,80                           | 6.41                      | 24,20                                     | 1316                                                   | 0.40                                                                    | 1, 61               | V                           |                                           |
| TUBING IN               | ACITY (Gallon<br>SIDE DIA. CAR | PACITY (Gal.)                           | /Ft.): 1/8" = 0.0      |                                | ' = 0.0014;<br>Pump; E    |                                           | 6; <b>5/16"</b> = 0<br>Submersible Pu                  | .004; <b>3/8"</b> = 0.                                                  |                     |                             | " = 5.88<br>" = 0.016<br>• (Specify)      |
|                         |                                | CELLATION.                              |                        | CAMPLED (6)                    |                           | LING DA                                   | ATA                                                    | 1                                                                       |                     |                             |                                           |
| Brad                    | Bazne                          |                                         | kins                   | SAMPLER                        |                           | W f                                       | Brz                                                    | SAMPLING<br>INITIATED AT                                                |                     | SAMPLING<br>ENDED AT:       | 9:37                                      |
| PUMP OR 1<br>DEPTH IN V |                                | 5.5                                     |                        | TUBING MATERIAL C              | ODE: HT                   | PET                                       | S Filtrati                                             | o-FILTERED: Y                                                           |                     | FILTER SIZE                 | :μm                                       |
| FIELD DEC               | ONTAMINATIO                    | DN: PUN                                 | AP Y (N                | )                              | TUBING                    | Y N(re                                    | eplaced)                                               | DUPLICATE:                                                              | Y (                 |                             |                                           |
|                         | LE CONTAINE<br>#<br>CONTAINERS |                                         |                        | PRESERVAT                      | IVE                       | RESERVATIO<br>TOTAL VOL<br>ED IN FIELD (r | FINAL                                                  | INTENDE<br>ANALYSIS AM<br>METHOL                                        | ND/OR EQUI          | IPMENT I                    | AMPLE PUMP<br>FLOW RATE<br>nL per minute) |
|                         |                                |                                         |                        |                                |                           |                                           |                                                        |                                                                         |                     |                             |                                           |
|                         |                                |                                         | See                    | Ch                             | ain                       | ofc                                       | Eusta                                                  | ody                                                                     |                     |                             |                                           |
|                         |                                |                                         |                        |                                |                           |                                           | -                                                      |                                                                         |                     |                             |                                           |
| REMARKS:                | -                              |                                         |                        |                                |                           |                                           |                                                        | 1                                                                       |                     |                             |                                           |
|                         |                                |                                         |                        |                                |                           |                                           |                                                        |                                                                         |                     |                             |                                           |

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

| SITE<br>NAME:             | Sawa                           | rass                                    | Lak                            | e sit                                       | re lu                     | TE<br>DCATION:             | Pin                                                    | ellas                                               | Park                            |                             |                                    |
|---------------------------|--------------------------------|-----------------------------------------|--------------------------------|---------------------------------------------|---------------------------|----------------------------|--------------------------------------------------------|-----------------------------------------------------|---------------------------------|-----------------------------|------------------------------------|
| WELL NO:                  |                                | W-4                                     |                                | SAMPLE                                      | 10: 51                    | LMW                        | -4R-                                                   | 1215                                                | DATE: 12                        | 2/15/                       | 15                                 |
|                           |                                |                                         |                                |                                             | PURC                      | SING DA                    | TA                                                     |                                                     |                                 |                             |                                    |
| WELL<br>DIAMETER          | (inches):                      |                                         | TER (inches):                  | 14 DEP                                      | TH: 4 fe                  | et to 14 f                 | eet TO WATE                                            | R (feet): 3,3                                       | 3 OR BA                         | ILER: Per                   | istalti                            |
| (only fill out i          | if applicable)                 |                                         | = (                            | 14                                          | feet -                    | 3.33                       | feet) X                                                | WELL CAPACI                                         | gallons/foot                    |                             | gallons                            |
| (only fill out i          | f volume pu<br>if applicable)  | JRGE: 1 EQU                             | IPMENT VOL                     | = D ga                                      | allons + (                | and 26 gallo               |                                                        | JBING LENGTH)                                       | + 012                           | gallons =                   | ,214<br>gallons                    |
| INITIAL PUN<br>DEPTH IN V | MP OR TUBING                   | ° 5.5                                   |                                | IP OR TUBING                                | 5,5                       | PURGIN                     | G AT: 7:39                                             | PURGING<br>ENDED AT:<br>DISSOLVED                   |                                 | OTAL VOLUM<br>PURGED (gallo |                                    |
| TIME                      | VOLUME<br>PURGED<br>(gallons)  | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) | PURGE<br>RATE<br>(gpm)         | DEPTH<br>TO<br>WATER<br>(feet)              | pH<br>(standard<br>units) | TEMP.<br>( <sup>°</sup> C) | COND.<br>(circle units)<br>μmhos/cm<br><u>or</u> μS/cm | OXYGEN<br>(circle units)<br>mg/L or<br>% saturation | TURBIDITY<br>(NTUs)             | COLOR<br>(describe)         | ODOR<br>(describe)                 |
| 8:09                      | 3.0                            | 3.0                                     | 0.1                            | 3.43                                        | 6.55                      | 24.47                      | 799                                                    | 1.48                                                | 1,99                            | Clear                       | None                               |
| 8:14                      | 0.5                            | 3,5                                     | D.1                            | 3.45                                        | 6.41                      | 24,53                      | 787                                                    | 1.21                                                | 1.31                            |                             |                                    |
| 8:19                      | 0.5                            | 4.0                                     | 0.1                            | 3.44                                        | 6.38                      | 24.55                      | 784                                                    | 0.80                                                | 2.01                            |                             |                                    |
| 8:24                      | 0.5                            | 4.5                                     | 0.1                            | 3.44                                        | 6.36                      | 24.55                      | 784                                                    | 0.51                                                | 1.82                            |                             |                                    |
| 8:29                      | 0.5                            | 5.0                                     | 0.1                            | 3.43                                        | 6.34                      | 24.57                      | 785                                                    | 0.42                                                | 1.24                            | 1                           |                                    |
| 8:34                      | 0.5                            | 5,5                                     | 0.1                            | 3,43                                        | 6.34                      | 24,57                      | 785                                                    | 0,39                                                | 1.30                            | V                           | V                                  |
| TUBING INS                | ACITY (Gallon<br>SIDE DIA. CAI | PACITY (Gal./                           | Ft.): $1/8'' = 0.$             | 1" = 0.04;<br>0006; 3/16"<br>BP = Bladder F |                           | 1/4" = 0.002               |                                                        | .004; 3/8" = 0                                      | 9                               |                             | ' = 5.88<br>' = 0.016<br>(Specify) |
| FURGING                   | COPMENT                        | ODE3. D                                 | - Daner,                       | DI - Diaddei i                              |                           | LING D                     |                                                        |                                                     |                                 |                             |                                    |
| Brad                      | Bay                            |                                         | rkins                          | SAMPLERIS)                                  |                           |                            | In                                                     | SAMPLING<br>INITIATED A                             |                                 | SAMPLING<br>ENDED AT:       | -                                  |
| PUMP OR T                 |                                | 5.5                                     |                                | TUBING<br>MATERIAL C                        | ODE: H                    | OPET                       | S FIELD                                                | -FILTERED: (Y<br>on Equipment Ty                    |                                 | FILTER SIZE:                | μm                                 |
|                           | ONTAMINATIO                    | DN: PUN                                 | IP Y IN                        |                                             | TUBING                    | Y (N)                      | eplaced)                                               | DUPLICATE:                                          |                                 | N                           |                                    |
|                           |                                |                                         | T                              |                                             | SAMPLE PI                 | RESERVATIO                 | N                                                      | INTEND                                              | ED SAM                          | APLING SA                   | MPLE PUMP                          |
| SAMPLE<br>ID CODE         |                                | MATERIAL<br>CODE                        | VOLUME                         | PRESERVAT<br>USED                           |                           | TOTAL VOL<br>ED IN FIELD ( |                                                        | ANALYSIS A<br>METHO                                 |                                 |                             | LOW RATE                           |
|                           |                                |                                         | See                            | Cha                                         | 2                         | of                         | Custa                                                  | NPO                                                 |                                 |                             |                                    |
|                           |                                |                                         | see                            | -119                                        |                           |                            |                                                        |                                                     |                                 |                             |                                    |
|                           |                                |                                         |                                |                                             |                           |                            |                                                        |                                                     |                                 |                             |                                    |
| REMARKS:                  |                                |                                         | 1                              |                                             | 12                        |                            |                                                        |                                                     |                                 |                             |                                    |
| MATERIAL                  | CODES:                         | AG = Amber                              | Glasš; CG :                    | = Clear Glass;                              | PE = Pol                  | yethylene;                 | PP = Polypropy                                         | vlene; S = Silic                                    | one; T = Teflo                  | in; <b>O</b> = Othe         | r (Specify)                        |
| SAMPLING                  | EQUIPMENT                      | CODES:                                  | APP = After Pe<br>RFPP = Rever | eristaltic Pump;                            | B = Ba                    |                            | Bladder Pump;<br>Method (Tubing                        |                                                     | ric Submersible<br>0 = Other (S |                             |                                    |

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

#### DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

Field Instrument Calibration Records

| ARAME                                   | TER: [c                 | heck only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | one]          | crent                                  | red f             | rom Pet                 | erson E              | Enviro              |
|-----------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|-------------------|-------------------------|----------------------|---------------------|
|                                         | 10. Sec. 10. Sec. 1     | A second s |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
| STANDA                                  | RDS: [S]<br>the date th | pecify the ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pe(s) of star | ndards used for c<br>ared or purchased | alibration,<br>d1 | the origin of the       | standards, the       | standard            |
| Stand                                   | ard A                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NTU           | provide                                | ed b-             | 1 Peter                 | -son En              | vironr              |
| Stand                                   | ard B                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NTU           |                                        |                   |                         |                      |                     |
| Stand                                   | ard C                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
| DATE<br>(yy/mm/dd)                      | TIME<br>(hr:min)        | STD<br>(A, B, C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STD<br>VALUE  | INSTRUMENT<br>RESPONSE                 | % DEV             | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
| 12/15/15                                | 7:19                    | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10            | 10,1                                   | 1%0               | Yes                     | Init.                | BB                  |
| V                                       | 7:20                    | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20            | 19.9                                   | 41%               | Yes                     | Init.                | BB                  |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         | -                    |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         | 10212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        | ·                 |                         |                      | 1 CO.               |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        | 1                 |                         |                      |                     |
|                                         | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         | i (                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |
|                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        |                   |                         |                      |                     |

Page 1 of 1

Page 1 of 1

## DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

**Field Instrument Calibration Records** 

| PARAME             | TER: [c          | heck only        | one] (       | YSI 5<br>rented                       | from  | Peter                   | son Erw              | iron A              |
|--------------------|------------------|------------------|--------------|---------------------------------------|-------|-------------------------|----------------------|---------------------|
|                    | PERATUR          |                  |              |                                       |       |                         |                      |                     |
|                    | BIDITY           | 1                | RESIDUAL     |                                       |       |                         | IER                  |                     |
| values, and        | the date th      | ne standard      | s were prep  | ndards used for c<br>ared or purchase | d1    |                         |                      |                     |
| Standa             | ard A            | 4.01             | prov         | ided by                               | lete  | rson E                  | nviron               | ment                |
| Standa             | ard B            | 7.00             |              |                                       |       |                         |                      |                     |
|                    | ard C            |                  |              |                                       |       |                         |                      |                     |
| DATE<br>(yy/mm/dd) | TIME<br>(hr:min) | STD<br>(A, B, C) | STD<br>VALUE | INSTRUMENT<br>RESPONSE                | % DEV | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
| 12/15/15           | 7:15             | A                | 4.01         | 4.00                                  | L1010 | Yes                     | Init.                | BB                  |
| +                  | 7:16             | B                | 7,00         | 7.01                                  | L1º10 | Yes                     | Init,                | BB                  |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  | 1            |                                       |       |                         |                      |                     |
|                    |                  |                  | 1            |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       | -                       |                      |                     |
|                    |                  |                  |              |                                       |       |                         | 1                    |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |
|                    |                  |                  |              |                                       |       |                         |                      |                     |

Page \_\_\_\_\_Of \_\_\_\_

#### DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

### **Field Instrument Calibration Records**

|                    |                  |                  |              | YSI 55                                 |       |                                          |                      |                     |
|--------------------|------------------|------------------|--------------|----------------------------------------|-------|------------------------------------------|----------------------|---------------------|
|                    |                  |                  |              | rented                                 |       |                                          |                      | ironn               |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    | BIDITY           |                  | RESIDUAL     |                                        | 00    | OTH                                      |                      |                     |
| alues, and         | the date th      | e standards      | were prepa   | ndards used for c<br>ared or purchased | d]    | 101 C 17 C 10 C 10 C 10 C 10 C 10 C 10 C |                      |                     |
| Standa             | ard A            | 000              | 45 p         | rovided                                | by P  | eterson                                  | Enviro               | onmen               |
|                    |                  |                  |              | <u></u>                                |       |                                          |                      |                     |
| Standa             | ard C            |                  |              |                                        |       |                                          |                      |                     |
| DATE<br>(yy/mm/dd) | TIME<br>(hr:min) | STD<br>(A, B, C) | STD<br>VALUE | INSTRUMENT<br>RESPONSE                 | % DEV | CALIBRATED<br>(YES, NO)                  | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
| 12/15/15           | 7:13             | A                | 1,000        | 1,002                                  | <1%   | Yes                                      | Init.                | BB                  |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
| 1                  |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
| -                  |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
| 1                  |                  |                  |              |                                        | (     |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  | 1                |              | 1                                      |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       | 1                                        |                      | ÷                   |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        | 1     |                                          |                      |                     |
|                    |                  | _                |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
| <                  |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |
|                    |                  |                  |              |                                        |       |                                          |                      |                     |

Page 6 of 7

Page 1 of 1

## DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

**Field Instrument Calibration Records** 

| INSTRUM            |                   |                  | one]                | YSI 5!<br>Crented                       | From          | n Peters                | Son Env              | ironm               |
|--------------------|-------------------|------------------|---------------------|-----------------------------------------|---------------|-------------------------|----------------------|---------------------|
|                    | PERATUF<br>BIDITY |                  | CONDUCT<br>RESIDUAL | . /                                     | ALINITY<br>00 | 1                       |                      |                     |
|                    |                   |                  |                     | ndards used for ca<br>ared or purchased |               |                         |                      |                     |
| Standa             | ard A _ S         | 3.56 m           | ngle (              | ared or purchased                       | rovid         | ed by                   | Peter                | son                 |
| Standa             | ard B             |                  |                     |                                         |               |                         | E                    | nviron              |
|                    | ard C             | 075              |                     |                                         | 1             |                         | -                    | 011101 50           |
| DATE<br>(yy/mm/dd) | TIME<br>(hr:min)  | STD<br>(A, B, C) | STD<br>VALUE        | INSTRUMENT<br>RESPONSE                  | % DEV         | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
| 12/15/15           | 7:10              | A                | 2.56                | 8.56                                    | 0%            | Yes                     | Init.                | BB                  |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         | -             |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   | (                |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
| -                  | -                 |                  |                     |                                         |               |                         |                      |                     |
|                    |                   | <u>,</u>         |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         | <u> </u>      | -                       |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    |                   | - 1              |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         |               |                         |                      |                     |
|                    | -                 |                  |                     |                                         |               |                         |                      |                     |
|                    |                   |                  |                     |                                         | Y             |                         |                      |                     |

# ATTACHMENT B

# Surface Water YSI Sampling Logs and Calibration Logs

| Notebook # 151215DB1 Project: Surgress Lak                                            | - Task:               | WQ quarter!          | Y            | Page # 12           | î.                 |             |
|---------------------------------------------------------------------------------------|-----------------------|----------------------|--------------|---------------------|--------------------|-------------|
| Date: 2015112115 (yy/mm/dd)                                                           | Ну                    | drolab/YSI Uni       | t#: 901      | 1 Jett              |                    |             |
| Calibration Book Number: 14091964                                                     |                       | libration Book I     |              |                     |                    |             |
| Air Temperature:                                                                      |                       |                      | DESE         |                     |                    |             |
| Tide Stage:A                                                                          | Cle                   | oud Cover:           | 100%         |                     |                    |             |
| Reporting Unit<br>Geo Stratum: Saugrass Leike Temperature                             | Specific<br>Cond.     | Salinity             | рН           | Dissolved<br>Oxygen | Turbidity          | Check<br>If |
| Time On         Depth (m) (C)           Station         110         0.2         23.51 | <u>(µS/cm)</u><br>529 | (ppt)                | -            | (mg/L)/(%)          | (NTU)              | Bottom      |
| 24 hr / FST                                                                           |                       | 0:25                 | 1.00         | 3.17 37.1           |                    | 60          |
| $0.5 \frac{25.50}{21.20}$                                                             | 529                   | 0.26                 | 6.90         | 2.67/31,            | 5 1701             |             |
| Stratum/ 1.0 21.24                                                                    | 546                   | 0.26                 | 6.73         | 0.81 /9.            | 1 1.4              |             |
| Station # $SLSW - 1$ 2.5                                                              | 567                   | . <u>0.27</u>        | 6.71         | 0,60 / 6.8          | 6 <u>[0, 0</u><br> |             |
| Alt # Lateral Pos 3.0<br>3.5                                                          |                       |                      |              |                     |                    |             |
| Secchi depth 4.0                                                                      |                       |                      |              |                     |                    | Π           |
| (meters) 4.5                                                                          |                       |                      |              |                     |                    |             |
| Secchi @ bottom Yes 5.0                                                               |                       |                      |              |                     |                    |             |
| Water depth         1.5         5.5            (water column depth)         6.5       |                       |                      | _            |                     |                    |             |
| Latitude<br>Degrees Decimal Minutes                                                   | Γ                     | Longitude<br>Degrees | Decima       | l Minutes           |                    |             |
| Projected:                                                                            |                       | 82                   |              |                     |                    |             |
| Actual: 27. 83712                                                                     |                       | 82 . (               | 07542        | 2                   |                    |             |
| 영양 방송 전에서 이상 방송에서 전에 가지 않는 것이까?                                                       | Custody Form          |                      |              |                     |                    |             |
| Sample Taken Samples Processed                                                        | d Samples F           | Preserved            | Sediment Sar | mple Taken          |                    |             |
| (check):                                                                              |                       |                      |              | ]                   |                    |             |
| Field Notes: Wer sample depth time                                                    |                       | depth                | by sur       | very rod            |                    |             |
| 0 1125                                                                                |                       | 5,5                  |              | 11                  |                    |             |
| 1 1120                                                                                |                       |                      |              |                     |                    |             |
| 2 1135                                                                                |                       |                      |              |                     |                    |             |
|                                                                                       |                       |                      |              |                     |                    |             |
| 3 1138                                                                                |                       |                      |              |                     |                    | )           |
| Signed Date                                                                           | -                     | Signed               | Da           | te                  |                    |             |

ŝ

|                               | 51215DB1 P          | roject: <u>3</u> |                         |                       |                      | 1            | Page # <u>9</u>           | L.N       |             |
|-------------------------------|---------------------|------------------|-------------------------|-----------------------|----------------------|--------------|---------------------------|-----------|-------------|
| Date: 201.                    | 1                   |                  | (yy/mm/dd)              | Ну                    | drolab/YSI Unit      |              | 1 451 6920                | CH        |             |
| Calibration Bo                |                     | 1409190          | -1                      |                       | libration Book I     |              | affer 3                   |           |             |
| Air Temperat                  |                     |                  |                         |                       | ind: <u>10-18</u>    |              |                           |           |             |
| Tide Stage:                   |                     |                  |                         | Clo                   | oud Cover:           | 100 210      |                           |           |             |
| Reporting Uni<br>Geo Stratum: | Saugras             | Depth (m)        | Temp-<br>erature<br>(C) | Specific<br>Cond.     | Salinity             | рН           | Dissolved<br>Oxygen       | Turbidity | Check<br>If |
| Time On<br>Station            | 0911                |                  | 23.17                   | <u>(µS/cm)</u><br>492 | (ppt)<br>0.24        | 7.01         | (mg/L)/(%)<br>B. 65/10/.4 | (NTU)     | Bottom      |
| -                             | 24 hr. / EST        | 0.2              |                         |                       |                      | 7.64         |                           |           |             |
|                               | 1                   | 0.5              | 23.16                   | 492                   | 0.24                 | 7.61         | 8.61/101.                 |           |             |
| Stratum/                      | 1                   | 1.0              | 23.14                   | 492                   | 0.24                 | 7.58         | 8.44/98.8                 |           |             |
|                               | Chill of            | 1.5              | 23.11                   | 493                   | 0.24                 | 7.50         | 8.12/95.0                 | B.9       |             |
| Station #                     | LSW-2               | 2.0              | 22.89                   | 493                   | 0.24                 | \$ 7.36      | 6.12/11.8                 | 8.9       |             |
| ,                             | 1                   | 2.5              | 22.57                   | 494                   | 024                  | 7.12         | 5.34/61.8                 | 1161      | 0.10        |
| Alt #Lat                      | eral Pos. 🦯         | _ 3.0            |                         |                       |                      |              |                           |           |             |
|                               |                     | 3.5              |                         |                       |                      |              |                           |           |             |
| Secchi depth                  |                     | 4.0              |                         |                       |                      |              |                           |           |             |
|                               | (meters)            | 4.5              |                         |                       |                      |              |                           |           |             |
| Secchi @ botto                | m 🗌 Yes             | 5.0              |                         |                       |                      |              |                           |           |             |
|                               |                     | 5.5              |                         |                       |                      |              |                           |           | П           |
| Water depth                   | 2.1                 | 6.0              |                         |                       |                      |              |                           |           |             |
| (water column de              | (meters)            | 6.5              |                         |                       |                      | -            |                           |           |             |
| (nator continui dej           |                     | 0.0              |                         | · · · · · ·           | 10000                |              |                           | ·         |             |
|                               | Latitude<br>Degrees | Decin            | nal Minutes             | D                     | Longitude<br>Degrees | Decimal      | Minutes                   |           |             |
| Projected:                    |                     |                  |                         |                       | 82                   |              |                           |           |             |
| rrojecteu:                    |                     |                  |                         |                       | 82                   |              |                           |           |             |
| Actual:                       | 27 , 1              | 34157            | 4                       |                       | 82 . 67              | 371          |                           |           |             |
| Samples: Che                  | eck Container N     | lumbers [        | Check                   | Custody Form          | is 🗌                 |              |                           |           |             |
|                               | Sample Take         | en Sa            | imples Processe         | d Samples P           | reserved             | Sediment San | nple Taken                |           |             |
| (check):                      |                     | ve               |                         |                       |                      |              |                           |           |             |
| Field Notes:                  | 0- 0931             | ,                |                         |                       |                      |              |                           |           |             |
|                               | 1 0934              |                  |                         |                       | depth .              | + 11.2       |                           |           |             |
|                               | 3 093               | 1                |                         | by si                 | uney rod             |              |                           |           |             |
|                               | 5 093               | 19               |                         |                       |                      |              |                           |           |             |
|                               |                     |                  |                         |                       |                      |              |                           |           |             |
| Signed                        |                     |                  | Date                    |                       | Signed               | Dat          |                           |           |             |

C:/Users/huds6335/Desktop/SL Data Form - Water Column Profile - JAH.doc Copied- Initial & date Entered- Initial & date

| Date: <u>2015/12/15</u><br>Calibration Book Number: <u>140</u><br>Air Temperature: |                                          |                  | Hydrolab/YSI Ur<br>Calibration Book<br>Wind: 5-/ | 1           | 3                                 |                    | 1           |
|------------------------------------------------------------------------------------|------------------------------------------|------------------|--------------------------------------------------|-------------|-----------------------------------|--------------------|-------------|
| Tide Stage:                                                                        |                                          |                  | Cloud Cover:                                     | 100%        |                                   |                    |             |
| Reporting Unit<br>Geo Stratum: Scurgrass                                           | <u>uke</u> Temp<br>eratu<br>epth (m) (C) | o- Specific      | Salinity<br>(ppt)                                | рН          | Dissolved<br>Oxygen<br>(mg/L)/(%) | Turbidity<br>(NTU) | Check<br>If |
| Time On<br>Station 0945                                                            | 0.2 <b>23.2</b> 4                        |                  | 0.24                                             | 7,82        | 8.85/103,7                        | 9.0                | Bottom      |
| 24 hr. / EST                                                                       | 0.5 23.24                                | 491              | 0.24                                             | 7.79        | 8.84 / 103,6                      |                    |             |
| Stratum/                                                                           | 1.0 23.11                                | 492              | 0.24                                             | 7.67        | 8.25/96,5                         |                    | П           |
|                                                                                    | 1.5 22.93                                | 493              | 0.24                                             | 1.52        | 7.10/82,4                         | + 9,2              |             |
| Station # SLSW-3                                                                   | 2.0 22.53                                | 5 494            | 0.24                                             | 1.25        | 6.05/70.1                         | 9.4                |             |
| , ,                                                                                | 2.5 22.15                                | 495              | 0.24                                             | 7.07        | 3.09/3514                         | 10.8               |             |
| Alt # Lateral Pos.                                                                 | 3,0 21.93                                | 496              | 0,24                                             | 6.85        | 1.81/20,7                         | 12,3               | É           |
|                                                                                    | 3.5                                      |                  |                                                  |             |                                   |                    |             |
| Secchi depth (meters)                                                              | 4.0                                      |                  |                                                  | <u> </u>    |                                   |                    |             |
| (meters)                                                                           | 4.5                                      |                  |                                                  | -           |                                   |                    |             |
| Secchi @ bottom 🗌 Yes                                                              | 5.0                                      |                  |                                                  |             |                                   |                    |             |
| 20                                                                                 | 5.5                                      |                  |                                                  |             | -                                 |                    |             |
| Water depth                                                                        | 6.0                                      |                  |                                                  |             |                                   |                    |             |
| (water column depth)                                                               | 6.5                                      |                  |                                                  |             |                                   |                    | Ц           |
| Latitude<br>Degrees                                                                | Decimal Minute                           | s                | Longitude<br>Degrees                             | Decim       | al Minutes                        |                    |             |
| Projected:                                                                         |                                          |                  | 82                                               |             |                                   |                    |             |
| Actual: 27.840                                                                     | 58                                       |                  | 82 . 6                                           | 7332        |                                   |                    |             |
| Samples: Check Container Num                                                       | nbers 🗌 🖸                                | Check Custody Fo | rms                                              |             |                                   |                    |             |
| Sample Taken                                                                       | Samples Pro                              | cessed Sample    | s Preserved                                      | Sediment Sa | ample Taken                       |                    |             |
| (check):                                                                           |                                          |                  |                                                  | E           |                                   |                    |             |
| Field Notes:                                                                       |                                          |                  |                                                  | deinten     | by survey                         | neel               |             |
| Depth was sample                                                                   | Ame                                      |                  |                                                  | 21          | T'                                | 1001               |             |
| 0                                                                                  | 0953                                     |                  |                                                  |             |                                   |                    |             |
| 1                                                                                  | 0956                                     |                  |                                                  |             |                                   |                    |             |
| 3                                                                                  | 09.58                                    |                  |                                                  |             |                                   |                    |             |
| 5                                                                                  | 1000                                     |                  |                                                  |             |                                   |                    |             |

C:\Users\huds6335\Desktop\SL Data Form - Water Column Profile - JAH.doc Copied- Initial & date Entered- Initial & date

| Notebook # 151215DB1 Pro                      | oject: Surgre | as Lacke Task              | Wa quartery          | saryfly      | Page # _//          |           |             |
|-----------------------------------------------|---------------|----------------------------|----------------------|--------------|---------------------|-----------|-------------|
| Date: 2015/12/15                              | (yy/m         | m/dd) H                    | lydrolab/YSI Un      | it #:        | Sett                |           |             |
| Calibration Book Number:                      | 140919641     |                            | alibration Book      | Page #:      | 3                   |           |             |
| Air Temperature:                              |               | v                          | Vind:                | 5BE          |                     |           |             |
| Tide Stage:                                   |               |                            | loud Cover:          | 1009.        |                     |           |             |
| Reporting Unit<br>Geo Stratum: <u>Saugras</u> |               | np- Specific<br>ture Cond. | Salinity             | рН           | Dissolved<br>Oxygen | Turbidity | Check<br>If |
| THE UI                                        | Depth (m)(    | <u>C) (µS/cm)</u>          | (ppt)                |              | (mg/L)/(%)          | (NTU)     | Bottom      |
| Station 1005                                  |               | 15 491                     | 0.24                 | 7.82         | 8.67/101.5          | 8.7       |             |
| 24 hr. / EST                                  | 0.5 23.       |                            | 0,24                 | 7.77         | 8.22/96.1           | 8.6       |             |
| Stratum/                                      | 1.0 23.0      |                            | a24                  | 7.74         | 7.72/90.1           | 6.5       |             |
|                                               | 1.5 22,       |                            | 0,24                 | 7.58         | 7.39 86.2           | 8.6       |             |
| Station # <u>SLSW-4</u>                       | 2.0 22.       |                            | 924                  | 7.22         | 4.95/57.1           | 9.0       |             |
| 1 1                                           | 2.5 22.0      |                            | 024                  | 6.95         | 2,06/23,1           |           |             |
| Alt # Lateral Pos,                            | 3,0 21.9      | 11 495                     | 0,24                 | 6.90         | 1.57/17.9           | 12.2      |             |
|                                               | 3.5           | _                          |                      |              |                     |           |             |
| Secchi depth(meters)                          | 4.0           |                            |                      |              |                     |           |             |
| (1101015)                                     | 4.5           |                            |                      |              |                     |           |             |
| Secchi @ bottom  Yes                          | 5.0           |                            |                      |              | í                   | ··        |             |
|                                               | 5.5           |                            |                      |              |                     |           |             |
| Water depth(meters)                           | 6.0           |                            |                      |              | 1                   |           |             |
| (water column depth)                          | 6.5           | <u> </u>                   |                      |              |                     |           |             |
| Latitude<br>Degrees                           | Decimal Minu  | ites                       | Longitude<br>Degrees | Decimal      | Minutes             |           |             |
| Projected:                                    |               |                            | 82                   |              |                     |           |             |
| Actual: 27                                    | 83997         |                            | 82 .672              | 258          |                     |           |             |
| Samples: Check Container Nu                   | imbers        | Check Custody For          | ms                   |              |                     |           |             |
| Sample Taken                                  | Samples P     | rocessed Samples           | Preserved            | Sediment San | nple Taken          |           |             |
| (check):                                      |               |                            |                      |              |                     |           |             |
| Field Notes: Delpth Wg                        | samples       | Time                       | de                   | joth la      | y survey 1          | rod       |             |
|                                               | 0             | 1028                       |                      | 1            | 12.1                |           |             |
|                                               | 1             | 1030                       |                      |              | 160                 |           |             |
| E                                             | BUP           | 1032                       |                      |              |                     |           |             |
|                                               | e l           | 1030                       |                      |              |                     |           |             |
|                                               | AB            |                            |                      |              |                     |           |             |
|                                               |               |                            |                      |              |                     |           |             |
| Signed                                        | Date          |                            | Signed               | Dat          | e                   |           |             |

C:/Users/huds6335/Desktop/SL Data Form - Water Column Profile - JAH.doc Copied- Initial & date Entered- Initial & date

#### HYDROLAB/YSI CALIBRATION SHEET

Book # 140919CL1



| Project Sawgruss           |      | Task                   |
|----------------------------|------|------------------------|
| Display Model 650 MDS      |      | Sonde Model 6920 V2    |
| Unit Serial# _ Geit / Jeff |      | Name of Calibrator JIW |
| Date 15/12/14              | Time | 12:53                  |

ICV represents the Initial Calibration Verification. This should be completed in run mode after the instrument has been calibrated with the standard solution still in the calibration cup. NOTE: All optical sensors MUST be calibrated in the upright position.

#### 1. SPECIFIC CONDUCTIVITY:

a. Rinse twice with Hi standard (standards must "bracket" observed field values)b. Fill cup with conductivity standard (insure vent hole is covered)

|     | Standard<br>µS/cm | Lot ID# | Standard<br>Temp (°C) | Before<br>µS/cm | After<br>µS/cm | Cal.<br>Constant | ICV<br>µS/cm | Pass (Y/N)<br>+/- 5% |
|-----|-------------------|---------|-----------------------|-----------------|----------------|------------------|--------------|----------------------|
| Hi  | 53000             | 1504153 | 25.34                 | 53440           | 53000          | 4.91327          | 53001        | Y                    |
| Low | 500               | 150504A | 25.30                 | $\ge$           | $\times$       | $\geq$           | 516          | Y                    |

- c. Rinse twice with D.I. water
- d. Perform check with Low standard

a. Rinse twice with pH 7 standard b. Fill cup with pH 7 standard

| Standard | Lot ID#  | Standard<br>Temp (°C) | Before | After | Pass (Y/N)<br>+/- 0.2 | mV     |
|----------|----------|-----------------------|--------|-------|-----------------------|--------|
| 7.00     | 15091517 | 25.11                 | 7.08   | 7:05  | Y                     | - 32,4 |

c. Rinse twice with clean water

d. Rinse twice with pH 10 standard

e. Fill cup with pH 10 standard

| Standard | Lot ID# | Standard<br>Temp (°C) | Before | After | ICV   | Pass (Y/N)<br>+/- 0.2 | mV      |
|----------|---------|-----------------------|--------|-------|-------|-----------------------|---------|
| 10.00    | ITOSOVE | 25.31                 | 9.95   | 10.00 | 10.00 | Y                     | -183.14 |

f. Rinse twice with clean water

g. Repeat steps a and b and check ph 7 again

| Standard | Lot ID#  | Standard<br>Temp (°C) | ICV  | Pass (Y/N)<br>+/- 0.2 | Cal.<br>Constant |
|----------|----------|-----------------------|------|-----------------------|------------------|
| 7.00     | 1509 15A | 25.12                 | 7.01 | Y                     | -5.922           |

h. Rinse twice with D.I. water

j. Rinse twice with clean water

#### 3. DISSOLVED OXYGEN:

a. Place in a bucket with oxygen saturated water (air stone min. 1 hour ); allow to equilibrate.

| Temp (°C)     | Bar.<br>Press | Before<br>mg/L   | Before<br>% | Theoretical<br>mg/L (from<br>chart) | Pass (Y/N)<br>+/- 0.3<br>mg/L | DOC   | harge                      |                  |
|---------------|---------------|------------------|-------------|-------------------------------------|-------------------------------|-------|----------------------------|------------------|
| 24.23         | 760.0         | 8.39             | 100.3       | \$ 387                              | Y                             |       | -                          |                  |
| After<br>mg/L | After %       | ICV Temp<br>(°C) | ICV<br>mg/L | ICV<br>%                            | Theor<br>mg/L<br>chart)       | (from | Pass (Y/N)<br>+/- 0.3 mg/L | Cal.<br>Constant |
| 8-36          | 100.0         | 24.23            | 8.38        | 100.Z                               | 8                             | 387   | Ч                          | 1.07 006         |

b. Rinse twice with clean water

<sup>2</sup>a. pH

| HYDROLAB/Y                                                                                                                                           | SI CALIE          | SKATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N SHEE          | T                 |                      | Book #                      | 140919          | CLI            | Page                  | #                              |                    |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|----------------------|-----------------------------|-----------------|----------------|-----------------------|--------------------------------|--------------------|----------------|
| 4. DEPTI                                                                                                                                             | I (at surface     | e): I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth be        | efore             | - 0,                 | 023M                        | Depth a         | lfter _        | 5.000                 | m                              | -                  |                |
| 5. BATTE                                                                                                                                             | ERY CHE           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                   |                      | 12.2                        |                 |                |                       |                                | -                  |                |
| 6. NOTES                                                                                                                                             | i: <u> </u>       | πυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 -             | ⇒ (               | ଚ                    |                             |                 |                |                       |                                | -                  |                |
| 1) Son<br>2) Sur                                                                                                                                     | face Unit         | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bd              | N                 | linor F              | Repairs                     |                 | ajor Re        | pairs                 |                                |                    |                |
| 3) Cal<br>3.0 CALIBRA                                                                                                                                | TION VI           | and the second se | ATION           | Con Line          | 8-Ho                 | <u>ur</u>                   |                 | an an          | After                 | Use                            |                    | _              |
| 3.0 CALIBRA                                                                                                                                          |                   | and the second se | ATION           |                   | 8-Ho                 | <u>(//////</u> ur           |                 |                | After                 | Use                            |                    |                |
| 3.0 CALIBRA                                                                                                                                          | TION VI           | and the second se | ATION           |                   | 8-Ho                 | ur                          |                 |                | After                 | Use                            |                    |                |
| <b>3.0 CALIBRA</b> Date Time Name of                                                                                                                 | TION VI           | and the second se | ATION           |                   | 8-Ho                 | <u>ur</u>                   |                 |                | After                 | Use                            |                    |                |
| 3.0 CALIBRA<br>Date<br>Time<br>Name of                                                                                                               | TION VI           | and the second se | 4-Hour<br>Check | Pass? Pass? (Y/N) | 8-Hour Solution 0H-8 | 8-Hour<br>Solution<br>Temp. | 8-Hour Check    | Pass? (Y/N)    |                       |                                | After Use<br>Check | Pass?<br>(Y/N) |
| B.0 CALIBRA<br>Date<br>Time<br>Name of<br>Calibrator                                                                                                 | ATION VI<br>4-Hou | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                      |                             | 8-Hour<br>Check | Pass? (Y/N)    | After Use<br>Solution | After Use<br>Solution<br>Temp. | After Use<br>Check | Pass?<br>(Y/N) |
| B.0 CALIBRA<br>Date<br>Time<br>Name of<br>Calibrator                                                                                                 | ATION VI<br>4-Hou | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                      |                             | 8-Hour<br>Check | Pass? (Y/N)    |                       |                                | After Use<br>Check | Pass?<br>(Y/N) |
| B.0 CALIBRA<br>Date<br>Time<br>Name of<br>Calibrator<br>Conductivity<br>(high)<br>Conductivity<br>(low)                                              | ATION VI<br>4-Hou | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                      |                             | 8-Hour<br>Check | Pass? (Y/N)    |                       |                                | After Use<br>Check | Pass?<br>(Y/N) |
| B.0 CALIBRA<br>Date<br>Time<br>Name of<br>Calibrator<br>Conductivity<br>(high)<br>Conductivity<br>(high)<br>Conductivity<br>(low)<br>pH<br>Dissolved | ATION VI<br>4-Hou | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                      |                             | 8-Hour<br>Check | Pass?<br>(Y/N) |                       |                                | After Use<br>Check | Pass?<br>(Y/N) |
| 8.0 CALIBRA<br>Date<br>Time<br>Name of<br>Calibrator                                                                                                 | ATION VI<br>4-Hou | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                      |                             | 8-Hour<br>Check | Pass? (Y/N)    |                       |                                | After Use<br>Check | Pass?<br>(Y/N) |

**Does Unit Pass Post Calibration Check?** 

Yes 🗀 No 🗀 \*

• Note: If the unit does not pass post calibration check then data can not be entered into the data base without approval of QA/QC Office and/or Project Manager. Also, call Lab and put hold on chemistry parameters with long holding times.

2015/12/15 som - Signature and Date feld Reviewer

Field Recorder - Signature and Date

Copied - Initial & Date

Entered - Initial & Date

# ATTACHMENT C

# Groundwater Laboratory Analytical Reports



Pace Analytical Services, Inc. 5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

December 22, 2015

Matt Starr Atkins North America 4030 West Boy Scout Blvd., Su Tampa, FL 33607

RE: Project: Sawgrass Lake GW Pace Project No.: 35221165

Dear Matt Starr:

Enclosed are the analytical results for sample(s) received by the laboratory on December 15, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Muchael W. Palmen

Mike Palmer for Mike Valder mike.valder@pacelabs.com Project Manager

Enclosures

cc: Bradley Bayne, Atkins Golbal



#### **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, Inc. 5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

#### CERTIFICATIONS

Project: Sawgrass Lake GW

#### Pace Project No.: 35221165

#### Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174 Alabama Certification #: 41320 Connecticut Certification #: PH-0216 Delaware Certification: FL NELAC Reciprocity Florida Certification #: E83079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Illinois Certification #: 200068 Indiana Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Maryland Certification: #346 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Missouri Certification #: 236 Montana Certification #: Cert 0074

#### **Tampa Certification IDs**

5460 Beaumont Center Blvd, Ste 520, Tampa, FL 33634

Nebraska Certification: NE-OS-28-14 Nevada Certification: FL NELAC Reciprocity New Hampshire Certification #: 2958 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 North Dakota Certification #: R-216 Oklahoma Certification #: D9947 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670 Wyoming (EPA Region 8): FL NELAC Reciprocity

Florida Certification #: E84809

#### **REPORT OF LABORATORY ANALYSIS**


# SAMPLE SUMMARY

Project: Sawgrass Lake GW Pace Project No.: 35221165

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 35221165001 | SLMW-4R-1215 | Water  | 12/15/15 08:36 | 12/15/15 13:55 |
| 35221165002 | SLMW-3R-1215 | Water  | 12/15/15 09:37 | 12/15/15 13:55 |
| 35221165003 | SLMW-1R-1215 | Water  | 12/15/15 10:50 | 12/15/15 13:55 |
| 35221165004 | Dup C-1215   | Water  | 12/15/15 10:50 | 12/15/15 13:55 |
| 35221165005 | SLMW-2R-1215 | Water  | 12/15/15 12:07 | 12/15/15 13:55 |



Project: Sawgrass Lake GW Pace Project No.: 35221165

| Lab ID      | Sample ID    | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|----------|----------|----------------------|------------|
| 35221165001 | SLMW-4R-1215 | EPA 6010 | SAM      | 2                    | PASI-Tp    |
|             |              | EPA 6010 | SAM      | 5                    | PASI-Tp    |
|             |              | SM 2540C | КСТ      | 1                    | PASI-O     |
| 35221165002 | SLMW-3R-1215 | EPA 6010 | SAM      | 2                    | PASI-Tp    |
|             |              | EPA 6010 | SAM      | 5                    | PASI-Tp    |
|             |              | SM 2540C | КСТ      | 1                    | PASI-O     |
| 35221165003 | SLMW-1R-1215 | EPA 6010 | SAM      | 2                    | PASI-Tp    |
|             |              | EPA 6010 | SAM      | 5                    | PASI-Tp    |
|             |              | SM 2540C | CLS      | 1                    | PASI-O     |
| 35221165004 | Dup C-1215   | EPA 6010 | SAM      | 2                    | PASI-Tp    |
|             |              | EPA 6010 | SAM      | 5                    | PASI-Tp    |
|             |              | SM 2540C | CLS      | 1                    | PASI-O     |
| 35221165005 | SLMW-2R-1215 | EPA 6010 | SAM      | 2                    | PASI-Tp    |
|             |              | EPA 6010 | SAM      | 5                    | PASI-Tp    |
|             |              | SM 2540C | CLS      | 1                    | PASI-O     |



Project: Sawgrass Lake GW

Pace Project No.: 35221165

| Sample: SLMW-4R-1215              | Lab ID:    | 35221165001   | Collected   | : 12/15/15  | 5 08:36 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved           | Analytical | Method: EPA 6 | 010 Prepara | ation Methe | od: EPA | 3010           |                |              |      |
| Arsenic, Dissolved                | 5.3 U      | ug/L          | 10.0        | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:33 | 7440-38-2    |      |
| Lead, Dissolved                   | 8.5 U      | ug/L          | 15.0        | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:33 | 7439-92-1    |      |
| 6010 MET ICP, Tampa               | Analytical | Method: EPA 6 | 010 Prepara | ation Methe | od: EPA | 3010           |                |              |      |
| Arsenic                           | 5.3 U      | ug/L          | 10.0        | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:06 | 7440-38-2    |      |
| Calcium                           | 113000     | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:56 | 7440-70-2    |      |
| Lead                              | 8.5 U      | ug/L          | 15.0        | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:06 | 7439-92-1    |      |
| Magnesium                         | 12300      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:56 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 334000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:56 |              |      |
| 2540C Total Dissolved Solids      | Analytical | Method: SM 25 | 40C         |             |         |                |                |              |      |
| Total Dissolved Solids            | 599        | mg/L          | 5.0         | 5.0         | 1       |                | 12/18/15 16:27 |              |      |



Project: Sawgrass Lake GW

Pace Project No.: 35221165

| Sample: SLMW-3R-1215           | Lab ID:    | 35221165002   | Collected  | 1: 12/15/18 | 6 09:37 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved        | Analytical | Method: EPA 6 | 010 Prepar | ation Meth  | od: EPA | A 3010         |                |              |      |
| Arsenic, Dissolved             | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:35 | 7440-38-2    |      |
| Lead, Dissolved                | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:35 | 7439-92-1    |      |
| 6010 MET ICP, Tampa            | Analytical | Method: EPA 6 | 010 Prepar | ation Meth  | od: EPA | A 3010         |                |              |      |
| Arsenic                        | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:08 | 7440-38-2    |      |
| Calcium                        | 232000     | ug/L          | 500        | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:58 | 7440-70-2    |      |
| Lead                           | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:08 | 7439-92-1    |      |
| Magnesium                      | 17000      | ug/L          | 500        | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:58 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 649000     | ug/L          | 3300       | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:58 |              |      |
| 2540C Total Dissolved Solids   | Analytical | Method: SM 25 | 40C        |             |         |                |                |              |      |
| Total Dissolved Solids         | 1040       | mg/L          | 10.0       | 10.0        | 1       |                | 12/18/15 16:28 |              |      |



Project: Sawgrass Lake GW

Pace Project No.: 35221165

| Sample: SLMW-1R-1215              | Lab ID:    | 35221165003   | Collected  | d: 12/15/18 | 5 10:50 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved           | Analytical | Method: EPA 6 | 010 Prepar | ation Meth  | od: EPA | A 3010         |                |              |      |
| Arsenic, Dissolved                | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:37 | 7440-38-2    |      |
| Lead, Dissolved                   | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:37 | 7439-92-1    |      |
| 6010 MET ICP, Tampa               | Analytical | Method: EPA 6 | 010 Prepar | ation Meth  | od: EPA | A 3010         |                |              |      |
| Arsenic                           | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:18 | 7440-38-2    |      |
| Calcium                           | 387000     | ug/L          | 5000       | 2500        | 10      | 12/18/15 09:06 | 12/18/15 16:12 | 7440-70-2    |      |
| Lead                              | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:18 | 7439-92-1    |      |
| Magnesium                         | 133000     | ug/L          | 5000       | 2500        | 10      | 12/18/15 09:06 | 12/18/15 16:12 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 1510000    | ug/L          | 33000      | 16000       | 10      | 12/18/15 09:06 | 12/18/15 16:12 |              |      |
| 2540C Total Dissolved Solids      | Analytical | Method: SM 25 | 40C        |             |         |                |                |              |      |
| Total Dissolved Solids            | 2290       | mg/L          | 10.0       | 10.0        | 1       |                | 12/20/15 16:09 |              |      |



#### Project: Sawgrass Lake GW

Pace Project No.: 35221165

| Sample: Dup C-1215             | Lab ID:    | 35221165004   | Collected  | d: 12/15/18 | 5 10:50 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved        | Analytical | Method: EPA 6 | 010 Prepai | ration Meth | od: EPA | A 3010         |                |              |      |
| Arsenic, Dissolved             | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:45 | 7440-38-2    |      |
| Lead, Dissolved                | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:45 | 7439-92-1    |      |
| 6010 MET ICP, Tampa            | Analytical | Method: EPA 6 | 010 Prepa  | ration Meth | od: EPA | A 3010         |                |              |      |
| Arsenic                        | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:20 | 7440-38-2    |      |
| Calcium                        | 378000     | ug/L          | 5000       | 2500        | 10      | 12/18/15 09:06 | 12/18/15 16:14 | 7440-70-2    |      |
| Lead                           | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:20 | 7439-92-1    |      |
| Magnesium                      | 135000     | ug/L          | 5000       | 2500        | 10      | 12/18/15 09:06 | 12/18/15 16:14 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 1500000    | ug/L          | 33000      | 16000       | 10      | 12/18/15 09:06 | 12/18/15 16:14 |              |      |
| 2540C Total Dissolved Solids   | Analytical | Method: SM 25 | 40C        |             |         |                |                |              |      |
| Total Dissolved Solids         | 2160       | mg/L          | 10.0       | 10.0        | 1       |                | 12/20/15 16:09 |              |      |



Project: Sawgrass Lake GW

Pace Project No.: 35221165

| Sample: SLMW-2R-1215           | Lab ID:    | 35221165005   | Collected  | d: 12/15/18 | 5 12:07 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved        | Analytical | Method: EPA 6 | 010 Prepar | ation Meth  | od: EPA | 3010           |                |              |      |
| Arsenic, Dissolved             | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:47 | 7440-38-2    |      |
| Lead, Dissolved                | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:47 | 7439-92-1    |      |
| 6010 MET ICP, Tampa            | Analytical | Method: EPA 6 | 010 Prepar | ation Meth  | od: EPA | 3010           |                |              |      |
| Arsenic                        | 5.3 U      | ug/L          | 10.0       | 5.3         | 1       | 12/18/15 09:06 | 12/18/15 19:22 | 7440-38-2    |      |
| Calcium                        | 201000     | ug/L          | 500        | 250         | 1       | 12/18/15 09:06 | 12/18/15 16:04 | 7440-70-2    |      |
| Lead                           | 8.5 U      | ug/L          | 15.0       | 8.5         | 1       | 12/18/15 09:06 | 12/18/15 19:22 | 7439-92-1    |      |
| Magnesium                      | 36600      | ug/L          | 2500       | 1250        | 5       | 12/18/15 09:06 | 12/18/15 16:16 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 653000     | ug/L          | 16500      | 8000        | 5       | 12/18/15 09:06 | 12/18/15 16:16 |              |      |
| 2540C Total Dissolved Solids   | Analytical | Method: SM 25 | 40C        |             |         |                |                |              |      |
| Total Dissolved Solids         | 1020       | mg/L          | 5.0        | 5.0         | 1       |                | 12/20/15 16:10 |              |      |



| Project:           | Sawgrass L  | ake GW    |              |           |             |           |             |                 |              |           |          |     |      |
|--------------------|-------------|-----------|--------------|-----------|-------------|-----------|-------------|-----------------|--------------|-----------|----------|-----|------|
| Pace Project No.:  | 35221165    |           |              |           |             |           |             |                 |              |           |          |     |      |
| QC Batch:          | TAMP/808    | 6         |              | Analysi   | s Method:   | E         | PA 6010     |                 |              |           |          |     |      |
| QC Batch Method:   | EPA 3010    |           |              | Analysi   | s Descripti | ion: 6    | 010 MET Fil | tered           |              |           |          |     |      |
| Associated Lab San | nples: 352  | 21165001, | 35221165002, | 352211650 | 03, 35221   | 165004, 3 | 5221165005  |                 |              |           |          |     |      |
| METHOD BLANK:      | 1425739     |           |              | M         | latrix: Wat | er        |             |                 |              |           |          |     |      |
| Associated Lab San | nples: 352  | 21165001, | 35221165002, | 352211650 | 03, 35221   | 165004, 3 | 5221165005  |                 |              |           |          |     |      |
|                    |             |           |              | Blank     | Re          | eporting  |             |                 |              |           |          |     |      |
| Paran              | neter       |           | Units        | Result    |             | Limit     | MDL         |                 | Analyzed     | Qua       | alifiers |     |      |
| Arsenic, Dissolved |             |           | ug/L         | 5.        | .3 U        | 10.0      | )           | 5.3 12          | 2/18/15 19:2 | 4         |          |     |      |
| Lead, Dissolved    |             |           | ug/L         | 8         | .5 U        | 15.0      |             | 8.5 12          | 2/18/15 19:2 | 4         |          |     |      |
| LABORATORY COM     | NTROL SAM   | PLE: 142  | 25740        |           |             |           |             |                 |              |           |          |     |      |
|                    |             |           |              | Spike     | LCS         |           | LCS         | % R             | ec           |           |          |     |      |
| Paran              | neter       |           | Units        | Conc.     | Resu        | lt        | % Rec       | Limi            | ts Q         | ualifiers |          |     |      |
| Arsenic, Dissolved |             |           | ug/L         | 250       |             | 233       | 93          | 8               | 30-120       |           | -        |     |      |
| Lead, Dissolved    |             |           | ug/L         | 250       |             | 245       | 98          | 8               | 30-120       |           |          |     |      |
| MATRIX SPIKE & M   | IATRIX SPIK |           | ATE: 142574  | 11        |             | 1425742   |             |                 |              |           |          |     |      |
|                    |             |           |              | MS        | MSD         |           |             |                 |              |           |          |     |      |
|                    |             | 3         | 35221165001  | Spike     | Spike       | MS        | MSD         | MS              | MSD          | % Rec     |          | Max |      |
| Paramete           | r           | Units     | Result       | Conc.     | Conc.       | Result    | Result      | % Rec           | % Rec        | Limits    | RPD      | RPD | Qual |
| Arsenic, Dissolved |             | ug/L      | 5.3 U        | 250       | 250         | 234       | 223         | 94              | 4 89         | 75-125    | 5        | 20  |      |
| Lead, Dissolved    |             | ug/L      | 8.5 U        | 250       | 250         | 253       | 248         | 10 <sup>-</sup> | 1 99         | 75-125    | 2        | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Sawgrass Lake GW

Pace Project No.: 35221165

| QC Batch:          | TAM   | P/8085      |             | Analysis M   | lethod:      | EPA 6010       |
|--------------------|-------|-------------|-------------|--------------|--------------|----------------|
| QC Batch Method:   | EPA   | 3010        |             | Analysis D   | escription:  | 6010 MET Tampa |
| Associated Lab Sam | ples: | 35221165001 | 35221165002 | 35221165003, | 35221165004, | 35221165005    |

 METHOD BLANK:
 1425735
 Matrix:
 Water

 Associated Lab Samples:
 35221165001, 35221165002, 35221165003, 35221165004, 35221165005

| Parameter                      | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|--------------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Arsenic                        | ug/L  | 5.3 U           | 10.0               | 5.3  | 12/18/15 18:58 |            |
| Calcium                        | ug/L  | 250 U           | 500                | 250  | 12/18/15 15:48 |            |
| Lead                           | ug/L  | 8.5 U           | 15.0               | 8.5  | 12/18/15 18:58 |            |
| Magnesium                      | ug/L  | 250 U           | 500                | 250  | 12/18/15 15:48 |            |
| Tot Hardness asCaCO3 (SM 2340B | ug/L  | 1600 U          | 3300               | 1600 | 12/18/15 15:48 |            |

#### LABORATORY CONTROL SAMPLE: 1425736

| Parameter                      | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|--------------------------------|-------|----------------|---------------|--------------|-----------------|------------|
| Arsenic                        | ug/L  | 250            | 214           | 86           | 80-120          |            |
| Calcium                        | ug/L  | 12500          | 12500         | 100          | 80-120          |            |
| Lead                           | ug/L  | 250            | 233           | 93           | 80-120          |            |
| Magnesium                      | ug/L  | 12500          | 12200         | 98           | 80-120          |            |
| Tot Hardness asCaCO3 (SM 2340B | ug/L  | 82700          | 81700         | 99           | 80-120          |            |

| MATRIX SPIKE & MATRIX SPIK     |       | CATE: 14257           | 37                   |                       | 1425738      |               |             |              |                 |     |            |      |
|--------------------------------|-------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                      | Units | 35221165001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Arsenic                        | ug/L  | 5.3 U                 | 250                  | 250                   | 223          | 222           | 89          | 89           | 75-125          | 0   | 20         |      |
| Calcium                        | ug/L  | 113000                | 12500                | 12500                 | 125000       | 126000        | 91          | 97           | 75-125          | 1   | 20         |      |
| Lead                           | ug/L  | 8.5 U                 | 250                  | 250                   | 233          | 238           | 93          | 95           | 75-125          | 2   | 20         |      |
| Magnesium                      | ug/L  | 12300                 | 12500                | 12500                 | 23800        | 24100         | 92          | 94           | 75-125          | 1   | 20         |      |
| Tot Hardness asCaCO3 (SM 2340B | ug/L  | 334000                | 82700                | 82700                 | 410000       | 413000        | 92          | 95           | 75-125          | 1   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



| •                     | Sawgrass Lake G<br>35221165 | SW                |                 |                    |              |            |                 |       |            |
|-----------------------|-----------------------------|-------------------|-----------------|--------------------|--------------|------------|-----------------|-------|------------|
| QC Batch:             | WET/34770                   |                   | Analysis M      | lethod:            | SM 2540      | С          |                 |       |            |
| QC Batch Method:      | SM 2540C                    |                   | Analysis D      | escription:        | 2540C To     | otal Disso | olved Solids    |       |            |
| Associated Lab Sam    | ples: 35221168              | 5001, 35221165002 |                 |                    |              |            |                 |       |            |
| METHOD BLANK:         | 1425717                     |                   | Matr            | ix: Water          |              |            |                 |       |            |
| Associated Lab Sam    | ples: 3522116               | 5001, 35221165002 |                 |                    |              |            |                 |       |            |
| Param                 | eter                        | Units             | Blank<br>Result | Reporting<br>Limit | -            | IDL        | Analyz          | zed   | Qualifiers |
| Total Dissolved Solid | S                           | mg/L              | 5.0             | U                  | 5.0          | 5.0        | ) 12/18/15      | 16:18 |            |
| LABORATORY CON        | TROL SAMPLE:                | 1425718           |                 |                    |              |            |                 |       |            |
| Param                 | eter                        | Units             | Spike<br>Conc.  | LCS<br>Result      | LCS<br>% Rec |            | % Rec<br>Limits | Qua   | alifiers   |
| Total Dissolved Solid | S                           | mg/L              | 300             | 304                |              | 101        | 90-110          |       |            |
| SAMPLE DUPLICAT       | E: 1426681                  |                   |                 |                    |              |            |                 |       |            |
|                       |                             |                   | 35220982008     |                    |              |            | Max             |       |            |
| Param                 | eter                        | Units             | Result          | Result             | F            | PD         | RPD             |       | Qualifiers |
| Total Dissolved Solid | S                           | mg/L              | 90              | 0                  | 884          | 2          | 2               | 5     |            |
| SAMPLE DUPLICAT       | E: 1426682                  |                   |                 |                    |              |            |                 |       |            |
|                       |                             |                   | 35221119001     | - 1                |              |            | Max             |       |            |
| Param                 | eter                        | Units             | Result          | Result             | F            | PD         | RPD             |       | Qualifiers |
| Total Dissolved Solid | s                           | mg/L              | 153             | 0 1                | 530          | C          | )               | 5     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:             | Sawgrass Lake (<br>35221165 | GW               |                |             |               |                  |               |
|----------------------|-----------------------------|------------------|----------------|-------------|---------------|------------------|---------------|
| Pace Project No.:    | WET/34790                   |                  | Analysis M     | athad:      | SM 2540C      |                  |               |
| QC Batch Method:     | SM 2540C                    |                  | •              |             |               | Dissolved Solids |               |
|                      |                             |                  | Analysis De    | escription: | 2540C 10tal L | Jissolved Solids |               |
| Associated Lab San   | nples: 3522116              | 5003, 3522116500 | 4, 35221165005 |             |               |                  |               |
| METHOD BLANK:        | 1427783                     |                  | Matrix         | k: Water    |               |                  |               |
| Associated Lab San   | nples: 3522116              | 5003, 3522116500 | 4, 35221165005 |             |               |                  |               |
|                      |                             |                  | Blank          | Reporting   |               |                  |               |
| Paran                | neter                       | Units            | Result         | Limit       | MDL           | Analyz           | ed Qualifiers |
| Total Dissolved Soli | ds                          | mg/L             | 5.0 L          | J 5         | .0            | 5.0 12/20/15     | 16:07         |
|                      |                             |                  |                |             |               |                  |               |
| LABORATORY COM       | NTROL SAMPLE:               | 1427784          |                |             |               |                  |               |
|                      |                             |                  | Spike          | LCS         | LCS           | % Rec            |               |
| Paran                | neter                       | Units            | Conc.          | Result      | % Rec         | Limits           | Qualifiers    |
| Total Dissolved Soli | ds                          | mg/L             | 300            | 304         | 101           | 90-110           |               |
|                      |                             |                  |                |             |               |                  |               |
| SAMPLE DUPLICA       | TE: 1427785                 |                  |                |             |               |                  |               |
|                      |                             |                  | 35221877001    | Dup         |               | Max              |               |
| Paran                | neter                       | Units            | Result         | Result      | RPD           | RPD              | Qualifiers    |
| Total Dissolved Soli | ds                          | mg/L             | 285            | 5 30        | 08            | 8                | 5 J(D6)       |
|                      |                             |                  |                |             |               |                  |               |
| SAMPLE DUPLICA       | TE: 1427786                 |                  |                |             |               |                  |               |
|                      |                             |                  | 35221072001    | Dup         |               | Max              |               |
| Paran                | neter                       | Units            | Result         | Result      | RPD           | RPD              | Qualifiers    |
|                      | ds                          | mg/L             | 2430           | 259         |               | 7                | 5 J(D6)       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: Sawgrass Lake GW

Pace Project No.: 35221165

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

PASI-Tp Pace Analytical Services - Tampa

#### ANALYTE QUALIFIERS

U Compound was analyzed for but not detected.

J(D6) Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | Sawgrass Lake GW |
|-------------------|------------------|
| Pace Project No.: | 35221165         |

| Lab ID      | Sample ID    | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|-----------|-------------------|---------------------|
| 35221165001 | SLMW-4R-1215 | EPA 3010        | TAMP/8086 | EPA 6010          | TAMP/8092           |
| 35221165002 | SLMW-3R-1215 | EPA 3010        | TAMP/8086 | EPA 6010          | TAMP/8092           |
| 35221165003 | SLMW-1R-1215 | EPA 3010        | TAMP/8086 | EPA 6010          | TAMP/8092           |
| 35221165004 | Dup C-1215   | EPA 3010        | TAMP/8086 | EPA 6010          | TAMP/8092           |
| 35221165005 | SLMW-2R-1215 | EPA 3010        | TAMP/8086 | EPA 6010          | TAMP/8092           |
| 35221165001 | SLMW-4R-1215 | EPA 3010        | TAMP/8085 | EPA 6010          | TAMP/8090           |
| 35221165002 | SLMW-3R-1215 | EPA 3010        | TAMP/8085 | EPA 6010          | TAMP/8090           |
| 35221165003 | SLMW-1R-1215 | EPA 3010        | TAMP/8085 | EPA 6010          | TAMP/8090           |
| 35221165004 | Dup C-1215   | EPA 3010        | TAMP/8085 | EPA 6010          | TAMP/8090           |
| 35221165005 | SLMW-2R-1215 | EPA 3010        | TAMP/8085 | EPA 6010          | TAMP/8090           |
| 35221165001 | SLMW-4R-1215 | SM 2540C        | WET/34770 |                   |                     |
| 35221165002 | SLMW-3R-1215 | SM 2540C        | WET/34770 |                   |                     |
| 35221165003 | SLMW-1R-1215 | SM 2540C        | WET/34790 |                   |                     |
| 35221165004 | Dup C-1215   | SM 2540C        | WET/34790 |                   |                     |
| 35221165005 | SLMW-2R-1215 | SM 2540C        | WET/34790 |                   |                     |



# WO#:35221165 35221165

# **DF-CUSTODY / Analytical Request Document** -Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section A                  |                                                | 33221105              |                            |                           |             |         |        |         |            | Section         |             |        |           |        |          |          |               |                     |      |                              |      |         |          | 1     |      |                |                      | 1.26.                                |                            |
|----------------------------|------------------------------------------------|-----------------------|----------------------------|---------------------------|-------------|---------|--------|---------|------------|-----------------|-------------|--------|-----------|--------|----------|----------|---------------|---------------------|------|------------------------------|------|---------|----------|-------|------|----------------|----------------------|--------------------------------------|----------------------------|
|                            | Client Information:                            |                       | Required Pro<br>Report To: |                           | -           |         | P.     | 0       | _          | Attent          | -           | ormati |           | 10     | 2.1      |          | 57            | ~                   |      |                              |      | -       | 1        | 1     | Page | e :            | 1                    | Of                                   | 1                          |
| ompany<br>ddress:          | ATKINS Global<br>4030 West Boy Scout Blvd., St |                       |                            | Matt 8                    |             | rad     | PA     | gne     | -          |                 | any N       | lame.  | -         |        | -        | 15       |               | 01)                 |      |                              |      | -       |          |       |      |                |                      |                                      |                            |
| duress.                    | Tampa, FL 33607                                |                       | copy to. p                 | rut                       | 15-         | tarr    | -      | 01      | -          | Addre           |             | ame.   | -         |        | -        |          | 0.5           |                     | -    |                              |      |         | -        |       | Re   | aulat          | ory Agenc            | v                                    |                            |
| mail:                      | natthew.starr@atkinsglobal.com                 | boy                   | Purchase Ord               | en# 1                     | hone        | 81      |        | 31      | 17         |                 | Quote       | a.     |           | 50     | 4D       | e        |               |                     | _    |                              |      | -       | -        | -     | Ne   | guia           | ory Agent            | /                                    |                            |
| hone:                      | 727-409-0723 Fax                               | 6000                  | Project Name               |                           | awgrass L   |         | 2      | - 83    |            |                 |             | t Man  | ager:     | m      | ike va   | alder@   | nace          | labs                | com  |                              |      |         | -        |       | 9    | State          | Location             |                                      |                            |
|                            | d Due Date: 5 Landay                           | -                     | Project #:                 |                           | angrass c   | ane off |        |         | -          |                 | Profile     |        | 6964      |        |          | inder (d | pucc          | 1005.0              | com, |                              |      |         |          |       |      | Juic           | FL                   |                                      |                            |
| ioqueete                   | Standay                                        | XI.                   | 0.0.0 <b>1</b> - 2000      | -                         |             |         |        |         |            |                 |             |        |           | into e | -        |          | 1             |                     | Re   | quested                      | Anal | vsis Fi | Itered ( | (Y/N) |      | T              |                      |                                      |                            |
|                            |                                                |                       |                            | 2                         |             |         |        |         |            | 100             | -           |        | ~ ~       | -      |          | -        | 123           | -                   |      |                              | T    | T       |          | TT    |      | 1              |                      |                                      |                            |
|                            |                                                |                       | 1.1                        | o lef                     |             |         |        |         |            |                 |             |        | 1000      |        | 4        |          | Ň             |                     |      |                              |      | 1.0     |          |       |      | 100            |                      |                                      |                            |
|                            |                                                | MATRIX<br>Drinking Wa | CODE<br>ater DW            | (see valid codes to left) |             | COLLE   | ECTED  |         | No         | 10              | -           | Pre    | eserv     | ative  | 2S       | T        | -             |                     | -    | 8                            | -    | -       |          | -     | -    |                |                      |                                      |                            |
|                            |                                                | Water                 | WT                         | 00 0                      | 2           |         |        |         | COLLECTION |                 |             |        |           |        |          |          |               | T-hardne            |      | olve                         | l h  |         |          |       |      |                |                      |                                      |                            |
|                            |                                                | Waste Wate<br>Product | er WW                      | (see valid of             |             |         |        |         | E          |                 |             |        |           |        |          |          | #             | ÷                   |      | Siss                         |      |         | 1.0      |       |      | N)             |                      |                                      |                            |
|                            | SAMPLE ID                                      | Soil/Solid            | SL                         | ee ee                     | ST          | ART     | E      | ND      | 8          | S               |             |        |           |        |          |          | le,           | 6y                  |      | βγ                           |      |         | 1.0      |       |      | e              |                      |                                      |                            |
|                            | One Character per box.                         | Oil<br>Wipe           | OL<br>WP                   |                           |             | 1       |        |         | TEMP AT    | E H             |             |        |           |        |          |          | S             | Ca                  |      | Cal                          |      |         |          |       |      | Chlorine (Y/N) |                      |                                      |                            |
|                            | (A-Z, 0-9/, -)                                 | Air<br>Other          | AR<br>OT                   | DO A                      |             | 1000    |        |         | EM         | TAII            | ved         |        |           |        |          |          | Š             | , Po                |      | Pb.                          |      |         |          |       |      | CPI            |                      |                                      |                            |
| # V                        | Sample Ids must be unique                      | Tissue                | TS                         | X                         | i.          | 1 1     |        |         | Ē          | NO              | ser         |        |           | TO     |          |          | Analyses Test | As,                 |      | As,                          |      |         |          |       |      | lual           |                      |                                      |                            |
| ITEM                       |                                                |                       |                            | MATRIX CODE               |             | 1000    | 1000   | Sec.    | SAMPLE     | # OF CONTAINERS | Unpreserved | HN03   | Ρ̈́       | HOBN   | Methanol | Other    | Ā             | 6010 As, Pb, Ca, Mg | TDS  | 6010 As, Pb, Ca, Mg Dissolve |      |         |          |       |      | Residual (     |                      |                                      |                            |
| =                          | e                                              | -                     | -                          |                           |             |         | DATE   | TIME    | ŝ          |                 |             | -      | T         | ZZ     | 2 2      | 0        |               | 1                   |      |                              | -    | -       |          |       | -    | ۳              | -                    |                                      |                            |
| 1                          | 5LMW-4R                                        |                       | 5 w                        |                           | . 110       |         |        | 8:36    |            | 3               | 1           | 2      | _         | _      |          |          |               | V                   | -    | V                            | _    | -       |          |       |      |                | Rur                  |                                      | 1                          |
| 2                          | SLMW-3R                                        | 2-121                 | 5 W                        | TG                        | 12/15       | 9:35    | 12/15  | 9:37    |            | 3               | 1           | 2      |           |        |          | 1        |               | V                   | V    | V                            |      |         |          |       |      |                | Dis.                 | Solv                                 | ed                         |
| 3                          | SLMW-11                                        | R-121                 | 5 W                        | TE                        | 12/15       | 10:45   | 12/15  | 10:50   |            | 3               | 1           | 2      |           |        |          |          |               | V                   | V    | V                            |      |         |          |       |      |                | on                   | 1-1-1                                | for                        |
| 4                          | Dup C -                                        | 1215                  | W                          | TE                        | 5 12/15     | 10:45   | 12/15  | 10150   |            | 3               | 1           | 2      |           |        |          |          |               | V                   | V    | V                            |      |         |          |       |      |                | As                   | seni                                 | c                          |
| 5                          | SLMW-Z                                         |                       | 5 W                        | TG                        | 12/15       |         |        | 12:07   |            | 3               | 1           | 2      |           | 1      |          |          |               | V                   | V    | V                            |      |         |          |       |      |                | and                  | 1                                    | - 1                        |
| 6                          |                                                | 1, 121                | ,                          |                           | 1.1.1       | 190     | -p=    |         |            |                 |             |        |           |        | T        |          |               |                     |      | 11/22                        |      |         |          |       |      | 1              | erric                |                                      | <u>.</u>                   |
|                            |                                                |                       |                            |                           |             |         |        |         |            |                 |             |        |           |        |          | 17       |               |                     |      |                              |      |         |          |       |      | 1              | -                    |                                      |                            |
| 7                          |                                                |                       |                            | -                         | -           |         |        |         | -          |                 | -           |        |           | -      | 1        | 1        |               |                     | -    |                              |      |         |          |       |      |                |                      |                                      |                            |
| 8                          |                                                |                       |                            |                           | -           | 1       |        |         |            |                 | +           | -      |           | -      | +        | 1        |               | -                   |      | -                            |      |         |          |       |      |                |                      |                                      |                            |
| 9                          |                                                |                       |                            |                           |             |         |        |         |            | -               | +           |        | $\square$ | -      | +        | +        |               |                     | -    | -                            |      | -       | +        | -     |      |                |                      |                                      |                            |
| 10                         |                                                |                       |                            | +                         |             | -       | -      | -       | -          | -               | -           |        |           | -      | +        | -        |               |                     |      | -                            |      | -       |          | -     | -    |                | -                    |                                      |                            |
| 11                         |                                                |                       |                            |                           | -           |         |        |         | -          |                 | +           | -      |           | -      | +        |          |               |                     | -    | -                            |      | -       |          | -     | -    |                | -                    |                                      | _                          |
| 12                         |                                                |                       | -                          |                           | JISHED BY / |         |        | DATE    |            |                 | IME         | -      |           |        | CCER     | TED B    |               |                     |      | _                            | 1    | DAT     | -        | TIME  |      |                | SAMPLEC              | ONDITIONS                            | 1                          |
|                            | ADDITIONAL COMMENTS                            |                       | -                          | ELINQU                    | janeo BY/   | bAco    | 12     | 11      | -          |                 |             | -      | 1         | 2      | UCEP     | /        | 17            | 5                   |      |                              | -    | 12.4    | -        | -     | -    | -              | SAMPLE C             | ONDITIONS                            |                            |
| _                          |                                                | Empty Contain         | iers                       | ~                         | -           | The     |        | 15/17   | -          | 134             | V           | -      | 16        | 12     | n        | - 1      | 4/4           | A                   | 1    |                              |      | 2/8     |          | 15:0  |      | -              |                      |                                      |                            |
| Metals for<br>No filters r | total & dissolved=T-Hardness.As.Pb.Ca.Mg       |                       | 110                        | 5 .                       | ~ AI        | 12      | /      | 1215    | 5/15       | 12              | TE          | 51     | 11        | 11.    | 10       | an       | 10th          | K                   | P    | ace                          |      | 215     | 115      | 1354  | 5    |                | 1111                 | (i ri)                               |                            |
| to milers I                | CCUCU                                          |                       | In                         | W                         | - /(        | m       |        | 1011-   | 112        | 1-              |             |        | au        | 200    | Y.       | v sp     |               |                     | 4    | nu                           | - ľ  | 12      | 10       |       | -    |                | 1                    |                                      |                            |
|                            |                                                |                       | 10                         |                           | 1           |         | -      |         |            |                 |             |        |           |        |          |          |               |                     | -    |                              |      | _       |          |       | _    |                | 1                    |                                      |                            |
|                            |                                                |                       | 11.11                      |                           |             |         |        |         |            |                 |             |        |           |        |          |          |               |                     |      |                              |      |         |          |       |      |                |                      | ]                                    |                            |
|                            |                                                |                       |                            |                           |             | SAMPLE  | RNAME  | AND SIG | NATU       | JRE             |             | 1      |           |        | -        | -        | -             |                     |      |                              |      |         |          |       |      | 1.0            |                      |                                      | 1                          |
|                            |                                                |                       |                            |                           |             |         |        | of SAMP |            |                 |             |        |           |        | -        |          |               |                     |      |                              |      |         |          |       |      | C<br>L         | ed on                | λ.                                   | se                         |
|                            |                                                |                       |                            |                           |             | SIG     | NATURE | of SAMP | LER:       |                 |             |        |           |        |          |          |               | E                   | DATE | Signed                       | :    |         |          |       | -    | TEMP           | Receiv<br>ce<br>Y/N) | Custody<br>Sealed<br>Cooler<br>(Y/N) | Samples<br>Intact<br>(Y/N) |

| Prace Analytical                                                     | Document Name:<br>Sample Condition Upon Receip | ot Form              | A                  | August 11, 2014                             |
|----------------------------------------------------------------------|------------------------------------------------|----------------------|--------------------|---------------------------------------------|
| Honda Laboratory                                                     | Document No.:<br>F-FL-C-007 rev. 06            |                      |                    | ssuing Authority:<br>Florida Quality Office |
| Sam                                                                  | ole Condition Upon Receipt                     | Form (SCUR)          |                    | Table Number:                               |
|                                                                      | Client Name: A+Kin                             | <u> </u>             | Project # $3$      | 5221165                                     |
| Courier: 🔲 Fed Ex 🗌 UPS                                              | ] USPS 🔀 Client 🔲 Commercial                   | Pace                 | Other              |                                             |
| Tracking #                                                           |                                                |                      |                    |                                             |
| Custody Seal on Cooler/Box Pr                                        | - /                                            | ntact: 🛛 yes 🗋 no    | Date and Initia    | 1/2/15/15                                   |
| 그는 그 것은 것이 같은 물건을 했다.                                                | Irap Bubble Bags None                          | 1                    | Contents0          |                                             |
| Thermometer Used                                                     | Type of Ice: Wet                               | 0                    | US (Terr           | p should be above freezing to 6°C).         |
| Cooler Temperature $c_{1.3}$                                         | _(Visual)(Correction F                         | actor)               | (Actual) samp      | ble frozen?                                 |
|                                                                      | 0 يا ر                                         | 1.9                  | □Y                 |                                             |
| Receipt of samples satisfact                                         | (                                              |                      |                    | uested on COC:                              |
| If yes, then all conditions below                                    |                                                | If no, then mark box | a describe issue   | (use comments area if ne                    |
| Chain of Custody Present<br>Chain of Custody Filled Out              |                                                |                      |                    |                                             |
| Relinguished Signature & Sample                                      |                                                |                      |                    |                                             |
| Samples Arrived within Hold Time                                     | 3                                              |                      |                    |                                             |
|                                                                      |                                                |                      | *                  |                                             |
| Sufficient Volume                                                    |                                                | <u> </u>             |                    |                                             |
| Correct Containers Used<br>Containers Intact                         |                                                |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
| Sample Labels match COC (sam                                         | ple IDs & date/time of collection)             |                      |                    |                                             |
|                                                                      |                                                | No Labels: 🛛 No      | o Time/Date on Lab | els:                                        |
| All containers needing preservation a                                |                                                |                      |                    |                                             |
| compliance with EPA recommendation<br>No Headspace in VOA Vials ( >6 |                                                |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
| Client Notification/ Resolution:                                     |                                                |                      |                    |                                             |
| Person Contacted:                                                    | Date/T                                         | ime:                 |                    |                                             |
| Comments/ Resolution (use back                                       | (for additional comments):                     |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
|                                                                      |                                                |                      |                    |                                             |
| Project Manager Review:                                              |                                                |                      | Date:              |                                             |
| 1                                                                    |                                                |                      |                    |                                             |
|                                                                      | Finished Product Int                           | formation Only       |                    |                                             |
|                                                                      | T moneu Floudet III                            |                      |                    |                                             |
| F.P. Sample ID:                                                      |                                                | S                    |                    | ottles Received                             |
| Production Code:                                                     |                                                |                      | X :                |                                             |
|                                                                      |                                                |                      | × ·                | 1 Gal                                       |
| Date/Time Opened:                                                    |                                                |                      | X :                |                                             |
| Number of Unopened Bottles F                                         | Remaining:                                     | i ce                 | X :                | 250 mL<br>Other:                            |
| Extra Sample in SI                                                   | ned: Yes No                                    |                      | ^ ^                | <u> </u>                                    |

Page 17 of 17

# ATTACHMENT D

# Surface Water Laboratory Analytical Reports



Pace Analytical Services, Inc. 5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

December 23, 2015

Matt Starr Atkins North America 4030 West Boy Scout Blvd., Su Tampa, FL 33607

RE: Project: Sawgrass Lake SW Pace Project No.: 35221170

Dear Matt Starr:

Enclosed are the analytical results for sample(s) received by the laboratory on December 15, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Muchael W. Palmen

Mike Palmer for Mike Valder mike.valder@pacelabs.com Project Manager

Enclosures

cc: Bradley Bayne, Atkins Golbal





Pace Analytical Services, Inc. 5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

#### CERTIFICATIONS

Project: Sawgrass Lake SW

#### Pace Project No.: 35221170

#### Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174 Alabama Certification #: 41320 Connecticut Certification #: PH-0216 Delaware Certification: FL NELAC Reciprocity Florida Certification #: E83079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Illinois Certification #: 200068 Indiana Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Maryland Certification: #346 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Missouri Certification #: 236 Montana Certification #: Cert 0074

#### **Tampa Certification IDs**

5460 Beaumont Center Blvd, Ste 520, Tampa, FL 33634

Nebraska Certification: NE-OS-28-14 Nevada Certification: FL NELAC Reciprocity New Hampshire Certification #: 2958 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 North Dakota Certification #: R-216 Oklahoma Certification #: D9947 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670 Wyoming (EPA Region 8): FL NELAC Reciprocity

Florida Certification #: E84809



Pace Analytical Services, Inc. 5460 Beaumont Center Blvd - Suite 520 Tampa, FL 33634 (813)881-9401

# SAMPLE SUMMARY

Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 35221170001 | SLSW-1-0     | Water  | 12/15/15 11:25 | 12/15/15 13:55 |
| 35221170002 | SLSW-1-1     | Water  | 12/15/15 11:30 | 12/15/15 13:55 |
| 35221170003 | SLSW-1-2     | Water  | 12/15/15 11:35 | 12/15/15 13:55 |
| 35221170004 | SLSW-1-3     | Water  | 12/15/15 11:38 | 12/15/15 13:55 |
| 35221170005 | SLSW-2-0     | Water  | 12/15/15 09:31 | 12/15/15 13:55 |
| 35221170006 | SLSW-2-1     | Water  | 12/15/15 09:34 | 12/15/15 13:55 |
| 35221170007 | SLSW-2-3     | Water  | 12/15/15 09:37 | 12/15/15 13:55 |
| 35221170008 | SLSW-2-5     | Water  | 12/15/15 09:39 | 12/15/15 13:55 |
| 35221170009 | SLSW-3-0     | Water  | 12/15/15 09:53 | 12/15/15 13:55 |
| 35221170010 | SLSW-3-1     | Water  | 12/15/15 09:56 | 12/15/15 13:55 |
| 35221170011 | SLSW-3-3     | Water  | 12/15/15 09:58 | 12/15/15 13:55 |
| 35221170012 | SLSW-3-5     | Water  | 12/15/15 10:00 | 12/15/15 13:55 |
| 35221170013 | SLSW-4-0     | Water  | 12/15/15 10:28 | 12/15/15 13:55 |
| 35221170014 | SLSW-4-1     | Water  | 12/15/15 10:30 | 12/15/15 13:55 |
| 35221170015 | SLSW-4-5     | Water  | 12/15/15 10:32 | 12/15/15 13:55 |
| 35221170016 | SLSW-4-5-DUP | Water  | 12/15/15 10:32 | 12/15/15 13:55 |
| 35221170017 | SLSW-4-9     | Water  | 12/15/15 10:36 | 12/15/15 13:55 |



Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Lab ID      | Sample ID | Method              | Analysts | Analytes<br>Reported | Laborator |
|-------------|-----------|---------------------|----------|----------------------|-----------|
| 35221170001 | SLSW-1-0  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170002  | SLSW-1-1  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170003  | SLSW-1-2  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170004  | SLSW-1-3  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170005  | SLSW-2-0  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170006  | SLSW-2-1  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170007  | SLSW-2-3  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O    |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O    |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O    |
| 5221170008  | SLSW-2-5  | EPA 200.7           | SAM      | 5                    | PASI-Tp   |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O    |



Project: Sawgrass Lake SW Pace Project No.: 35221170

| Lab ID      | Sample ID | Method              | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|---------------------|----------|----------------------|------------|
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170009 | SLSW-3-0  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170010 | SLSW-3-1  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170011 | SLSW-3-3  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 5221170012  | SLSW-3-5  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170013 | SLSW-4-0  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170014 | SLSW-4-1  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |           | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170015 | SLSW-4-5  | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |           | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |           | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |           | EPA 353.2           | BIP      | 1                    | PASI-O     |



Project:Sawgrass Lake SWPace Project No.:35221170

| Lab ID      | Sample ID    | Method              | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|---------------------|----------|----------------------|------------|
|             |              | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170016 | SLSW-4-5-DUP | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |              | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |              | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |              | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |              | EPA 365.4           | AEM      | 1                    | PASI-O     |
| 35221170017 | SLSW-4-9     | EPA 200.7           | SAM      | 5                    | PASI-Tp    |
|             |              | TKN+NOx Calculation | JAS      | 1                    | PASI-O     |
|             |              | EPA 351.2           | AEM      | 1                    | PASI-O     |
|             |              | EPA 353.2           | BIP      | 1                    | PASI-O     |
|             |              | EPA 365.4           | AEM      | 1                    | PASI-O     |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-1-0               | Lab ID:    | 35221170001   | Collected   | : 12/15/1  | 5 11:25 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepar | ation Metl | hod: EP | A 200.7        |                |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 19:58 | 7440-38-2    |      |
| Calcium                        | 64200      | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:02 | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 19:58 | 7439-92-1    |      |
| Magnesium                      | 7230       | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:02 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 190000     | ug/L          | 3300        | 1600       | 1       | 12/18/15 09:06 | 12/18/15 15:02 |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | tion       |         |                |                |              |      |
| Total Nitrogen                 | 1.0        | mg/L          | 0.50        | 0.086      | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepar | ation Met  | hod: EP | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total      | 0.93       | mg/L          | 0.50        | 0.086      | 1       | 12/21/15 10:40 | 12/22/15 12:56 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |            |         |                |                |              |      |
| Nitrogen, NO2 plus NO3         | 0.084      | mg/L          | 0.050       | 0.025      | 1       |                | 12/21/15 10:23 |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepar | ation Metl | hod: EP | A 365.4        |                |              |      |
| Phosphorus, Total (as P)       | 0.17       | mg/L          | 0.10        | 0.050      | 1       | 12/21/15 10:40 | 12/22/15 12:56 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-1-1                  | Lab ID:    | 35221170002   | Collected   | 1: 12/15/1  | 5 11:30 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |                 |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|-----------------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual            |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                |              |                 |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:00 | 7440-38-2    |                 |
| Calcium                           | 66900      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:04 | 7440-70-2    |                 |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:00 | 7439-92-1    |                 |
| Magnesium                         | 7240       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:04 | 7439-95-4    |                 |
| Tot Hardness asCaCO3 (SM<br>2340B | 197000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:04 |              |                 |
| Total Nitrogen Calculation        | Analytical | Method: TKN+I | NOx Calcula | ation       |         |                |                |              |                 |
| Total Nitrogen                    | 1.2        | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |                 |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |                 |
| Nitrogen, Kjeldahl, Total         | 1.2        | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:15 | 7727-37-9    | J(D6),<br>J(M1) |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |                 |
| Nitrogen, NO2 plus NO3            | 0.072      | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:25 |              |                 |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | nod: EP | A 365.4        |                |              |                 |
| Phosphorus, Total (as P)          | 0.15       | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:15 | 7723-14-0    |                 |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-1-2               | Lab ID:    | 35221170003   | Collected   | : 12/15/1  | 5 11:35 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepar | ation Metl | hod: EP | A 200.7        |                |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 20:02 | 7440-38-2    |      |
| Calcium                        | 66100      | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:06 | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 20:02 | 7439-92-1    |      |
| Magnesium                      | 7240       | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:06 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 195000     | ug/L          | 3300        | 1600       | 1       | 12/18/15 09:06 | 12/18/15 15:06 |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | tion       |         |                |                |              |      |
| Total Nitrogen                 | 1.4        | mg/L          | 0.50        | 0.086      | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepar | ation Met  | hod: EP | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total      | 1.3        | mg/L          | 0.50        | 0.086      | 1       | 12/22/15 07:50 | 12/22/15 14:19 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |            |         |                |                |              |      |
| Nitrogen, NO2 plus NO3         | 0.083      | mg/L          | 0.050       | 0.025      | 1       |                | 12/21/15 10:26 |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepar | ation Metl | hod: EP | A 365.4        |                |              |      |
| Phosphorus, Total (as P)       | 0.21       | mg/L          | 0.10        | 0.050      | 1       | 12/22/15 07:50 | 12/22/15 14:19 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-1-3                  | Lab ID:    | 35221170004   | Collecte   | d: 12/15/1   | 5 11:38 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|------------|--------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL        | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa | aration Meth | nod: EP | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0       | 5.0          | 1       | 12/18/15 09:06 | 12/18/15 20:04 | 7440-38-2    |      |
| Calcium                           | 66300      | ug/L          | 500        | 250          | 1       | 12/18/15 09:06 | 12/18/15 15:08 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0       | 5.0          | 1       | 12/18/15 09:06 | 12/18/15 20:04 | 7439-92-1    |      |
| Magnesium                         | 7170       | ug/L          | 500        | 250          | 1       | 12/18/15 09:06 | 12/18/15 15:08 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 195000     | ug/L          | 3300       | 1600         | 1       | 12/18/15 09:06 | 12/18/15 15:08 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcul | ation        |         |                |                |              |      |
| Total Nitrogen                    | 1.3        | mg/L          | 0.50       | 0.086        | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa | aration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 1.2        | mg/L          | 0.50       | 0.086        | 1       | 12/22/15 07:50 | 12/22/15 14:21 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2       |              |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.084      | mg/L          | 0.050      | 0.025        | 1       |                | 12/21/15 10:27 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa | aration Meth | nod: EP | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.20       | mg/L          | 0.10       | 0.050        | 1       | 12/22/15 07:50 | 12/22/15 14:21 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-2-0                  | Lab ID:    | 35221170005   | Collected  | d: 12/15/18  | 5 09:31 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|------------|--------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL        | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa | aration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0       | 5.0          | 1       | 12/18/15 09:06 | 12/18/15 20:13 | 7440-38-2    |      |
| Calcium                           | 59100      | ug/L          | 500        | 250          | 1       | 12/18/15 09:06 | 12/18/15 15:10 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0       | 5.0          | 1       | 12/18/15 09:06 | 12/18/15 20:13 | 7439-92-1    |      |
| Magnesium                         | 6190       | ug/L          | 500        | 250          | 1       | 12/18/15 09:06 | 12/18/15 15:10 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 173000     | ug/L          | 3300       | 1600         | 1       | 12/18/15 09:06 | 12/18/15 15:10 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcul | ation        |         |                |                |              |      |
| Total Nitrogen                    | 0.91       | mg/L          | 0.50       | 0.086        | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa | aration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.90       | mg/L          | 0.50       | 0.086        | 1       | 12/22/15 07:50 | 12/22/15 14:22 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2       |              |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050      | 0.025        | 1       |                | 12/21/15 10:29 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa | aration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.050 U    | mg/L          | 0.10       | 0.050        | 1       | 12/22/15 07:50 | 12/22/15 14:22 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-2-1               | Lab ID:    | 35221170006   | Collected   | l: 12/15/18 | 5 09:34 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:15 | 7440-38-2    |      |
| Calcium                        | 59100      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:12 | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:15 | 7439-92-1    |      |
| Magnesium                      | 6270       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:12 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 173000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:12 |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                 | 0.87       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total      | 0.87       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:23 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3         | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:36 |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)       | 0.054 I    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:23 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-2-3                  | Lab ID:    | 35221170007   | Collected   | d: 12/15/18 | 5 09:37 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:17 | 7440-38-2    |      |
| Calcium                           | 59200      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:20 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:17 | 7439-92-1    |      |
| Magnesium                         | 6050       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:20 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 173000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:20 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                    | 0.92       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.92       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:25 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:37 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.050 U    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:25 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-2-5               | Lab ID:    | 35221170008   | Collected   | l: 12/15/1  | 5 09:39 | Received: 12/  | (15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                 |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:19  | 7440-38-2    |      |
| Calcium                        | 58400      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:22  | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:19  | 7439-92-1    |      |
| Magnesium                      | 6340       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:22  | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 172000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:22  |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                 |              |      |
| Total Nitrogen                 | 0.91       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05  |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                 |              |      |
| Nitrogen, Kjeldahl, Total      | 0.91       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:26  | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |             |         |                |                 |              |      |
| Nitrogen, NO2 plus NO3         | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:39  |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                 |              |      |
| Phosphorus, Total (as P)       | 0.058 I    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:26  | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-3-0               | Lab ID:    | 35221170009   | Collected   | : 12/15/15 | 5 09:53  | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|------------|----------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL        | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepar | ation Meth | iod: EP/ | A 200.7        |                |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0        | 1        | 12/18/15 09:06 | 12/18/15 20:21 | 7440-38-2    |      |
| Calcium                        | 58400      | ug/L          | 500         | 250        | 1        | 12/18/15 09:06 | 12/18/15 15:24 | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0        | 1        | 12/18/15 09:06 | 12/18/15 20:21 | 7439-92-1    |      |
| Magnesium                      | 6060       | ug/L          | 500         | 250        | 1        | 12/18/15 09:06 | 12/18/15 15:24 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 171000     | ug/L          | 3300        | 1600       | 1        | 12/18/15 09:06 | 12/18/15 15:24 |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | tion       |          |                |                |              |      |
| Total Nitrogen                 | 0.87       | mg/L          | 0.50        | 0.086      | 1        |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepar | ation Meth | od: EP/  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total      | 0.87       | mg/L          | 0.50        | 0.086      | 1        | 12/22/15 07:50 | 12/22/15 14:30 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |            |          |                |                |              |      |
| Nitrogen, NO2 plus NO3         | 0.025 U    | mg/L          | 0.050       | 0.025      | 1        |                | 12/21/15 10:40 |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepar | ation Meth | od: EP/  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)       | 0.050 I    | mg/L          | 0.10        | 0.050      | 1        | 12/22/15 07:50 | 12/22/15 14:30 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-3-1                  | Lab ID:    | 35221170010   | Collected   | 1: 12/15/15 | 5 09:56 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:23 | 7440-38-2    |      |
| Calcium                           | 58000      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:26 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:23 | 7439-92-1    |      |
| Magnesium                         | 6100       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:26 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 170000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:26 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                    | 0.89       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.89       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:32 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:44 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.053 I    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:32 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-3-3                  | Lab ID:    | 35221170011   | Collected   | d: 12/15/18 | 5 09:58 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:25 | 7440-38-2    |      |
| Calcium                           | 58500      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:28 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:25 | 7439-92-1    |      |
| Magnesium                         | 6020       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:28 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 171000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:28 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                    | 0.95       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.95       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:33 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:50 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.050 U    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:33 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-3-5                  | Lab ID:    | 35221170012   | Collected   | 12/15/18    | 5 10:00 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:27 | 7440-38-2    |      |
| Calcium                           | 58800      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:30 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:27 | 7439-92-1    |      |
| Magnesium                         | 6050       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:30 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 172000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:30 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                    | 0.88       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.88       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:34 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:52 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.050 U    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:34 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-4-0                  | Lab ID:    | 35221170013   | Collected   | 1: 12/15/1  | 5 10:28 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | nod: EP | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:29 | 7440-38-2    |      |
| Calcium                           | 58300      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:32 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:29 | 7439-92-1    |      |
| Magnesium                         | 6050       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:32 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 170000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:32 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                    | 0.91       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.91       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:36 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:53 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.053 I    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:36 | 7723-14-0    |      |



#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-4-1                  | Lab ID:    | 35221170014   | Collected   | : 12/15/18  | 5 10:30 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepai | ration Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:31 | 7440-38-2    |      |
| Calcium                           | 57900      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:34 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:31 | 7439-92-1    |      |
| Magnesium                         | 6100       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:34 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 170000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:34 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ition       |         |                |                |              |      |
| Total Nitrogen                    | 0.93       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.93       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:37 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:54 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.058 I    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:37 | 7723-14-0    |      |


#### ANALYTICAL RESULTS

#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-4-5               | Lab ID:    | 35221170015   | Collected   | : 12/15/15 | 5 10:32 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepar | ation Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 20:40 | 7440-38-2    |      |
| Calcium                        | 58300      | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:36 | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 20:40 | 7439-92-1    |      |
| Magnesium                      | 6080       | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:36 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 171000     | ug/L          | 3300        | 1600       | 1       | 12/18/15 09:06 | 12/18/15 15:36 |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | tion       |         |                |                |              |      |
| Total Nitrogen                 | 0.94       | mg/L          | 0.50        | 0.086      | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepar | ation Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total      | 0.94       | mg/L          | 0.50        | 0.086      | 1       | 12/22/15 07:50 | 12/22/15 14:38 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |            |         |                |                |              |      |
| Nitrogen, NO2 plus NO3         | 0.025 U    | mg/L          | 0.050       | 0.025      | 1       |                | 12/21/15 10:55 |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepar | ation Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)       | 0.055 I    | mg/L          | 0.10        | 0.050      | 1       | 12/22/15 07:50 | 12/22/15 14:38 | 7723-14-0    |      |



#### ANALYTICAL RESULTS

Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-4-5-DUP              | Lab ID:    | 35221170016   | Collected   | l: 12/15/18 | 5 10:32 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|-----------------------------------|------------|---------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                        | Results    | Units         | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa               | Analytical | Method: EPA 2 | 00.7 Prepa  | ration Meth | nod: EP | A 200.7        |                |              |      |
| Arsenic                           | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:42 | 7440-38-2    |      |
| Calcium                           | 58300      | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:38 | 7440-70-2    |      |
| Lead                              | 5.0 U      | ug/L          | 10.0        | 5.0         | 1       | 12/18/15 09:06 | 12/18/15 20:42 | 7439-92-1    |      |
| Magnesium                         | 6050       | ug/L          | 500         | 250         | 1       | 12/18/15 09:06 | 12/18/15 15:38 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM<br>2340B | 170000     | ug/L          | 3300        | 1600        | 1       | 12/18/15 09:06 | 12/18/15 15:38 |              |      |
| Total Nitrogen Calculation        | Analytical | Method: TKN+  | NOx Calcula | ation       |         |                |                |              |      |
| Total Nitrogen                    | 0.93       | mg/L          | 0.50        | 0.086       | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen     | Analytical | Method: EPA 3 | 51.2 Prepa  | ration Meth | nod: EP | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total         | 0.93       | mg/L          | 0.50        | 0.086       | 1       | 12/22/15 07:50 | 12/22/15 14:40 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.     | Analytical | Method: EPA 3 | 53.2        |             |         |                |                |              |      |
| Nitrogen, NO2 plus NO3            | 0.025 U    | mg/L          | 0.050       | 0.025       | 1       |                | 12/21/15 10:57 |              |      |
| 365.4 Phosphorus, Total           | Analytical | Method: EPA 3 | 65.4 Prepa  | ration Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)          | 0.051 I    | mg/L          | 0.10        | 0.050       | 1       | 12/22/15 07:50 | 12/22/15 14:40 | 7723-14-0    |      |



#### ANALYTICAL RESULTS

#### Project: Sawgrass Lake SW

Pace Project No.: 35221170

| Sample: SLSW-4-9               | Lab ID:    | 35221170017   | Collected   | : 12/15/15 | 5 10:36 | Received: 12/  | 15/15 13:55 Ma | atrix: Water |      |
|--------------------------------|------------|---------------|-------------|------------|---------|----------------|----------------|--------------|------|
| Parameters                     | Results    | Units         | PQL         | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 MET ICP Tampa            | Analytical | Method: EPA 2 | 00.7 Prepar | ation Meth | od: EP  | A 200.7        |                |              |      |
| Arsenic                        | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 20:44 | 7440-38-2    |      |
| Calcium                        | 58400      | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:46 | 7440-70-2    |      |
| Lead                           | 5.0 U      | ug/L          | 10.0        | 5.0        | 1       | 12/18/15 09:06 | 12/18/15 20:44 | 7439-92-1    |      |
| Magnesium                      | 5890       | ug/L          | 500         | 250        | 1       | 12/18/15 09:06 | 12/18/15 15:46 | 7439-95-4    |      |
| Tot Hardness asCaCO3 (SM 2340B | 170000     | ug/L          | 3300        | 1600       | 1       | 12/18/15 09:06 | 12/18/15 15:46 |              |      |
| Total Nitrogen Calculation     | Analytical | Method: TKN+  | NOx Calcula | tion       |         |                |                |              |      |
| Total Nitrogen                 | 0.96       | mg/L          | 0.50        | 0.086      | 1       |                | 12/23/15 10:05 |              |      |
| 351.2 Total Kjeldahl Nitrogen  | Analytical | Method: EPA 3 | 51.2 Prepar | ation Meth | od: EP  | A 351.2        |                |              |      |
| Nitrogen, Kjeldahl, Total      | 0.96       | mg/L          | 0.50        | 0.086      | 1       | 12/22/15 07:50 | 12/22/15 14:41 | 7727-37-9    |      |
| 353.2 Nitrogen, NO2/NO3 pres.  | Analytical | Method: EPA 3 | 53.2        |            |         |                |                |              |      |
| Nitrogen, NO2 plus NO3         | 0.025 U    | mg/L          | 0.050       | 0.025      | 1       |                | 12/21/15 10:58 |              |      |
| 365.4 Phosphorus, Total        | Analytical | Method: EPA 3 | 65.4 Prepar | ation Meth | od: EP  | A 365.4        |                |              |      |
| Phosphorus, Total (as P)       | 0.073 I    | mg/L          | 0.10        | 0.050      | 1       | 12/22/15 07:50 | 12/22/15 14:41 | 7723-14-0    |      |



| •                            | Sawgrass Lak<br>35221170 | e SW       |                                              |                        |                          |                   |               |            |                      |       |                 |          |            |      |
|------------------------------|--------------------------|------------|----------------------------------------------|------------------------|--------------------------|-------------------|---------------|------------|----------------------|-------|-----------------|----------|------------|------|
| QC Batch:                    | TAMP/8087                |            |                                              | Analysi                | is Method:               | E                 | PA 200.7      |            |                      |       |                 |          |            |      |
| QC Batch Method:             | EPA 200.7                |            |                                              |                        | is Descript              |                   | 00.7 MET Ta   | ampa       |                      |       |                 |          |            |      |
| Associated Lab Samp          | 35221                    | 170008, 3  | 35221170002,<br>35221170009,<br>35221170016, | 352211700<br>352211700 | )03, 35221<br>)10, 35221 | 170004, 35        | 5221170005    | , 35221    |                      |       |                 |          |            |      |
| METHOD BLANK:                | 1425743                  |            |                                              | N                      | latrix: Wa               | ter               |               |            |                      |       |                 |          |            |      |
| Associated Lab Samp          | 35221                    | 170008, 3  | 35221170002,<br>35221170009,<br>35221170016, | 352211700<br>352211700 | )10, 35221<br>)17        | 170011, 35        |               |            |                      |       |                 |          |            |      |
| Parame                       | otor                     |            | Units                                        | Blank<br>Result        |                          | eporting<br>Limit | MDL           |            | Apply                | rod   | 0               | alifiers |            |      |
|                              | 5101                     |            |                                              |                        |                          |                   |               |            | Analyz               |       |                 | anners   |            |      |
| Arsenic<br>Calcium           |                          |            | ug/L<br>ug/L                                 |                        | .0 U<br>50 U             | 10.0<br>500       |               |            | 12/18/15<br>12/18/15 |       |                 |          |            |      |
| Lead                         |                          |            | ug/L                                         |                        | .0 U                     | 10.0              |               |            | 12/18/15             |       |                 |          |            |      |
| Magnesium                    |                          |            | ug/L                                         | -                      | 50 U                     | 500               |               |            | 12/18/15             |       |                 |          |            |      |
| Tot Hardness asCaC           | O3 (SM 2340E             | 3          | ug/L                                         | 160                    | 00 U                     | 3300              |               | 1600       | 12/18/15             | 14:55 |                 |          |            |      |
| LABORATORY CON               | TROL SAMPL               | E: 142     | 5744                                         |                        |                          |                   |               |            |                      |       |                 |          |            |      |
| Danam                        |                          |            | l laita                                      | Spike                  | LCS                      |                   | LCS           |            | Rec                  | 0     | - 1:6:          |          |            |      |
| Parame                       | elei                     |            | Units                                        | Conc.                  | Resu                     |                   | % Rec         |            | nits                 |       | alifiers        | -        |            |      |
| Arsenic<br>Calcium           |                          |            | ug/L                                         | 250<br>12500           |                          | 228<br>12900      | 91<br>103     |            | 85-115<br>85-115     |       |                 |          |            |      |
| Lead                         |                          |            | ug/L<br>ug/L                                 | 250                    |                          | 255               | 103           |            | 85-115               |       |                 |          |            |      |
| Magnesium                    |                          |            | ug/L                                         | 12500                  |                          | 12900             | 102           |            | 85-115               |       |                 |          |            |      |
| Tot Hardness asCaCo          | O3 (SM 2340E             | 3          | ug/L                                         | 82700                  |                          | 85200             | 103           |            | 85-115               |       |                 |          |            |      |
|                              |                          |            |                                              |                        |                          |                   |               |            |                      |       |                 |          |            |      |
| MATRIX SPIKE & MA            | TRIX SPIKE               | DUPLICA    | TE: 142574                                   | -                      |                          | 1425746           |               |            |                      |       |                 |          |            |      |
|                              |                          | -          |                                              | MS                     | MSD                      |                   |               |            |                      |       | 04 <b>D</b>     |          |            |      |
| Parameter                    |                          | 3<br>Units | 5221170001<br>Result                         | Spike<br>Conc.         | Spike<br>Conc.           | MS<br>Result      | MSD<br>Result | MS<br>% Re | MS<br>c % F          |       | % Rec<br>Limits | RPD      | Max<br>RPD | Qual |
| Arsenic                      |                          | ug/L       | 5.0 U                                        | 250                    | 250                      | 231               | 227           |            | 92                   | 91    | 70-130          |          |            |      |
| Calcium                      |                          | ug/L       | 64200                                        | 12500                  | 12500                    | 77900             | 75900         |            | 10                   | 94    | 70-130          |          |            |      |
| Lead                         |                          | ug/L       | 5.0 U                                        | 250                    | 250                      | 239               | 248           |            | 96                   | 99    | 70-130          | -        |            |      |
| Magnesium                    |                          | ug/L       | 7230                                         | 12500                  | 12500                    | 19200             | 19000         |            | 96                   | 94    | 70-130          | 1        | 20         |      |
| Tot Hardness asCaC0<br>2340B | D3 (SM                   | ug/L       | 190000                                       | 82700                  | 82700                    | 274000            | 268000        | 1          | 01                   | 94    | 70-130          | 2        | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



| Project:            | Sawgrass Lake S | W       |             |             |           |             |            |            |
|---------------------|-----------------|---------|-------------|-------------|-----------|-------------|------------|------------|
| Pace Project No.:   | 35221170        |         |             |             |           |             |            |            |
| QC Batch:           | WETA/53212      |         | Analysis M  | ethod:      | EPA 351.2 |             |            |            |
| QC Batch Method:    | EPA 351.2       |         | Analysis De | escription: | 351.2 TKN |             |            |            |
| Associated Lab Sar  | mples: 35221170 | 0001    |             |             |           |             |            |            |
| METHOD BLANK:       | 1428032         |         | Matrix      | x: Water    |           |             |            |            |
| Associated Lab Sar  | mples: 35221170 | 0001    |             |             |           |             |            |            |
|                     |                 |         | Blank       | Reporting   |           |             |            |            |
| Para                | meter           | Units   | Result      | Limit       | MDL       | Analyze     | d Qualifi  | ers        |
| Nitrogen, Kjeldahl, | Total           | mg/L    | 0.086 L     | 0.9         | 50 0.08   | 12/22/15 12 | 2:21       |            |
| LABORATORY CO       | NTROL SAMPLE:   | 1428033 |             |             |           |             |            |            |
|                     |                 |         | Spike       | LCS         | LCS       | % Rec       |            |            |
| Parar               | meter           | Units   | Conc.       | Result      | % Rec     | Limits      | Qualifiers |            |
| Nitrogen, Kjeldahl, | Total           | mg/L    | 20          | 18.0        | 90        | 90-110      |            |            |
| MATRIX SPIKE SA     | MPLE:           | 1428035 |             |             |           |             |            |            |
|                     |                 |         | 3522101701  | 9 Spike     | MS        | MS          | % Rec      |            |
| Parar               | meter           | Units   | Result      | Conc.       | Result    | % Rec       | Limits     | Qualifiers |
| Nitrogen, Kjeldahl, | Total           | mg/L    |             | 3.0 20      | 19.8      | 84          | 90-110     | J(M1)      |
| SAMPLE DUPLICA      | TE: 1428034     |         |             |             |           |             |            |            |
|                     |                 |         | 35221017019 | Dup         |           | Max         |            |            |
| Para                | meter           | Units   | Result      | Result      | RPD       | RPD         | Qualifiers |            |
|                     |                 |         |             |             |           |             |            |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:              | Sawgra | ass Lake SV | V                                                        |                       |               |       |          |                 |             |            |
|-----------------------|--------|-------------|----------------------------------------------------------|-----------------------|---------------|-------|----------|-----------------|-------------|------------|
| Pace Project No.:     | 352211 | 170         |                                                          |                       |               |       |          |                 |             |            |
| QC Batch:             | WET    | A/53222     |                                                          | Analysis N            | lethod:       | El    | PA 351.2 |                 |             |            |
| QC Batch Method:      | EPA :  | 351.2       |                                                          | Analysis D            | escription    | 35    | 51.2 TKN |                 |             |            |
| Associated Lab San    | nples: | 352211700   | 002, 35221170003<br>009, 35221170010<br>016, 35221170017 | , 35221170011,        |               |       |          |                 |             |            |
| METHOD BLANK:         | 142846 | 62          |                                                          | Matr                  | x: Water      |       |          |                 |             |            |
| Associated Lab San    | nples: | 352211700   | 002, 35221170003<br>009, 35221170010<br>016, 35221170017 | , 35221170011,        |               |       |          |                 |             |            |
|                       |        |             |                                                          | Blank                 | Repo          | rting |          |                 |             |            |
| Paran                 | neter  |             | Units                                                    | Result                | Lin           | nit   | MDL      | Analyze         | ed Qualifie | rs         |
| Nitrogen, Kjeldahl, 1 | Fotal  |             | mg/L                                                     | 0.086                 |               | 0.50  | 0.086    | 12/22/15 1      | 4:10        |            |
|                       |        |             |                                                          |                       |               |       |          |                 |             |            |
| LABORATORY CON        | NTROL  | SAMPLE:     | 1428463                                                  | 0.1                   | 1.00          |       |          | 0/ <b>D</b>     |             |            |
| Paran                 | notor  |             | Units                                                    | Spike<br>Conc.        | LCS<br>Result |       |          | % Rec<br>Limits | Qualifiers  |            |
|                       |        |             |                                                          |                       |               |       |          |                 | Qualifiers  |            |
| Nitrogen, Kjeldahl, 1 | lotal  |             | mg/L                                                     | 20                    | 18            | 8.4   | 92       | 90-110          |             |            |
| MATRIX SPIKE SAI      | MPLE:  |             | 1428465                                                  |                       |               |       |          |                 |             |            |
|                       |        |             |                                                          | 352211700             | 02 Sp         | ike   | MS       | MS              | % Rec       |            |
| Paran                 | neter  |             | Units                                                    | Result                | Co            | nc.   | Result   | % Rec           | Limits      | Qualifiers |
| Nitrogen, Kjeldahl, 1 | Fotal  |             | mg/L                                                     |                       | 1.2           | 20    | 17.2     | 80              | 90-110      | J(M1)      |
|                       |        |             |                                                          |                       |               |       |          |                 |             |            |
| SAMPLE DUPLICA        | TE: 14 | 28464       |                                                          | 05004476000           | _             |       |          |                 |             |            |
| Paran                 | notor  |             | Units                                                    | 35221170002<br>Result | 2 Du<br>Res   | •     | RPD      | Max<br>RPD      | Qualifiers  |            |
|                       |        |             |                                                          |                       |               |       |          |                 |             | _          |
| Nitrogen, Kjeldahl, 7 | Total  |             | mg/L                                                     | 1.                    | 2             | 0.95  | 22       |                 | 20 J(D6)    |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: Saw            | grass Lake SW                                      |                       |                    |                  |                               |                 |            |
|-------------------------|----------------------------------------------------|-----------------------|--------------------|------------------|-------------------------------|-----------------|------------|
| Pace Project No.: 3522  | 1170                                               |                       |                    |                  |                               |                 |            |
| QC Batch: WE            | TA/53202                                           | Analysis Metho        | od: E              | PA 353.2         |                               |                 |            |
| QC Batch Method: EP     | A 353.2                                            | Analysis Descr        | iption: 3          | 53.2 Nitrate + N | litrite, preserved            |                 |            |
| Associated Lab Samples: | 35221170001, 3522117000<br>35221170008, 3522117000 |                       | 21170004, 3        | 5221170005, 35   | 5221170006, 3522 <sup>-</sup> | 1170007,        |            |
| METHOD BLANK: 1427      | 880                                                | Matrix: W             | /ater              |                  |                               |                 |            |
| Associated Lab Samples: | 35221170001, 3522117000<br>35221170008, 3522117000 | )9                    |                    | 5221170005, 35   | 5221170006, 3522 <sup>-</sup> | 1170007,        |            |
| Parameter               | Units                                              | Blank<br>Result       | Reporting<br>Limit | MDL              | Analyzed                      | Qualifier       | S          |
| Nitrogen, NO2 plus NO3  | mg/L                                               | 0.025 U               | 0.050              | 0.02             | 12/21/15 09:57                | 7               |            |
| _ABORATORY CONTRO       | L SAMPLE: 1427881                                  |                       |                    |                  |                               |                 |            |
| Parameter               | Units                                              |                       | CS<br>sult         | LCS<br>% Rec     | % Rec<br>Limits Qu            | ualifiers       |            |
| Nitrogen, NO2 plus NO3  | mg/L                                               | 2                     | 2.1                | 103              | 90-110                        |                 |            |
| MATRIX SPIKE SAMPLE     | 1427883                                            |                       |                    |                  |                               |                 |            |
| Parameter               | Units                                              | 35221121002<br>Result | Spike<br>Conc.     | MS<br>Result     | MS<br>% Rec                   | % Rec<br>Limits | Qualifiers |
| Nitrogen, NO2 plus NO3  | mg/L                                               | 0.025 U               | 2                  | 2.0              | 100                           | 80-120          |            |
| MATRIX SPIKE SAMPLE     | : 1427885                                          |                       |                    |                  |                               |                 |            |
| Parameter               | Units                                              | 35221167001<br>Result | Spike<br>Conc.     | MS<br>Result     | MS<br>% Rec                   | % Rec<br>Limits | Qualifiers |
| Nitrogen, NO2 plus NO3  | mg/L                                               | 4.8                   | 4                  | 9.1              | 106                           | 80-120          |            |
| SAMPLE DUPLICATE:       | 1427882                                            |                       |                    |                  |                               |                 |            |
| Parameter               | Units                                              | 35221121002<br>Result | Dup<br>Result      | RPD              | Max<br>RPD                    | Qualifiers      |            |
| Nitrogen, NO2 plus NO3  | mg/L                                               | 0.025 U               | 0.025 L            | J                | 20                            |                 | -          |
| SAMPLE DUPLICATE:       | 1427884                                            | 0500//0500/           |                    |                  |                               |                 |            |
| Parameter               | Units                                              | 35221167001<br>Result | Dup<br>Result      | RPD              | Max<br>RPD                    | Qualifiers      |            |
| Nitrogen, NO2 plus NO3  | mg/L                                               | 4.8                   | 4.9                | )                | 0 20                          |                 | -          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



| Project: Sa           | awgrass Lake S           | W       |                       |                    |                  |                    |                 |            |
|-----------------------|--------------------------|---------|-----------------------|--------------------|------------------|--------------------|-----------------|------------|
| Pace Project No.: 35  | 5221170                  |         |                       |                    |                  |                    |                 |            |
| QC Batch:             | WETA/53203               |         | Analysis Meth         | od: E              | PA 353.2         |                    |                 |            |
| QC Batch Method:      | EPA 353.2                |         | Analysis Desc         | ription: 3         | 53.2 Nitrate + N | litrite, preserved |                 |            |
| Associated Lab Sample | es: 35221170<br>35221170 |         | , 35221170012, 352    | 221170013, 3       | 5221170014, 35   | 221170015, 35221   | 1170016,        |            |
| METHOD BLANK: 14      |                          |         | Matrix: \             |                    |                  |                    |                 |            |
| Associated Lab Sample | es: 35221170<br>35221170 |         | , 35221170012, 352    | 221170013, 3       | 5221170014, 35   | 221170015, 35221   | 170016,         |            |
| Paramet               | er                       | Units   | Blank<br>Result       | Reporting<br>Limit | MDL              | Analyzed           | Qualifier       | S          |
| Nitrogen, NO2 plus NC |                          | mg/L    | 0.025 U               | 0.050              |                  |                    |                 |            |
| LABORATORY CONTI      |                          | 1427887 |                       |                    |                  |                    |                 |            |
|                       |                          |         |                       | .CS                | LCS              | % Rec              |                 |            |
| Paramet               | er                       | Units   | Conc Re               | esult              | % Rec            | Limits Qu          | ualifiers       |            |
| Nitrogen, NO2 plus NC | )3                       | mg/L    | 2                     | 2.1                | 104              | 90-110             |                 |            |
| MATRIX SPIKE SAMP     | LE:                      | 1427889 |                       |                    |                  |                    |                 |            |
| Paramet               | er                       | Units   | 35221170010<br>Result | Spike<br>Conc.     | MS<br>Result     | MS<br>% Rec        | % Rec<br>Limits | Qualifiers |
| Nitrogen, NO2 plus NC | )3                       | mg/L    | 0.025 L               | 2                  | 2.1              | 103                | 80-120          |            |
| MATRIX SPIKE SAMP     | LE:                      | 1427891 |                       |                    |                  |                    |                 |            |
|                       |                          |         | 35221198003           | Spike              | MS               | MS                 | % Rec           |            |
| Paramet               | -                        | Units   | Result                | Conc.              | Result           | % Rec              | Limits          | Qualifiers |
| Nitrogen, NO2 plus NC | )3                       | mg/L    | 28.1                  | 1 20               | 47.3             | 96                 | 80-120          |            |
| SAMPLE DUPLICATE:     | 1427888                  |         |                       |                    |                  |                    |                 |            |
| Paramet               | er                       | Units   | 35221170010<br>Result | Dup<br>Result      | RPD              | Max<br>RPD         | Qualifiers      |            |
| Nitrogen, NO2 plus NC | )3                       | mg/L    | 0.025 U               | 0.025 L            | J                | 20                 |                 | -          |
| SAMPLE DUPLICATE:     | 1427890                  |         |                       |                    |                  |                    |                 |            |
| Paramet               | er                       | Units   | 35221198003<br>Result | Dup<br>Result      | RPD              | Max<br>RPD         | Qualifiers      |            |
| Nitrogen, NO2 plus NC |                          | mg/L    |                       | 28.0               | )                | 0 20               |                 | -          |
|                       |                          | 0       |                       |                    |                  |                    |                 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | Sawgrass Lake S | W       |                |               |                 |                   |            |            |
|---------------------|-----------------|---------|----------------|---------------|-----------------|-------------------|------------|------------|
| Pace Project No.:   | 35221170        |         |                |               |                 |                   |            |            |
| QC Batch:           | WETA/53213      |         | Analysis Me    | ethod:        | EPA 365.4       |                   |            |            |
| QC Batch Method:    | EPA 365.4       |         | Analysis De    | escription:   | 365.4 Phosphoru | s                 |            |            |
| Associated Lab Sar  | nples: 35221170 | 001     |                |               |                 |                   |            |            |
| METHOD BLANK:       | 1428036         |         | Matrix         | :: Water      |                 |                   |            |            |
| Associated Lab Sar  | mples: 35221170 | 001     |                |               |                 |                   |            |            |
|                     |                 |         | Blank          | Reporting     |                 |                   |            |            |
| Parar               | neter           | Units   | Result         | Limit         | MDL             | Analyzed          | Qualifiers |            |
| Phosphorus, Total ( | as P)           | mg/L    | 0.050 U        | 0.1           | 0 0.050         | ) 12/22/15 12:5   | 58         |            |
| LABORATORY CO       | NTROL SAMPLE:   | 1428037 |                |               |                 |                   |            |            |
| Parar               | notor           | Units   | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec    | % Rec<br>Limits C | Qualifiers |            |
|                     |                 |         |                |               |                 |                   |            |            |
| Phosphorus, Total ( | as P)           | mg/L    | 4              | 3.8           | 95              | 90-110            |            |            |
| MATRIX SPIKE SA     | MPLE:           | 1428039 |                |               |                 |                   |            |            |
|                     |                 |         | 3522101701     | 9 Spike       | MS              | MS                | % Rec      |            |
| Parar               | neter           | Units   | Result         | Conc.         | Result          | % Rec             | Limits     | Qualifiers |
| Phosphorus, Total ( | as P)           | mg/L    | 0              | .70 4         | 4.3             | 89                | 80-120     |            |
| SAMPLE DUPLICA      | TE: 1428038     |         |                |               |                 |                   |            |            |
|                     |                 |         | 35221017019    | Dup           |                 | Max               |            |            |
| -                   | notor           | Units   | Result         | Result        | RPD             | RPD               | Qualifiers |            |
| Parar               | neter           | Onits   | recount        |               |                 |                   |            |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: Sawg            | grass Lake SW |              |                       |                  |                 |                                      |                 |            |
|--------------------------|---------------|--------------|-----------------------|------------------|-----------------|--------------------------------------|-----------------|------------|
| Pace Project No.: 3522   | 1170          |              |                       |                  |                 |                                      |                 |            |
| QC Batch: WE             | TA/53223      |              | Analysis Me           | ethod:           | EPA 365.4       |                                      |                 |            |
| QC Batch Method: EP/     | A 365.4       |              | Analysis De           | scription:       | 365.4 Phosphoru | S                                    |                 |            |
| Associated Lab Samples:  |               | 35221170010, |                       |                  |                 | 221170007, 35221<br>221170014, 35221 |                 |            |
| METHOD BLANK: 1428       | 469           |              | Matrix                | : Water          |                 |                                      |                 |            |
| Associated Lab Samples:  |               | 35221170010, |                       |                  |                 | 221170007, 35221<br>221170014, 35221 |                 |            |
|                          |               |              | Blank                 | Reporting        |                 |                                      |                 |            |
| Parameter                |               | Units        | Result                | Limit            | MDL             | Analyzed                             | Qualifiers      |            |
| Phosphorus, Total (as P) |               | mg/L         | 0.050 U               | 0.               | 0.050           | ) 12/22/15 14:51                     |                 |            |
| LABORATORY CONTRO        | L SAMPLE: 142 | 28473        | Crite                 | LCS              |                 | 0/ D                                 |                 |            |
| Parameter                |               | Units        | Spike<br>Conc.        | Result           | LCS<br>% Rec    | % Rec<br>Limits Qu                   | ualifiers       |            |
| Phosphorus, Total (as P) |               | mg/L         | 4                     | 3.8              | 96              | 90-110                               |                 |            |
| MATRIX SPIKE SAMPLE:     | 142           | 28475        |                       |                  |                 |                                      |                 |            |
| Parameter                |               | Units        | 35221170002<br>Result | 2 Spike<br>Conc. | MS<br>Result    | MS<br>% Rec                          | % Rec<br>Limits | Qualifiers |
| Phosphorus, Total (as P) |               | mg/L         | 0                     | .15 4            | 3.6             | 86                                   | 80-120          |            |
| SAMPLE DUPLICATE:        | 1428474       |              |                       |                  |                 |                                      |                 |            |
| Parameter                |               | Units        | 35221170002<br>Result | Dup<br>Result    | RPD             | Max<br>RPD                           | Qualifiers      |            |
| Phosphorus, Total (as P) |               | mg/L         | 0.15                  |                  |                 |                                      |                 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: Sawgrass Lake SW

Pace Project No.: 35221170

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

PASI-Tp Pace Analytical Services - Tampa

#### ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(D6) Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | Sawgrass Lake SW |
|-------------------|------------------|
| Pace Project No.: | 35221170         |

| Lab ID      | Sample ID    | QC Batch Method            | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|--------------|----------------------------|------------|-------------------|---------------------|
| 35221170001 | SLSW-1-0     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170002 | SLSW-1-1     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170003 | SLSW-1-2     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170004 | SLSW-1-3     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170005 | SLSW-2-0     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170006 | SLSW-2-1     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170007 | SLSW-2-3     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170008 | SLSW-2-5     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170009 | SLSW-3-0     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170010 | SLSW-3-1     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170011 | SLSW-3-3     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170012 | SLSW-3-5     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170013 | SLSW-4-0     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170014 | SLSW-4-1     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170015 | SLSW-4-5     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170016 | SLSW-4-5-DUP | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170017 | SLSW-4-9     | EPA 200.7                  | TAMP/8087  | EPA 200.7         | TAMP/8089           |
| 35221170001 | SLSW-1-0     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170002 | SLSW-1-1     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170003 | SLSW-1-2     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170004 | SLSW-1-3     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170005 | SLSW-2-0     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170006 | SLSW-2-1     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170007 | SLSW-2-3     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170008 | SLSW-2-5     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170009 | SLSW-3-0     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170010 | SLSW-3-1     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170011 | SLSW-3-3     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170012 | SLSW-3-5     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170013 | SLSW-4-0     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170014 | SLSW-4-1     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170015 | SLSW-4-5     | <b>TKN+NOx Calculation</b> | WET/34858  |                   |                     |
| 35221170016 | SLSW-4-5-DUP | <b>TKN+NOx Calculation</b> | WET/34858  |                   |                     |
| 35221170017 | SLSW-4-9     | TKN+NOx Calculation        | WET/34858  |                   |                     |
| 35221170001 | SLSW-1-0     | EPA 351.2                  | WETA/53212 | EPA 351.2         | WETA/5323           |
| 35221170002 | SLSW-1-1     | EPA 351.2                  | WETA/53222 | EPA 351.2         | WETA/5324           |
| 35221170003 | SLSW-1-2     | EPA 351.2                  | WETA/53222 | EPA 351.2         | WETA/5324           |
| 35221170004 | SLSW-1-3     | EPA 351.2                  | WETA/53222 | EPA 351.2         | WETA/5324           |
| 35221170005 | SLSW-2-0     | EPA 351.2                  | WETA/53222 | EPA 351.2         | WETA/5324           |
| 35221170006 | SLSW-2-1     | EPA 351.2                  | WETA/53222 | EPA 351.2         | WETA/5324           |
| 35221170007 | SLSW-2-3     | EPA 351.2                  | WETA/53222 | EPA 351.2         | WETA/5324           |
| 35221170008 | SLSW-2-5     | EPA 351.2                  | WETA/53222 |                   | WETA/5324           |
| 35221170009 | SLSW-3-0     | EPA 351.2                  | WETA/53222 |                   | WETA/5324           |
| 35221170010 | SLSW-3-1     | EPA 351.2                  | WETA/53222 |                   | WETA/5324           |
| 35221170011 | SLSW-3-3     | EPA 351.2                  | WETA/53222 |                   | WETA/5324           |
| 35221170012 | SLSW-3-5     | EPA 351.2                  | WETA/53222 |                   | WETA/5324           |
|             |              |                            |            |                   |                     |



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | Sawgrass Lake SW |
|--------------------|------------------|
| Pace Project No .: | 35221170         |

| 35221170014   SLSW-4-1   EPA 351.2   WETA/53222   EPA 351.2   WETA/53248     35221170017   SLSW-4-9   EPA 351.2   WETA/53222   EPA 351.2   WETA/53202     35221170001   SLSW-10   EPA 353.2   WETA/53202   SS23170004   SLSW-11   EPA 353.2   WETA/53202     35221170005   SLSW-12   EPA 353.2   WETA/53202   SS23170005   SLSW-20   EPA 353.2   WETA/53202     35221170005   SLSW-21   EPA 353.2   WETA/53202   SS23170006   SLSW-23   EPA 353.2   WETA/53202     35221170006   SLSW-30   EPA 353.2   WETA/53202   SS23170019   SLSW-30   EPA 353.2   WETA/53203     35221170010   SLSW-31   EPA 353.2   WETA/53203   SS221170013   SLSW-45   EPA 353.2   WETA/53203     35221170011   SLSW-45   EPA 353.2   WETA/53203   SS221170013   SLSW-4                                                                                      | Lab ID      | Sample ID    | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------|------------|-------------------|---------------------|
| 35221170016   SLSW-4-9   EPA 351.2   WETA/S3222   EPA 351.2   WETA/S3224   WETA/S3224     35221170001   SLSW-10   EPA 353.2   WETA/S3202   EPA 351.2   WETA/S3202     35221170002   SLSW-11   EPA 353.2   WETA/S3202   SEX   SEX     35221170003   SLSW-12   EPA 353.2   WETA/S3202   SEX   SEX     35221170004   SLSW-30   EPA 353.2   WETA/S3202   SEX   SEX     35221170005   SLSW-30   EPA 353.2   WETA/S3202   SEX   SEX     35221170006   SLSW-30   EPA 353.2   WETA/S3202   SEX   SEX     35221170010   SLSW-30   EPA 353.2   WETA/S3202   SEX   SEX     35221170010   SLSW-31   EPA 353.2   WETA/S3203   SEX   SEX   SEX     35221170011   SLSW-31   EPA 353.2   WETA/S3203   SEX   SEX   SEX     35221170011   SLSW-31   EPA 353.2   WETA/S3203   SEX   SEX   SEX     35221170014   SLSW-4                                                                                                                                                                                        | 35221170014 | SLSW-4-1     | EPA 351.2       | WETA/53222 | EPA 351.2         | WETA/53248          |
| 35221170017   SLSW-4-9   EPA 351.2   WETA/53222   EPA 351.2   WETA/53228     35221170001   SLSW-1-0   EPA 353.2   WETA/53202   SUSW-10   SUSW-12   EPA 353.2   WETA/53202     35221170004   SLSW-12   EPA 353.2   WETA/53202   SUSW-13   EPA 353.2   WETA/53202     35221170005   SLSW-20   EPA 353.2   WETA/53202   SUSW-20   SUSW-20     35221170006   SLSW-2.3   EPA 353.2   WETA/53202   SUSW-20   SUSW-20     35221170007   SLSW-2.3   EPA 353.2   WETA/53202   SUSW-20   SUSW-20     35221170018   SLSW-3.4   EPA 353.2   WETA/53202   SUSW-20   SUSW-20     35221170019   SLSW-3.5   EPA 353.2   WETA/53203   SUSW-20   SUSW-20     35221170011   SLSW-4.5   EPA 353.2   WETA/53203   SUSW-20   SUSW-20     35221170014   SLSW-4.5   EPA 353.2   WETA/53203   SUSW-20   SUSW-20     35221170016   SLSW-4.5   EPA 365.4   WETA/53203   SUSW-20   SUSW-20 <td>35221170015</td> <td>SLSW-4-5</td> <td>EPA 351.2</td> <td>WETA/53222</td> <td>EPA 351.2</td> <td>WETA/53248</td>        | 35221170015 | SLSW-4-5     | EPA 351.2       | WETA/53222 | EPA 351.2         | WETA/53248          |
| 35221170001 SLSW-1-0 EPA 353.2 WETA/53202   35221170002 SLSW-1-1 EPA 353.2 WETA/53202   35221170003 SLSW-1-2 EPA 353.2 WETA/53202   35221170005 SLSW-2-0 EPA 353.2 WETA/53202   35221170006 SLSW-2-0 EPA 353.2 WETA/53202   35221170006 SLSW-2-1 EPA 353.2 WETA/53202   35221170007 SLSW-2-3 EPA 353.2 WETA/53202   35221170018 SLSW-3-6 EPA 353.2 WETA/53202   35221170019 SLSW-3-1 EPA 353.2 WETA/53203   35221170019 SLSW-3-3 EPA 353.2 WETA/53203   35221170011 SLSW-3-5 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-5 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 365.4 WETA/53203   35221170016 SLSW-11 EPA 365.4 WETA/53203   35221170017 SLSW-14 EPA 365.4 WETA/53223   35221170016 SLSW-14 EPA 365.4 WETA/5                                                                                                                                                                                                                         | 35221170016 | SLSW-4-5-DUP | EPA 351.2       | WETA/53222 | EPA 351.2         | WETA/53248          |
| 35221170002 SLSW-1-1 EPA 353.2 WETA/53202   35221170003 SLSW-1-2 EPA 353.2 WETA/53202   35221170005 SLSW-2-0 EPA 353.2 WETA/53202   35221170006 SLSW-2-1 EPA 353.2 WETA/53202   35221170007 SLSW-2-3 EPA 353.2 WETA/53202   35221170008 SLSW-2-3 EPA 353.2 WETA/53202   35221170008 SLSW-3-0 EPA 353.2 WETA/53202   35221170010 SLSW-3-0 EPA 353.2 WETA/53202   35221170010 SLSW-3-1 EPA 353.2 WETA/53203   35221170011 SLSW-3-5 EPA 353.2 WETA/53203   35221170012 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-5 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-5 EPA 355.4 WET                                                                                                                                                                                                                         | 35221170017 | SLSW-4-9     | EPA 351.2       | WETA/53222 | EPA 351.2         | WETA/53248          |
| 35221170003 SLSW-1-2 EPA 353.2 WETA/53202   35221170006 SLSW-2-0 EPA 353.2 WETA/53202   35221170006 SLSW-2-1 EPA 353.2 WETA/53202   35221170006 SLSW-2-3 EPA 353.2 WETA/53202   35221170007 SLSW-2-3 EPA 353.2 WETA/53202   35221170008 SLSW-2-5 EPA 353.2 WETA/53202   35221170010 SLSW-3-1 EPA 353.2 WETA/53203   35221170010 SLSW-3-1 EPA 353.2 WETA/53203   35221170010 SLSW-3-5 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-1 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170017 SLSW-4-5 EPA 353.2 WETA/53203   35221170017 SLSW-4-5 EPA 365.4 WETA/53249   35221170016 SLSW-1-1 EPA 365.4 WETA/53223   35221170017 SLSW-1-2 EPA 365.4 WETA/53223   35221170017 SLSW-1-2 EPA 365.4 WET                                                                                                                                                                                                                         | 35221170001 | SLSW-1-0     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170004 SLSW-1-3 EPA 353.2 WETA/53202   35221170005 SLSW-2-0 EPA 353.2 WETA/53202   35221170007 SLSW-2-3 EPA 353.2 WETA/53202   35221170008 SLSW-2-3 EPA 353.2 WETA/53202   35221170008 SLSW-3-6 EPA 353.2 WETA/53202   35221170010 SLSW-3-1 EPA 353.2 WETA/53203   35221170012 SLSW-3-3 EPA 353.2 WETA/53203   35221170012 SLSW-3-4 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-5 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170014 SLSW-4-5 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 365.4 WETA/53203   35221170016 SLSW-4-5 EPA 365.4 WETA/53203   35221170015 SLSW-4-5 EPA 365.4 WETA/53223   35221170016 SLSW-4-1 EPA 365.4 WETA/53223   35221170005 SLSW-1-1 EPA 365.4 WET                                                                                                                                                                                                                         | 35221170002 | SLSW-1-1     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170005 SLSW-2-0 EPA 353.2 WETA/53202   35221170006 SLSW-2-1 EPA 353.2 WETA/53202   35221170008 SLSW-2-5 EPA 353.2 WETA/53202   35221170010 SLSW-3-0 EPA 353.2 WETA/53202   35221170010 SLSW-3-1 EPA 353.2 WETA/53203   35221170010 SLSW-3-3 EPA 353.2 WETA/53203   35221170011 SLSW-3-3 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170013 SLSW-4-1 EPA 353.2 WETA/53203   35221170014 SLSW-4-5 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-1 EPA 365.4 WETA/5323   35221170016 SLSW-4-1 EPA 365.4 WETA/5323   35221170002 SLSW-1-1 EPA 365.4 WETA/                                                                                                                                                                                                                         | 35221170003 | SLSW-1-2     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170006   SLSW-2-1   EPA 353.2   WETA/53202     35221170007   SLSW-2-3   EPA 353.2   WETA/53202     35221170009   SLSW-3-0   EPA 353.2   WETA/53202     35221170010   SLSW-3-1   EPA 353.2   WETA/53203     35221170011   SLSW-3-3   EPA 353.2   WETA/53203     35221170012   SLSW-3-5   EPA 353.2   WETA/53203     35221170013   SLSW-4-0   EPA 353.2   WETA/53203     35221170014   SLSW-4-5   EPA 353.2   WETA/53203     35221170014   SLSW-4-5   EPA 353.2   WETA/53203     35221170016   SLSW-4-5   EPA 353.2   WETA/53203     35221170017   SLSW-4-9   EPA 353.2   WETA/53203     35221170016   SLSW-4-9   EPA 353.2   WETA/53203     35221170017   SLSW-4-9   EPA 365.4   WETA/53203     35221170017   SLSW-4-9   EPA 365.4   WETA/53223     35221170002   SLSW-1-1   EPA 365.4   WETA/53224     35221170003   SLSW-2-2   EPA 365.4   WETA/5                                                                                                                                    | 35221170004 | SLSW-1-3     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170007 SLSW-2-3 EPA 353.2 WETA/53202   35221170008 SLSW-2-5 EPA 353.2 WETA/53202   35221170010 SLSW-3-0 EPA 353.2 WETA/53203   35221170011 SLSW-3-1 EPA 353.2 WETA/53203   35221170012 SLSW-3-5 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-5 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-5 EPA 353.2 WETA/53203   35221170017 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-5 EPA 353.2 WETA/53203   35221170017 SLSW-1-0 EPA 365.4 WETA/53203   35221170017 SLSW-1-1 EPA 365.4 WETA/53223   35221170018 SLSW-1-2 EPA 365.4 WETA/53223   35221170019 SLSW-1-1 EPA 365.4 WETA/53223   35221170002 SLSW-1-1 EPA 365.4 WETA/53223   35221170003 SLSW-2-2 EPA 365.4 WET                                                                                                                                                                                                                         | 35221170005 | SLSW-2-0     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170008   SLSW-2-5   EPA 353.2   WETA/53202     35221170009   SLSW-3-0   EPA 353.2   WETA/53203     35221170010   SLSW-3-1   EPA 353.2   WETA/53203     35221170011   SLSW-3-3   EPA 353.2   WETA/53203     35221170012   SLSW-3-5   EPA 353.2   WETA/53203     35221170013   SLSW-4-0   EPA 353.2   WETA/53203     35221170014   SLSW-4-5   EPA 353.2   WETA/53203     35221170015   SLSW-4-5   EPA 353.2   WETA/53203     35221170016   SLSW-4-5   EPA 353.2   WETA/53203     35221170017   SLSW-4-5   EPA 353.2   WETA/53203     35221170016   SLSW-4-9   EPA 353.2   WETA/53203     35221170017   SLSW-10   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117002   SLSW-1-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170004   SLSW-2-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170005   SLSW-2-5 <td< td=""><td>35221170006</td><td>SLSW-2-1</td><td>EPA 353.2</td><td>WETA/53202</td><td></td><td></td></td<>                      | 35221170006 | SLSW-2-1     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170009   SLSW-3-0   EPA 353.2   WETA/53202     35221170010   SLSW-3-1   EPA 353.2   WETA/53203     35221170011   SLSW-3-3   EPA 353.2   WETA/53203     35221170012   SLSW-3-5   EPA 353.2   WETA/53203     35221170013   SLSW-4-0   EPA 353.2   WETA/53203     35221170014   SLSW-4-0   EPA 353.2   WETA/53203     35221170015   SLSW-4-5-DUP   EPA 353.2   WETA/53203     35221170016   SLSW-4-5-DUP   EPA 353.2   WETA/53203     35221170017   SLSW-1-0   EPA 355.4   WETA/53203     35221170018   SLSW-1-0   EPA 365.4   WETA/53223     35221170017   SLSW-1-1   EPA 365.4   WETA/53223     3522117002   SLSW-1-1   EPA 365.4   WETA/53223     3522117003   SLSW-2-0   EPA 365.4   WETA/53223     3522117004   SLSW-2-1   EPA 365.4   WETA/53223     3522117005   SLSW-2-3   EPA 365.4   WETA/53249     3522117006   SLSW-2-1   EPA 365.4   WET                                                                                                                                    | 35221170007 | SLSW-2-3     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170010 SLSW-3-1 EPA 353.2 WETA/53203   35221170011 SLSW-3-3 EPA 353.2 WETA/53203   35221170012 SLSW-3-5 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-1 EPA 353.2 WETA/53203   35221170016 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-9 EPA 353.2 WETA/53203   35221170017 SLSW-4-9 EPA 365.4 WETA/53203   35221170016 SLSW-1-0 EPA 365.4 WETA/53203   35221170002 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170003 SLSW-1-2 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-2-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170005 SLSW-2-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170006 SLSW-2-5 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170007 SLSW-3-3 EPA 365.4                                                                                                                                                                                                            | 35221170008 | SLSW-2-5     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170011 SLSW-3-3 EPA 353.2 WETA/53203   35221170012 SLSW-3-5 EPA 353.2 WETA/53203   35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-1 EPA 353.2 WETA/53203   35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-5 EPA 353.2 WETA/53203   35221170017 SLSW-4-9 EPA 353.2 WETA/53203   35221170016 SLSW-1-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53239   35221170002 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-1-2 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-2-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170005 SLSW-2-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170006 SLSW-2-5 EPA 365.4 WETA/53223 EPA 365.4 WETA/5324                                                                                                                                                                                                    | 35221170009 | SLSW-3-0     | EPA 353.2       | WETA/53202 |                   |                     |
| 35221170012   SLSW-3-5   EPA 353.2   WETA/53203     35221170013   SLSW-4-0   EPA 353.2   WETA/53203     35221170014   SLSW-4-1   EPA 353.2   WETA/53203     35221170015   SLSW-4-5   EPA 353.2   WETA/53203     35221170016   SLSW-4-5-DUP   EPA 353.2   WETA/53203     35221170017   SLSW-4-9   EPA 365.4   WETA/53213   EPA 365.4   WETA/53239     35221170012   SLSW-1-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53239     3522117002   SLSW-1-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53239     3522117003   SLSW-1-2   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117004   SLSW-20   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117005   SLSW-2-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117006   SLSW-2-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170016   SLSW-3-5   EPA 365.4   WETA/53223                                                                                                               | 35221170010 | SLSW-3-1     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170013 SLSW-4-0 EPA 353.2 WETA/53203   35221170014 SLSW-4-1 EPA 353.2 WETA/53203   35221170015 SLSW-4-5-DUP EPA 353.2 WETA/53203   35221170016 SLSW-4-5-DUP EPA 353.2 WETA/53203   35221170017 SLSW-4-9 EPA 353.2 WETA/53203   35221170017 SLSW-1-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53239   3522117002 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   3522117003 SLSW-1-2 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   3522117004 SLSW-1-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   3522117005 SLSW-2-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   3522117006 SLSW-2-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170007 SLSW-3-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170008 SLSW-3-5 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW                                                                                                                                                                                                    | 35221170011 | SLSW-3-3     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170014   SLSW-4-1   EPA 353.2   WETA/53203     35221170015   SLSW-4-5   EPA 353.2   WETA/53203     35221170016   SLSW-4-5-DUP   EPA 353.2   WETA/53203     35221170017   SLSW-4-9   EPA 353.2   WETA/53203     35221170017   SLSW-1-9   EPA 365.4   WETA/53213   EPA 365.4   WETA/53223     35221170012   SLSW-1-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53223     35221170002   SLSW-1-2   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170003   SLSW-20   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170005   SLSW-20   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170006   SLSW-2-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170007   SLSW-2-3   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170008   SLSW-2-3   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170010   SLSW                                                                                                               | 35221170012 | SLSW-3-5     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170015 SLSW-4-5 EPA 353.2 WETA/53203   35221170016 SLSW-4-9 EPA 353.2 WETA/53203   35221170017 SLSW-4-9 EPA 353.2 WETA/53203   35221170017 SLSW-1-0 EPA 365.4 WETA/53213 EPA 365.4 WETA/53239   35221170002 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53239   35221170003 SLSW-1-2 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-1-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170005 SLSW-2-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170006 SLSW-2-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170007 SLSW-2-5 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170008 SLSW-3-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW-3-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW-3-5 EPA 365.4 WETA/53223 EP                                                                                                                                                                                                  | 35221170013 | SLSW-4-0     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170016   SLSW-4-5-DUP   EPA 353.2   WETA/53203     35221170017   SLSW-4-9   EPA 353.2   WETA/53203     35221170001   SLSW-1-0   EPA 365.4   WETA/53213   EPA 365.4   WETA/53239     35221170002   SLSW-1-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117003   SLSW-1-2   EPA 365.4   WETA/53223   EPA 365.4   WETA/53233     3522117004   SLSW-1-3   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117005   SLSW-2-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117006   SLSW-2-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     3522117007   SLSW-2-3   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170008   SLSW-2-5   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170010   SLSW-3-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170010   SLSW-3-5   EPA 365.4   WETA/53223                                                                                                                | 35221170014 | SLSW-4-1     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170017   SLSW-4-9   EPA 353.2   WETA/53203     35221170001   SLSW-1-0   EPA 365.4   WETA/53213   EPA 365.4   WETA/53239     35221170002   SLSW-1-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170003   SLSW-1-2   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170004   SLSW-1-3   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170005   SLSW-2-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170006   SLSW-2-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170007   SLSW-2-3   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170008   SLSW-2-5   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170010   SLSW-3-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170010   SLSW-3-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170011   SLSW-3-1 <td< td=""><td>35221170015</td><td>SLSW-4-5</td><td>EPA 353.2</td><td>WETA/53203</td><td></td><td></td></td<> | 35221170015 | SLSW-4-5     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170001 SLSW-1-0 EPA 365.4 WETA/53213 EPA 365.4 WETA/53239   35221170002 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170003 SLSW-1-2 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-1-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170005 SLSW-2-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170006 SLSW-2-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170007 SLSW-2-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170008 SLSW-2-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170009 SLSW-3-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW-3-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170011 SLSW-3-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170012 SLSW-3-5 EPA 365.4 WETA/53223 EPA 365.4                                                                                                                                                                                             | 35221170016 | SLSW-4-5-DUP | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170002 SLSW-1-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170003 SLSW-1-2 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170004 SLSW-1-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170005 SLSW-2-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170006 SLSW-2-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170007 SLSW-2-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170008 SLSW-2-5 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   3522117009 SLSW-3-0 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW-3-1 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW-3-3 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170010 SLSW-3-5 EPA 365.4 WETA/53223 EPA 365.4 WETA/53249   35221170011 SLSW-3-5 EPA 365.4 WETA/53223 EPA 365.4 <                                                                                                                                                                                            | 35221170017 | SLSW-4-9     | EPA 353.2       | WETA/53203 |                   |                     |
| 35221170003SLSW-1-2EPA 365.4WETA/53223EPA 365.4WETA/5324935221170004SLSW-1-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170005SLSW-2-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170006SLSW-2-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170007SLSW-2-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170008SLSW-2-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                       | 35221170001 | SLSW-1-0     | EPA 365.4       | WETA/53213 | EPA 365.4         | WETA/53239          |
| 35221170004SLSW-1-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170005SLSW-2-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170006SLSW-2-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170007SLSW-2-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170008SLSW-2-5EPA 365.4WETA/53223EPA 365.4WETA/532493522117009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                    | 35221170002 | SLSW-1-1     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170005SLSW-2-0EPA 365.4WETA/53223EPA 365.4WETA/532493522117006SLSW-2-1EPA 365.4WETA/53223EPA 365.4WETA/532493522117007SLSW-2-3EPA 365.4WETA/53223EPA 365.4WETA/532493522117008SLSW-2-5EPA 365.4WETA/53223EPA 365.4WETA/532493522117009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/532493522117010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/532493522117011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/532493522117012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/532493522117014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                   | 35221170003 | SLSW-1-2     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170006SLSW-2-1EPA 365.4WETA/53223EPA 365.4WETA/532493522117007SLSW-2-3EPA 365.4WETA/53223EPA 365.4WETA/532493522117008SLSW-2-5EPA 365.4WETA/53223EPA 365.4WETA/532493522117009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                       | 35221170004 | SLSW-1-3     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170007SLSW-2-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170008SLSW-2-5EPA 365.4WETA/53223EPA 365.4WETA/532493522117009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                                                                              | 35221170005 | SLSW-2-0     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170008SLSW-2-5EPA 365.4WETA/53223EPA 365.4WETA/532493522117009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35221170006 | SLSW-2-1     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170009SLSW-3-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35221170007 | SLSW-2-3     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170010SLSW-3-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35221170008 | SLSW-2-5     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170011SLSW-3-3EPA 365.4WETA/53223EPA 365.4WETA/5324935221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35221170009 | SLSW-3-0     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170012SLSW-3-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170013SLSW-4-0EPA 365.4WETA/53223EPA 365.4WETA/5324935221170014SLSW-4-1EPA 365.4WETA/53223EPA 365.4WETA/5324935221170015SLSW-4-5EPA 365.4WETA/53223EPA 365.4WETA/5324935221170016SLSW-4-5-DUPEPA 365.4WETA/53223EPA 365.4WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35221170010 | SLSW-3-1     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170013   SLSW-4-0   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170014   SLSW-4-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170015   SLSW-4-5   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170016   SLSW-4-5-DUP   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     WETA/53249   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     SLSW-4-5-DUP   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35221170011 | SLSW-3-3     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170014   SLSW-4-1   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170015   SLSW-4-5   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170016   SLSW-4-5-DUP   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35221170012 | SLSW-3-5     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| 35221170015   SLSW-4-5   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249     35221170016   SLSW-4-5-DUP   EPA 365.4   WETA/53223   EPA 365.4   WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35221170013 | SLSW-4-0     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| <b>35221170016 SLSW-4-5-DUP</b> EPA 365.4 WETA/53223 EPA 365.4 WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35221170014 | SLSW-4-1     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35221170015 | SLSW-4-5     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
| <b>35221170017 SLSW-4-9</b> EPA 365.4 WETA/53223 EPA 365.4 WETA/53249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35221170016 | SLSW-4-5-DUP | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35221170017 | SLSW-4-9     | EPA 365.4       | WETA/53223 | EPA 365.4         | WETA/53249          |



# WO#:35221170

## **F-CUSTODY / Analytical Request Document** ustody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21170               |                              |             |          |            |        |       |                           | Sect                                      | tion C      |         |       |        |         |          |               |                          |                  |                           |       |           |         |       |       |           | _              |          |        | _        |                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|-------------|----------|------------|--------|-------|---------------------------|-------------------------------------------|-------------|---------|-------|--------|---------|----------|---------------|--------------------------|------------------|---------------------------|-------|-----------|---------|-------|-------|-----------|----------------|----------|--------|----------|----------------------------|
|          | Client Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Required Pr         | oject                        | Infor       | mation:  | 8          |        |       |                           |                                           |             | forma   | tion: |        |         |          |               |                          |                  |                           |       |           |         |       |       | P         | age :          | A        | 1      | Of       | 2                          |
| Company  | ATKINS Global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Report To:          | Matt                         | t Starr     | r        |            |        |       |                           | 1.1.1.1.1.1.1.1.1                         | ntion:      |         |       |        |         |          |               |                          |                  |                           |       |           |         |       |       | -         |                |          | 1      | -        | -                          |
| Address: | 4030 West Boy Scout Blvd., Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Copy To:            |                              |             |          |            |        |       |                           | Com                                       | pany        | Name    | ¢     |        |         |          |               |                          |                  |                           |       |           |         | 1     |       |           | -              | 2.2      |        |          | _                          |
|          | L 33607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                              |             |          |            |        |       |                           |                                           | ress:       |         |       |        |         |          |               |                          |                  |                           |       |           |         |       |       |           | Regu           | latory   | Agency | y        |                            |
|          | matthew.starr@atkinsglobal.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Purchase Or         | 12/22 23                     | _           |          |            |        |       |                           | 1. A. | e Quo       |         |       |        |         |          |               |                          |                  |                           |       |           |         |       |       |           |                |          |        |          |                            |
| Phone:   | 727-409-0733 Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Nam         | e:                           | Saw         | grass La | ake SW     |        |       | 1                         | _                                         |             | ect Ma  |       |        | _       | .valde   | r@pa          | celab                    | S.CO             | m,                        |       |           |         | 1     |       |           | Stat           | te / Loc | cation |          |                            |
| Request  | d Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project #:          |                              | -           | _        |            |        |       | -                         | Pace                                      | e Prof      | file #: | 69    | 64 lin | e 5     |          | -             | -                        | _                |                           |       | Start V C |         |       |       |           |                | FL       | _      |          |                            |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1                            | -           | -        |            |        |       | r -                       | -                                         | _           |         | _     | _      | -       |          | -             | 1                        | T                | Requ                      | ested | Analy     | sis Fil | tered | (Y/N) |           | -              |          |        |          |                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATRIX CODE          | des to left)                 | C=COMP)     |          | COLLE      | ECTED  |       | NOI                       |                                           |             | F       | rese  | ervat  | ives    |          | NIX           | 17                       |                  | -tp                       |       |           |         |       |       |           |                | -        | _      |          |                            |
|          | SAMPLE ID Solution Solution Solution Sample ID Solution S | /ipe WP             | DE (see valid codes to left) | (G=GRAB     | ST       | ART        | E      | ND    | SAMPLE TEMP AT COLLECTION | INERS                                     | p           |         |       |        |         |          | Analyses Test | Total Nitrogen (TKN+NO2+ | ohorus           | 200.7 AS, Pb,Ca,Mg,T-hard |       |           |         |       |       |           | Chlorine (Y/N) |          |        |          |                            |
| ITEM #   | (A-2, 0-97, -) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ther OT<br>Issue TS | MATRIX CODE                  | SAMPLE TYPE | DATE     | TIME       | DATE   | TIME  | SAMPLE TE                 | # OF CONTAINERS                           | Unpreserved | H2SO4   | HCI   | NaOH   | Na2S203 | Methanol | Analys        | Total Nitroc             | Total Phosphorus | 200.7 AS, F               |       |           |         |       |       |           | Residual C     |          |        |          |                            |
| 1        | SLSW-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | WT                           | G           | 2/15/    | 1125       |        |       |                           | 3                                         | _           | -       | 2     | 1      |         |          |               | 2                        | ×                | ×                         |       |           |         |       |       | Π         |                |          |        |          |                            |
| 2        | SLSW-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1                            |             | 2/15/    | 1130       |        |       |                           | 1                                         |             |         | 1     |        |         |          |               | Π                        | 1                | 1                         |       |           |         |       |       | $\square$ |                |          |        |          |                            |
| 3        | SLSW-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | T                            |             | 1        | 1135       |        |       |                           |                                           |             |         |       |        |         |          |               | F                        | 1                |                           |       |           |         |       |       |           | Π              |          |        |          |                            |
| 4        | 5LSW-1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1                            |             |          | 1138       |        |       |                           |                                           |             | 1       |       |        |         |          |               | H                        | 1                |                           |       | 1         |         |       |       |           |                |          |        |          |                            |
| 5        | SLSW-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | T                            |             |          | 0931       |        |       |                           |                                           |             |         |       |        |         |          |               | H                        | 1                | tt                        |       |           |         |       |       | +         |                |          |        |          |                            |
| 6        | SLSW-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1                            |             |          | 0934       |        |       |                           | 1                                         |             | 11      |       |        |         |          |               |                          | 1                | T                         |       |           |         |       |       | $\square$ |                |          |        |          |                            |
| 7        | SLSW-2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1                            |             |          | 0937       |        |       |                           | 1                                         |             |         | 1     |        |         |          |               | T                        | 11               | T                         |       |           |         |       |       | +         |                |          | -      |          |                            |
| 8        | SLSW-2-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1                            |             |          | 0939       |        |       |                           |                                           |             |         |       |        |         |          |               | П                        |                  | T                         |       |           |         |       |       | $\square$ |                |          |        |          |                            |
| 9        | SLSW-3-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1                            |             |          | 0953       |        |       |                           |                                           |             |         |       |        |         |          |               | 1                        | 1                | 1                         |       |           | 1       |       |       |           |                |          |        |          |                            |
| 10       | 515W-3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                   | T                            |             |          | 0956       |        |       |                           |                                           |             | 1       |       |        |         |          |               | T                        | 1                | 1                         |       |           |         |       |       | $\square$ |                |          |        |          |                            |
| 11       | SLSW - 3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 11                           |             | Y        | 0958       |        |       |                           | 1                                         |             |         |       |        |         |          |               | 1                        | N                | 1.1                       |       |           |         |       |       |           |                |          |        |          | 9                          |
| 12       | SLSW-3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | V                            | V           | V        | 1000       |        |       |                           | V                                         |             | 11      | V     |        |         |          |               | N                        | 1 -              | M                         |       |           | 10      |       |       |           |                |          |        |          |                            |
| .~       | ADDITIONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | RELIN                        | QUIS        | HED BY / | AFFILIATIC | DN     | DAT   | E                         |                                           | ТІМЕ        |         | -     |        | ACCE    | EPTED    | BY/A          | FFILI                    | ATIO             | N                         |       |           | DATE    | E     | TIM   | AE        |                | SAM      | APLE C | ONDITION | IS                         |
| Metals   | =As, Pb.Ca.Mg.Total hardness Empty Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Somens -            | 5                            |             | -        | me         | 12     | 14/11 | 4                         | 13                                        | w           |         |       |        |         |          | 11            |                          |                  |                           |       |           | 1       | 1     |       |           |                | T        |        |          | -                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                   | 2                            | 2           | Ð        | Br         | r      | 12/15 | 15                        |                                           | 5           | 5       | ·/    | U      | Al      | aj       | 64            | 1                        | Pa               | ac                        | e     | 12        | 2/15    | 115   | 130   | 55        |                | -        | _      |          |                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |             |          |            |        |       |                           |                                           | -           |         |       |        |         | -        |               |                          |                  |                           |       |           |         |       |       |           |                | -        |        |          |                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |             |          | SAMPLE     | R NAME |       | 11.00                     |                                           |             |         | -     |        | -       |          |               |                          | -                | -                         | -     |           |         |       |       |           | U<br>C         | uo pa    |        |          | s                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                              |             |          | SIG        | NATURE | A. H  | LER                       | sol                                       |             | -       | -     |        |         |          | _             | Т                        | DA               | TE/SI                     | gned: | 1         | -       |       | -     |           | TEMP in        | Receive  | N)     | ealed    | Samples<br>Intact<br>(Y/N) |

Pace Analytical

## CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section<br>Require | A<br>d Client Information:                                      | Section B<br>Required P    | roiect                    | Info        | ormation:      |            |         |         |                           |                 | tion C      | C<br>nform | atior | 1:      |         |          |       |               |                           |                  |                           |       |       |         |       |       |     | Page      | 0              | 2                     | Of                | 2                          |
|--------------------|-----------------------------------------------------------------|----------------------------|---------------------------|-------------|----------------|------------|---------|---------|---------------------------|-----------------|-------------|------------|-------|---------|---------|----------|-------|---------------|---------------------------|------------------|---------------------------|-------|-------|---------|-------|-------|-----|-----------|----------------|-----------------------|-------------------|----------------------------|
| Compan             |                                                                 | Report To:                 |                           | t Star      | _              |            |         |         |                           | -               | ntion:      |            |       |         |         |          |       | -             |                           | -                |                           |       |       |         | É.    |       | -   | i ugo     | -              | -0                    |                   | 0                          |
| Address:           |                                                                 | Copy To:                   |                           |             |                |            |         |         |                           | Con             | pany        | Nam        | e:    | -       |         |          |       |               |                           |                  |                           | _     |       |         |       |       |     |           |                |                       |                   |                            |
|                    | FL 33607                                                        | 11 2 20                    |                           |             |                |            |         |         |                           | -               | ress:       | -          |       |         |         |          |       |               | -                         |                  |                           | -     |       |         |       |       |     | Reg       | ulat           | ory Agend             | v                 |                            |
|                    | matthew.starr@atkinsglobal.com                                  | Purchase O                 | rder #                    | :           |                | _          |         |         |                           | -               | e Quo       | ote:       |       |         | -       |          |       |               |                           | -                |                           |       |       |         |       |       |     |           |                | 1.5                   | -                 |                            |
| Phone:             | 727-409-0733 Fax                                                | Project Nam                | ne:                       | Sav         | wgrass La      | ke SW      |         |         |                           | Pac             | e Proj      | ject M     | lanag | er:     | mik     | e.vald   | ler@t | oace          | abs.                      | com.             |                           |       |       |         | 1     |       |     | St        | ate /          | Location              |                   |                            |
|                    | ed Due Date:                                                    | Project #:                 |                           |             |                |            |         |         |                           | -               |             | file #:    |       | 964 lir |         |          | GI    |               |                           |                  | -                         |       |       |         |       |       |     |           |                | FL                    | -                 |                            |
|                    |                                                                 |                            |                           |             |                |            |         |         |                           |                 |             |            |       |         |         |          | T     |               |                           | R                | eques                     | ted A | nalys | sis Fil | tered | (Y/N) | )   | 1         |                |                       |                   |                            |
|                    | MATRI<br>Diriki<br>Water                                        | K CODE<br>9 Water DW<br>WT | (see valid codes to left) | C=COMP)     |                | COLLE      | ECTED   |         | CTION                     |                 |             |            | Pres  | erva    | tives   |          |       | VIA           | 2+N                       |                  |                           |       |       |         |       |       |     |           | -              |                       |                   |                            |
|                    | SAMPLE ID<br>One Character per box.                             | l P<br>lid SL<br>OL<br>WP  |                           | E (G=GRAB   |                | ART        | E       | ND      | IP AT COLLE               | NERS            | T           |            |       |         |         |          |       | es Test       | en (TKN+NC                | horus            | b,Ca,Mg,T-h               | I     |       |         |       |       |     |           | Chlorine (Y/N) |                       |                   |                            |
| ITEM #             | (A-Z, 0-97, -) Air<br>Other<br>Sample Ids must be unique Tissue | AR<br>OT<br>TS             | MATRIX CODE               | SAMPLE TYPE | DATE           | TIME       | DATE    | TIME    | SAMPLE TEMP AT COLLECTION | # OF CONTAINERS | Unpreserved | H2SO4      | HN03  | NaOH    | Na2S203 | Methanol | Other | Analyses Test | Total Nitrogen (TKN+NO2+h | Total Phosphorus | 200.7 AS, Pb,Ca,Mg,T-hard |       |       |         |       |       |     |           | Residual Ch    |                       |                   |                            |
| 1                  | SLSW-4-0                                                        |                            | WT                        | G           | 12/15/<br>2015 | 1028       |         |         |                           | 3               |             | 4          | 7     |         |         |          |       |               | X                         | 20               | Y                         |       |       |         |       |       |     |           |                |                       |                   |                            |
| 2                  | SLSW-4-1                                                        |                            | 1                         | 1           | 1              | 1030       |         |         |                           | 1               |             |            | 1     |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                |                       |                   |                            |
| 3                  | SLSW-4-5                                                        |                            |                           |             |                | 1032       | 4       |         |                           |                 |             |            |       |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                |                       |                   |                            |
| 4                  | 5LSW-4-5 - DUP                                                  |                            |                           |             |                | 1032       |         |         |                           | N               |             |            |       |         |         |          |       |               | 1                         | Y                | Y                         |       |       |         |       |       |     |           |                |                       |                   |                            |
| 5                  | SLSW- 4-9                                                       |                            | V                         | V           | X              | 1036       |         |         |                           | 1               |             | V          | V     |         |         |          |       |               | V                         | V                | W                         |       |       |         |       |       |     |           |                |                       |                   |                            |
| 6                  |                                                                 |                            |                           |             | 17.3           |            |         |         |                           |                 |             |            |       |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                |                       |                   |                            |
| 7                  |                                                                 |                            |                           |             |                |            |         |         |                           |                 |             |            | 1     |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                | -                     |                   |                            |
| 8                  |                                                                 |                            |                           |             |                |            |         |         |                           |                 |             |            |       |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                |                       |                   |                            |
| 9                  |                                                                 |                            |                           |             |                | 1.11       |         |         |                           |                 |             |            |       |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                | 1                     |                   |                            |
| 10                 |                                                                 |                            |                           |             |                | 1.21       |         |         |                           |                 |             |            |       |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                |                       |                   |                            |
| 11                 |                                                                 |                            |                           |             |                | E.         |         |         |                           |                 |             |            |       |         |         |          |       |               |                           |                  |                           |       |       |         |       |       |     |           |                |                       |                   |                            |
| 12                 |                                                                 |                            |                           |             |                |            |         |         |                           |                 |             |            | 1     |         |         |          |       |               |                           |                  |                           |       |       | •       |       |       |     |           |                |                       |                   |                            |
|                    | ADDITIONAL COMMENTS                                             |                            | RELIN                     | QUIS        | SHED BY /      | AFFILIATIO | л       | DAT     | E                         |                 | TIME        |            |       |         | ACC     | EPTE     | DBY   | / AFF         | ILIAT                     | ION              |                           |       |       | DATE    |       | т     | IME |           |                | SAMPLE C              | ONDITION          | IS                         |
| Metal              | s=As, Pb,Ca,Mg,Total hardness Enory Cor                         | owen                       | 2                         |             |                | 0          |         | 1       |                           |                 |             |            |       |         |         |          | 11    |               | ~                         |                  |                           |       |       | 1       | ,     |       |     |           |                |                       |                   |                            |
|                    |                                                                 | 6                          | 4                         | A           | -16            | Au         | -       | 12/19   | 15                        | 13              | 35          | 5          | Cl    | ul      | 40      | at       | 4     |               | Po                        | 7 (              | e                         |       | 14    | 415     | 15    | 13    | 55  | 5         | -              |                       |                   |                            |
|                    |                                                                 |                            |                           |             |                | -          |         | 1       |                           |                 |             | 1          |       |         |         |          |       |               | _                         |                  |                           |       | 1     |         |       |       |     |           |                |                       |                   |                            |
|                    |                                                                 |                            |                           |             |                |            | NT Name | AND SIG | IFR                       |                 | 1.          | -          |       | -       | -       |          |       |               | -                         |                  |                           |       |       |         |       |       |     | - 0       | ,              | uop                   |                   | 10                         |
|                    |                                                                 |                            |                           |             |                |            | NATURE  | of SAMP | LER                       | 400             | (           | In         |       |         |         |          |       |               | 75                        | PATE             | Sigr                      | ed:   | 5     | -       |       |       |     | TEMP in C |                | Receive<br>Se<br>Y/N) | Custody<br>tealed | Samples<br>Intact<br>(Y/N) |

| 2                                                          | Document Name                             |                       | Document Revised:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _           |
|------------------------------------------------------------|-------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Pace Analytical<br>Horde Laboratory                        | Sample Condition Upon Re<br>Document No.: | S                     | August 11, 2014<br>Issuing Authority:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           |
|                                                            | F-FL-C-007 rev. 0                         |                       | Pace Florida Quality Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Sa                                                         | ample Condition Upon Recei                | -                     | Table Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10          |
|                                                            | Client Name: A+Ki                         | ns Pro                | oject #52211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10          |
| Courier: 🔲 Fed Ex 🗌 UP                                     | S 🗌 USPS 🕅 Commercia                      | I 🗌 Pace              | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Tracking #                                                 |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Custody Seal on Cooler/Bo                                  | ox Present: 🗌 yes 📈 no Sea                | ls intact: 🗌 yes 🗌 no | Date and Initials of person exam<br>contents: <u>i</u> M (2/15/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ining       |
| Packing Material: 🔲 Bubb                                   | le Wrap                                   | Other                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>)</u>    |
| Thermometer Used                                           | TPATY Type of Ice: We                     | Blue None CLA         | $\lambda$ . The share the state of t |             |
| Cooler Temperature°C                                       | 3 (Visual) - 0.1 (Correctio               | n Factor)(A           | (Temp should be above freezing sample frozen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (06C) II be |
|                                                            | 0,1                                       | 1.4                   | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Receipt of samples satis                                   | factory: ZYes DNG                         | L                     | Rush TAT requested on COC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| If yes, then all conditions b                              | pelow were met:                           |                       | describe issue (use comments are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a if neces  |
| Chain of Custody Present                                   |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Chain of Custody Filled Out                                | malas Nama COC                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Relinquished Signature & Sa<br>Samples Arrived within Hold |                                           | 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            |                                           |                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| Sufficient Volume                                          |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Correct Containers Used                                    |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Containers Intact                                          |                                           | a                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Sample Labels match COC (                                  | sample IDs & date/time of collection)     | 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| All containers needing preservat                           | tion are found to be in                   |                       | ime/Date on Labels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| compliance with EPA recommen                               | ndation.                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| No Headspace in VOA Vials                                  | ( >6mm):                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Client Notification/ Resolut                               | ion:                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Person Contacted:                                          |                                           | e/Time:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Comments/ Resolution (use I                                | back for additional comments):            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Project Manager Paulou                                     |                                           |                       | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Project Manager Review:                                    | -                                         |                       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           |
|                                                            |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                            | Finished Product                          | Information Only      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | â           |
| F.P. Sample ID:                                            |                                           | Siz                   | e & Qty of Bottles Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |
|                                                            |                                           |                       | x 5 Gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Production Code:                                           |                                           |                       | x 2.5 Gal<br>x 1 Gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Date/Time Opened:                                          |                                           |                       | x 1 Liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Number of Unopened Bottle                                  | es Remaining:                             |                       | x 500 mL<br>x 250 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| in the second points bottom                                |                                           |                       | x Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -           |
| Extra Sample in                                            | n Shed: Yes No                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |

Page 36 of 36