

Well Construction at the Eagle Lake Well Site in Polk County, Florida

Cover Photo: Permanent monitor wells at the Eagle Lake well site in Polk County, Florida. In order from left to right: Surf Aq Monitor, U Fldn Aq Monitor. Photograph by Jay Mitchell.

Well Construction at the Eagle Lake Well Site in Polk County, Florida

By Kristina D. Mallams

February 2024

Southwest Florida Water Management District Geohydrologic Data Section

Southwest Florida Water Management District

Operations, Lands and Resource Monitoring Division Brian Starford, P.G., Director

Data Collection Bureau

Sandie Will, P.G., Bureau Chief

Geohydrologic Data Section

M. Ted Gates, P.G., Manager

Southwest Florida Water Management District 2379 Broad Street Brooksville, FL 34604-6899

For ordering information:

World Wide Web: http://www.watermatters.org/documents

Telephone: 1-800-423-1476 (FL only)

For more information on the Southwest Florida Water Management District and its mission to manage and protect water and related resources:

World Wide Web: http://www.watermatters.org

Telephone: 1-800-423-1476 (FL only)

The Southwest Florida Water Management District (District) does not discriminate on the basis of disability. This nondiscrimination policy involves every aspect of the District's functions, including access to and participation in the District's programs, services and activities. Anyone requiring reasonable accommodation, or who would like information as to the existence and location of accessible services, activities, and facilities, as provided for in the Americans with Disabilities Act, should contact the Human Resources Office Chief, at 2379 Broad St., Brooksville, FL 34604-6899; telephone (352) 796-7211 or 1-800-423-1476 (FL only); or email *ADACoordinator WaterMatters.org.* If you are hearing or speech impaired, please contact the agency using the Florida Relay Service, 1-800-955-8771 (TDD) or 1-800-955-8770 (Voice). If requested, appropriate auxiliary aids and services will be provided at any public meeting, forum, or event of the District. In the event of a complaint, please follow the grievance procedure located at *WaterMatters.org/ADA*.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the Southwest Florida Water Management District.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Suggested citation:

Mallams, K.D., 2024, Well Construction at the Eagle Lake Well Site in Polk County, Florida: Southwest Florida Water Management District, 66 p.

The hydrogeologic evaluations and interpretations contained in *Well Construction at the Eagle Lake Well Site in Polk County, Florida* have been prepared by or approved by a licensed Professional Geologist in the State of Florida, in accordance with Chapter 492, Florida Statutes.

AD. MA Q No. PG 2922 PROFESSI To and the second second STATE 0[©] Kristina D. Mallams **Professional Geologist** State of Florida License No. PG 2922 Date: Feb: (a, 2024

Foreword

The Geohydrologic Data Section (GEO) administers the Regional Observation and Monitor-well Program (ROMP) at the Southwest Florida Water Management District (District). The ROMP was started in 1974 in response to the need for hydrogeologic information by the District. The focus of the ROMP is to quantify the flow characteristics and water quality of the groundwater systems that serve as the primary source of water supply within southwest Florida. The original design of the ROMP consisted of an inland 10-mile grid network composed of 122 well sites and a coastal transect network composed of 24 coastal monitor transects of two to three well sites each. The number of wells at a well site varies with specific regional needs; usually two to five permanent monitor wells are constructed at each site. The numbering system for both networks generally increases from south to north with ROMP-labeled wells representing the inland grid network and TR-labeled wells representing the coastal transect network.

In addition to the ROMP, the GEO section oversees construction of monitor wells and performs aquifer testing activities for other District programs and projects. The broad objectives at each well site are to determine the hydro-geology, water quality, and hydraulic properties of the units present, and to install wells for long-term monitoring. Site activities include exploratory coring and testing, well construction, and aquifer performance testing. These activities provide data for the hydrogeologic and groundwater quality characterization of the well sites. These characterizations are used to ensure the monitor wells are properly designed for intended hydrologic targets. At the completion of each well site, a summary report is generated and can be found at the District's website at www.watermatters.org/data. The monitor wells form the backbone of the District's regional models, hydrologic conditions reporting, and regulatory water use permitting.

M. Ted Gates

Manager

Contents

Forewordiv
Introduction1
Acknowledgments1
Site Location1
Methods1
Well Construction
Surficial Aquifer Monitor Well5
Upper Floridan Aquifer Monitor Well5
Geology
Hydrogeology9
Summary13
Selected References
Appendix A. Scanned Daily Drilling Logs Taken During Well Construction at the Eagle Lake Well Site in Polk County, Florida
Appendix B. Lithologic Logs for the Samples Collected at the Eagle Lake Well Site in Polk County, Florida
Appendix C. Digital Photographs of Samples Retrieved from the Eagle Lake Well Site in Polk County, Florida
Appendix D. Correlation Charts

Figures

1.	Central Florida Water Initiative minimum lake level well sites2
2.	Location of the Eagle Lake well site in Polk County, Florida
3.	Well site layout for the Eagle Lake well site in Polk County, Florida4
4.	Well as-built diagram for the <i>Surf Aq Monitor</i> at the Eagle Lake well site in Polk County, Florida
5.	Well as-built diagram for the <i>U Fldn Aq Monitor</i> at the Eagle Lake well site in Polk County, Florida
6.	Stratigraphic column detailing the hydrogeologic setting at the Eagle Lake well site in Polk County, Florida
7. (Geophysical log suite from land surface to 272.4 feet bls conducted at the Eagle Lake well site in Polk County, Florida10
8. (Geophysical log suite from land surface to 324.2 feet bls conducted at the Eagle Lake well site in Polk County, Florida
9. 	Hydrograph of the permanent monitor wells at the Eagle Lake well site in Polk County, Florida12

Tables

1.	Summary of well construction details at the Eagle Lake well site in Polk	
	County, Florida	5
2.	Summary of geophysical logs collected at the Eagle Lake well site in Polk	_
	County, Florida	8

Conversion Factors and Datums

Multiply	Ву	To obtain
	Length	
inch (in)	2.54	centimeter (cm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Area	
acre	0.004047	square kilometer (km ²)
square foot (ft ²)	0.09290	square meter (m ²)
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
gallon (gal)	3.785	liter (L)
gallon (gal)	0.003785	cubic meter (m ²)
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Flow Rate	
foot per day (ft/d)	0.3048	meters per day (m/d)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)
cubic foot per day (ft3/d)	0.02832	cubic meter per day (m ³ /d)
gallon per day (gal/d)	0.003785	cubic meter per day (m ³ /d)

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Elevation, as used in this report, refers to distance above the vertical datum.

Abbreviations and Acronyms

aqaquiferblsbelow land surfaceCFWICentral Florida Water InitiativeConst.constructionDMITData, Monitoring, and Investigations TeamEDPEnvironmental Data PortalFGSFlorida Geological Surveyfig.figureFldnfeetgpm/ftgallon per minutegpm/ftsof-inch internal diameter steel coring rodsInc.IncorporatedLLCLimited Liability Company	als	above land surface
CFWICentral Florida Water InitiativeConst.constructionDMITData, Monitoring, and Investigations TeamEDPEnvironmental Data PortalFGSFlorida Geological Surveyfig.figureFldnFloridanftgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	aq	aquifer
Const.constructionDMITData, Monitoring, and Investigations TeamEDPEnvironmental Data PortalFGSFlorida Geological Surveyfig.figureFldnFloridanftfeetgpm/ftgallon per minute per footHQ3.06-inch internal diameter steel coring rods	bls	below land surface
DMITData, Monitoring, and Investigations TeamEDPEnvironmental Data PortalFGSFlorida Geological Surveyfig.figureFldnFloridanftfeetgpm/ftgallon per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	CFWI	Central Florida Water Initiative
EDPEnvironmental Data PortalFGSFlorida Geological Surveyfig.figureFldnFloridanftfeetgpmgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	Const.	construction
FGSFlorida Geological Surveyfig.figureFldnFloridanftfeetgpmgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	DMIT	Data, Monitoring, and Investigations Team
fig.figureFldnFloridanftfeetgpmgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	EDP	Environmental Data Portal
FldnFloridanftfeetgpmgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	FGS	Florida Geological Survey
ftfeetgpmgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	fig.	figure
gpmgallon per minutegpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	Fldn	Floridan
gpm/ftgallons per minute per footHQ3.06-inch internal diameter steel coring rodsInc.Incorporated	ft	feet
HQ 3.06-inch internal diameter steel coring rods Inc. Incorporated	gpm	gallon per minute
Inc. Incorporated	gpm/ft	gallons per minute per foot
	HQ	3.06-inch internal diameter steel coring rods
LLC Limited Liability Company	Inc.	Incorporated
	LLC	Limited Liability Company

Abbreviations and Acronyms continued

Mendez	Mendez Drilling, Incorporated
MM/DD/YYYY	Month/Day/Year
NAVD 88	North American Vertical Datum of 1988
No.	number
PVC	polyvinyl chloride
SCH	schedule
SID	station identification
District	Southwest Florida Water Management District
S/T/R	Section/Township/Range
Suncoast	Suncoast Drilling, Limited Liability Company
Surf	surficial
U	upper
WCP	Well Construction Permit

Well Construction at the Eagle Lake Well Site in Polk County, Florida

By Kristina D. Mallams

Introduction

The Eagle Lake well site is part of the Data, Monitoring, and Investigations Team (DMIT) Work Plan, which supports the Central Florida Water Initiative (CFWI) activities. Groundwater level data collected from 18 sites within the Southwest Florida Water Management District (District) portion of the CFWI boundary will support minimum-level research for selected lakes and aquifers (fig. 1). Data collected at this well site will be used to reevaluate and revise the minimum lake levels for Eagle Lake in accordance with Section 373.042, Florida Statutes, and to help establish the hydraulic connection between Eagle Lake and the surficial aquifer and upper Floridan aquifer. Additionally, long-term water level data collected from these wells will be used for permitting or planning decisions, to help improve model calibrations for various District projects.

Work at the former Eagle Lake well site began in February of 2018, but was halted in March 2018 due to unsafe conditions following drilling-induced subsidence surrounding the 12-inch primary casing and drill rig. Details of work completed at the former site are summarized in the file of record technical memo (Zydek, 2018). A new location for the well site was acquired approximately 0.6 miles southwest of the former site. This report details the well construction, the stratigraphy, and the hydrogeology of the relocated Eagle Lake well site. Data collected at this well site are available for download from the District's website: www.swfwmd. state.fl.us using the Environmental Data Portal (EDP) and the Advanced Metadata Retrieval application (accessed October 2023). Data including well site reports, hydrostratigraphy, and geophysical logs are available to view and download from the Geohydrologic Data Map Viewer: http://swfwmd.maps.arcgis. com/apps/webappviewer/index.html?id=5cfe38abbae84d1fadf df0953c3126bc (accessed October 2023).

Acknowledgments

Special thanks to Mendez Drilling, Incorporated (Mendez), Suncoast Drilling, Limited Liability Company (Suncoast), and Eagle Lake Elementary for their continued professionalism and cooperation.

Site Location

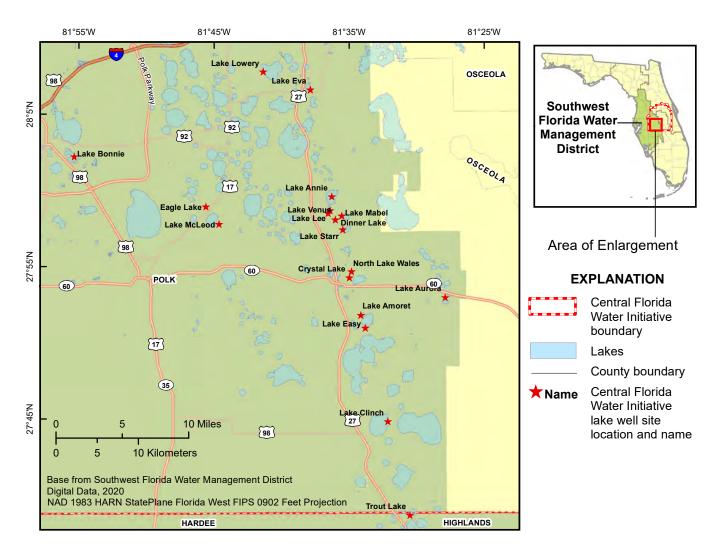
The Eagle Lake well site is in central Polk County off U.S. Route 17 near Lake McLeod and Eagle Lake (fig. 2). It is in the northeast quarter of the southeast quarter of Section 12, Township 29 South, Range 25 East at latitude 27° 58' 28.94" north and longitude 81° 45' 47.51" west. The land surface elevation is approximately 161 feet above the North American Vertical Datum of 1988 (NAVD 88). The Eagle Lake well site is located on a 150 square feet (ft²) permanent easement granted to the District by the Polk County School District. Figure 3 presents the layout for the Eagle Lake well site.

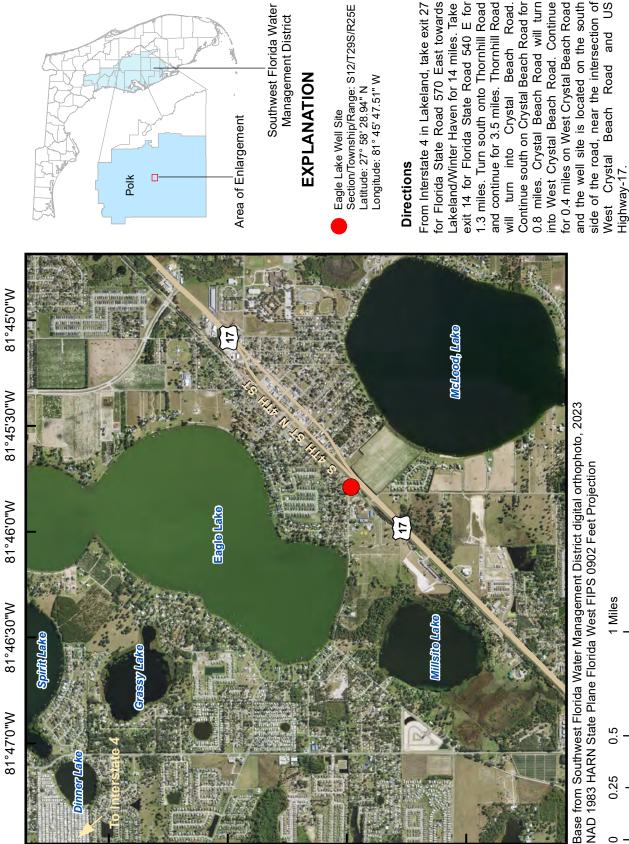
The Eagle Lake well site can be found by taking Interstate 4 east from Tampa for 20 miles. Take exit 27 for Florida State Road 570 East towards Lakeland/Winter Haven for 14 miles. Take exit 14 for Florida State Road 540 East for 1.3 miles. Turn south onto Thornhill Road and continue for 3.5 miles. Thornhill Road will turn into Crystal Beach Road. Continue south on Crystal Beach Road for 0.8 miles. Crystal Beach Road will turn into West Crystal Beach Road. Continue for 0.4 miles and the well site is located on the south side of the road, near the intersection of West Crystal Beach Road and US Highway 17.

The Eagle Lake well site is located in the Lake Wales Ridge Complex Province (Williams et al., 2022). The Lake Wales Ridge Complex Province is the southernmost and largest province in the Lakes District, ranging from southern Lake County to southern Highlands County (Williams et al., 2022). It is often referred to as the "backbone of Florida" because of its unique geomorphic features of consecutive northwest-tosoutheast trending high ridges separated by low lying valleys, which contain numerous sinkholes and sinkhole lakes caused by the dissolution of limestone. The Eagle Lake well site is in the northern portion of the Peace River drainage basin, which eventually drains into Charlotte Harbor and to the Gulf of Mexico.

Methods

From July 13 through August 6, 2020, Suncoast collected lithologic samples from 3 to 322 feet below land surface (bls) using a Diedrich D-50 drill rig mounted on a Morooka track




Figure 1. Central Florida Water Initiative minimum lake level well sites.

carrier. Starting on July 13, 2020, Suncoast used a 3-inch roller bit to drill a pilot hole at the surficial aquifer monitor well location from land surface to 3 feet bls. Suncoast performed continuous split-spoon sampling from 3 to 71 feet bls on July 13, and two-foot intervals for every 5 feet drilled from 83 to 123 feet bls from July 20 to July 21, 2020. The split-spoon sampler was advanced using a 140-pound hammer through 4.5-inch inside diameter hollow-stem augers, which acted as temporary casing and held the borehole open. Split-spoon sample collection ceased at 123 feet bls, where limestone was encountered, and the split-spoon sampler could not advance.

Lithologic sampling continued from 127 to 322 feet bls using the hydraulic-rotary core drilling method with drilling mud, HQ (3.06-inch internal diameter) steel coring rods, and the wireline retrieval method. The samples were boxed, labeled, described, photographed, and transported to the Florida Geological Survey (FGS) for further analysis and storage.

Well Construction

The Eagle Lake well site consists of two permanent monitor wells located on the permanent easement (fig. 3). Permanent monitor wells (Station Names italicized herein refer to table 1) were constructed in the surficial aquifer (Surf Aq Monitor) and the upper Floridan aquifer (U Fldn Aq Monitor). Monitor well construction at the Eagle Lake well site was completed by Mendez and Suncoast and supervised by District staff between July 13 and August 7, 2020. After construction of the Surf Aq Monitor and the U Fldn Aq Monitor wells were complete, 6-inch locking well covers were installed over the 4-inch polyvinyl chloride (PVC) casings and 2-feet by 2-feet by 4-inch concrete pads were installed around the well covers at land surface. A summary of the Eagle Lake well construction specifications are presented in table 1. The well as-built diagrams for the Eagle Lake Surf Aq Monitor well and Eagle Lake U Fldn Aq Monitor well are depicted in figures 4 and 5, respectively. Daily logs for exploratory core drilling and well construction operations are presented in appendix A. Additional well

N"05'88°72

N"0'88°72

N"05'930'N

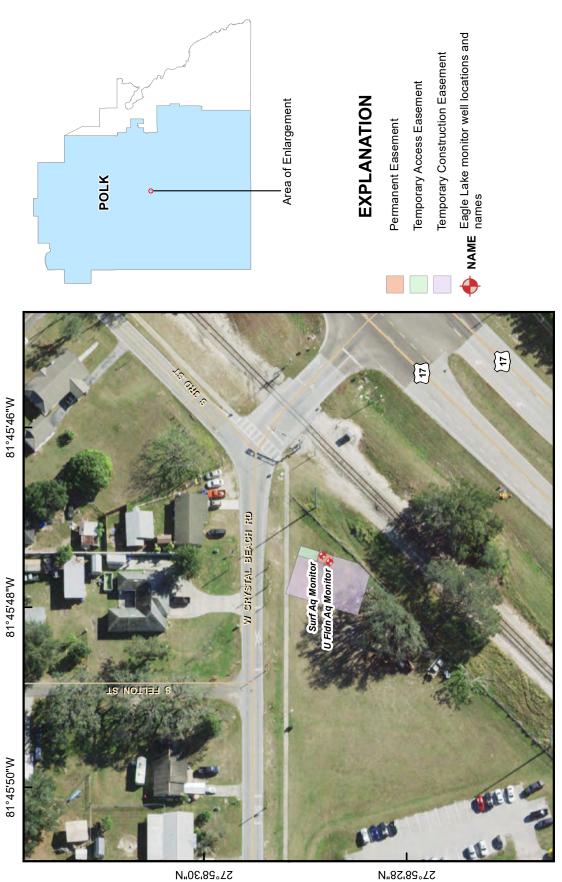

N..0.69.27

Figure 2. Location of the Eagle Lake well site in Polk County, Florida.

SU

Road.

Base from Southwest Florida Water Management District digital orthophoto, 2023 NAD 1983 HARN StatePlane Florida West FIPS 0902 Feet Projection

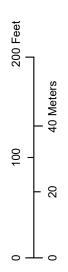


Figure 3. Well site layout for the Eagle Lake well site in Polk County, Florida.

construction details can be found in the District's EDP and the Geohydrologic Data Map Viewer. The groundwater level in each well was measured after well development using a Solinst electric water level meter. Each well has been surveyed, benchmarked, and equipped with pressure transducers for daily water level monitoring.

Surficial Aquifer Monitor Well

From July 13 to July 15, 2020, Suncoast constructed the Surf Aq Monitor well (Station Identification [SID] 943701) on the permanent easement using a Diedrich D-50 drill rig mounted on a Morooka track carrier. The exploratory core hole was converted into the Surf Aq Monitor well after exploration was complete. Suncoast used a custom-made 7 7/8-inch step bit to drill an 8-inch nominal hole from land surface to 72 feet bls. Four-inch, schedule 40, threaded, PVC screen (0.010-inch slot) was installed between 52 and 72 feet bls. Then, 4-inch schedule 40, threaded, PVC casing was installed from 3 feet above land surface (als) to 52 feet bls. No obstructions were encountered during the installation of the casing string and the contractor was able to rotate the casing freely prior to the casing seal. Eighteen bags of 20-30 silica sand filter pack were installed from 48 to 72 feet bls, a half bag of 30-65 silica sand filter pack was installed from 46 to 48 feet bls, and eight bags of Type II Portland cement grout were mixed and installed from land surface to 46 feet bls (table 1 and fig. 4). The well was developed for approximately 62 minutes at 3 gallons per minute (gpm). The specific capacity of the Surf Aq Monitor well was 0.2 gallons per minute per foot (gpm/ft). The Surf Aq Monitor well was intended to be used as a temporary water supply well during the UFldn Aq Monitor well exploratory core drilling and construction but did not yield enough water. The contractor applied for and received a permit from the City of Eagle Lake to use a nearby fire hydrant to supply water for the exploratory core drilling and well construction of the UFldn Aq Monitor well.

Upper Floridan Aquifer Monitor Well

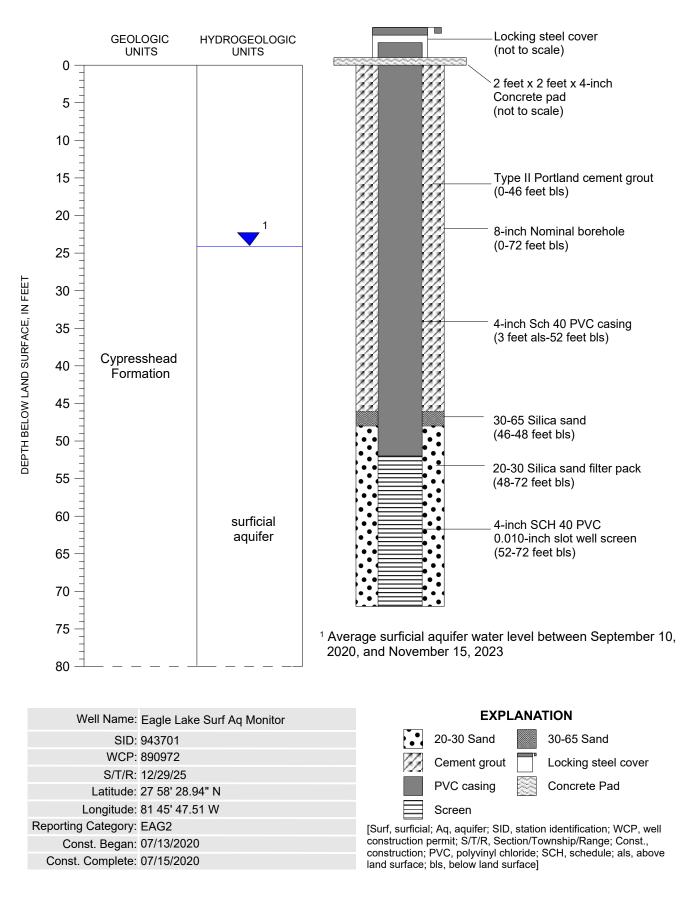

The Eagle Lake U Fldn Aq Monitor well (SID 943702) was constructed from July 15 to August 7, 2020, on the permanent easement using a Failing 1250 drill rig mounted on a Kenworth tractor and a Diedrich D-50 drill rig mounted on a Morooka track carrier. Using the Failing 1250 drill rig, Mendez used a custom-made 17.5-inch stair step bit to drill from land surface to 82 feet bls. Twelve-inch schedule 40, PVC casing was solvent-welded and installed to 82 feet bls. During installation, Mendez had difficulty getting the 12-inch PVC casing past the silt and clay that was identified from 12 to 14 feet bls during drilling. Mendez used the split-spoon sampling hammer to advance the 12-inch surface casing to 82 feet bls. The surface casing was pressure grouted with Type II Portland cement grout from 82 feet bls to land surface. Mendez reamed the existing exploratory core hole with an 11 3/4-inch rock bit from 82 to 117 feet bls. During the installation of the solvent-welded 8-inch, schedule 40, PVC casing, Mendez had difficulty getting the casing past the clay layer identified at 89 feet bls during split-spoon sample collection. Mendez used the split-spoon sampling hammer to advance the PVC casing but was only able to advance it to 110 feet bls. The 8-inch PVC casing was pressure grouted from 110 feet bls to land surface using 34.5 bags of Portland Type II cement grout. Mendez used a 7 7/8-inch step bit to ream the exploratory core hole from 110 to 200 feet bls. A temporary 4-inch casing was installed from land surface to 200 feet bls and was hammered in an additional 5 feet into the formation to 205 feet bls to support the borehole wall during exploratory core drilling. After exploratory core drilling from 240 to 280 feet bls, the temporary 4-inch casing was removed, and Mendez reamed the exploratory core hole with a 7 7/8-inch step bit from 200 to 270 feet bls. On August 4, 2020, District staff ran the Districtowned Century® 9165C caliper/gamma-ray geophysical tool from land surface to 272.4 feet bls to verify the total depth of the 8-inch intermediate casing and to estimate the grout volume for the final casing installation. Mendez installed a solvent-welded, 4-inch, schedule 40, PVC casing (containing two 4-inch by 8-inch cement packers at 267 and 269 feet bls surrounded with Visqueen streamers) from 3 feet als to 270

Table 1. Summary of well construction details at the Eagle Lake well site in Polk County, Florida

[SID, station identification; ft, feet; bls, below land surface; MM/DD/YYYY, month/day/year; No., number; U Fldn Aq, upper Floridan aquifer; Surf Aq, surficial aquifer; PVC, polyvinyl chloride; LLC, Limited Liability Company; Inc., Incorporated; WCP, well construction permit]

SID	Well Name	Open Interval (ft bls)	Casing Type	Casing Diameter (inches)	Constructed by	Start Date (MM/DD/ YYYY)	Completion Date (MM/ DD/YYYY)	Status	WCP No.
943701	Eagle Lake Surf Aq Monitor	52 - 72	PVC and PVC Screen	4	Suncoast Drilling, LLC	07/13/2020	07/14/2020	Active	890972
943702	Eagle Lake U Fldn Aq Monitor	270 - 322	PVC	4	Mendez Drilling, Inc.	07/15/2020	08/07/2020	Active	890970

6 Well Construction at the Eagle Lake Well Site in Polk County, Florida

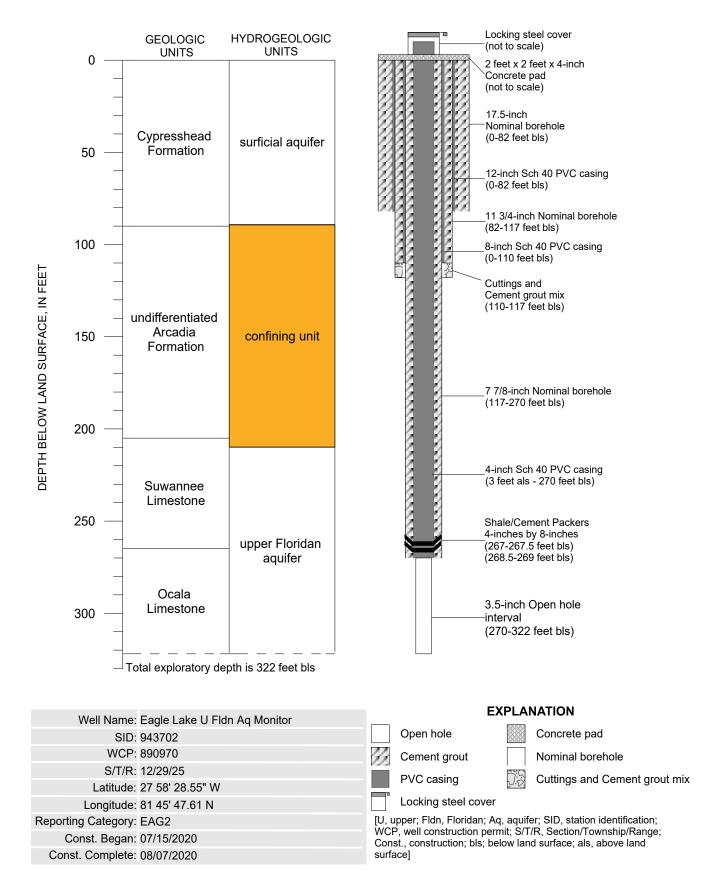


Figure 5. Well as-built diagram for the U Fldn Aq Monitor at the Eagle Lake well site in Polk County, Florida.

8 Well Construction at the Eagle Lake Well Site in Polk County, Florida

feet bls. Exploratory core drilling continued through the 4-inch PVC casing from 280 to 322 feet bls to create the 3.5-inch open hole interval for the UFldn Aq Monitor well. The final well construction specifications and details for the UFldn Aq *Monitor* are in table 1 and figure 5. The well was developed for approximately 4 hours and 25 minutes at 7.5 gpm. The specific capacity of the UFldn Aq Monitor well was 4 gpm/ ft. After well completion, District staff performed a full suite of geophysical logs on August 10, 2020 (table 2 and fig. 8). During data collection using the 8144C multifunction tool, the tool became obstructed at 319.2 feet bls, preventing logging to a total depth of 322 feet bls. After the tool was brought to land surface, cuttings were found on the bottom of the tool, indicating the well was not properly developed. The 9074C caliper/ gamma-ray and the 9511C induction tools collected data from land surface to 324.2 bls, and from land surface to 318.4 feet bls, respectively. Lastly, the well was video logged from land surface to 280.3 feet bls to confirm the integrity of the 4-inch casing after core drilling inside the casing from 270 feet to 322 feet bls.

Geology

The geology of the Eagle Lake well site is based on lithologic samples collected from split-spoon sampling from 3 to 123 feet bls and hydraulic rotary wireline core drilling from 127 to 322 feet bls. The geologic units encountered at the Eagle Lake well site include, in ascending order: the Ocala Limestone, the Suwannee Limestone, the undifferentiated Arcadia Formation, and the Cypresshead Formation. A stratigraphic column detailing the lithostratigraphy encountered at the well site is presented in figure 6. The lithologic log described in detail by the FGS is presented in appendix B. Digital photographs of the core samples are presented in appendix C.

At the Eagle Lake well site, the late Eocene Ocala Limestone extends from 265 feet bls to beyond the total depth of exploration of 322 feet bls. The contact between the Ocala Limestone and the overlying Suwannee Limestone is based on reduced core recovery and an increase in mudstone. The Ocala Limestone transitions from white to very light orange packstone to white mudstone with depth. Good to moderate induration was observed throughout the unit. Porosity is primarily intergranular, with moldic and vugular as secondary. Grain size is fine to very fine. General fossil molds and fragments include bryozoa, coral, and benthic foraminifera. Although the top of the Ocala Limestone was identified at 265 feet bls, Lepidocyclina ocalana, an index fossil of the Ocala Limestone, was not identified until 295 feet bls. From 295 to 300 feet bls, the formation becomes increasingly more fossiliferous. Very fine-grained mudstone dominates and Lepidocyclina ocalana is abundant. This combination may decrease effective porosity, increasing the normal resistivity shown in figure 8. Fossil fragments of the foraminifera Nummulites ocalanus were identified from 307 to 309 feet bls. The average core recovery in the Ocala Limestone was approximately 76 percent.

The Oligocene age Suwannee Limestone extends from 205 to 265 feet bls at the Eagle Lake well site. A decrease in phosphatic siliciclastics and lower gamma-ray activity demarcates the top of the Suwannee Limestone (fig. 7). The Suwannee Limestone transitions from white wackestone to very light gray grainstone with depth. The porosity is intergranular to pinpoint. Induration is moderate to good with calcilutite matrix throughout the formation. Mollusks including gastropods, and miliolids were the fossil fragments and molds identified within the Suwannee Limestone user not identified at the Eagle Lake well site. The average core recovery in the Suwannee Limestone was approximately 52 percent.

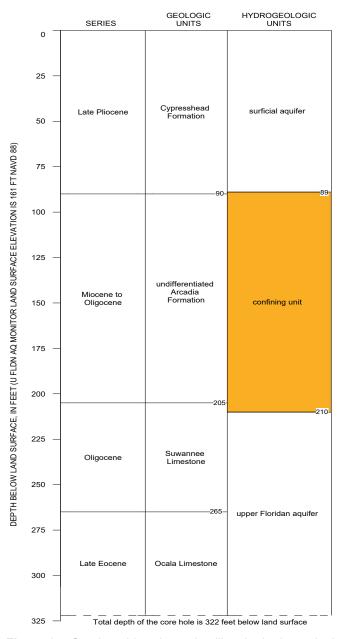

The Miocene to Oligocene age undifferentiated Arcadia Formation extends from 90 to 205 feet bls at the Eagle Lake

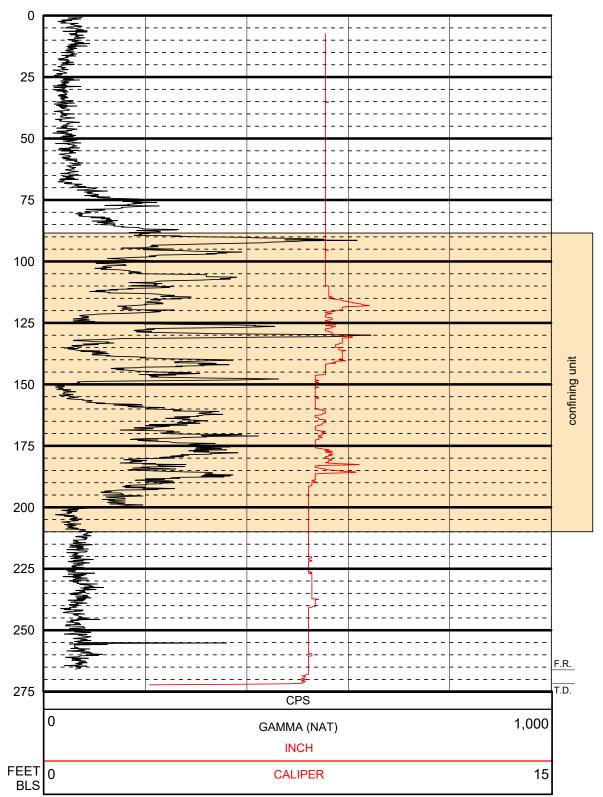
Table 2. Summary of geophysical logs collected at the Eagle Lake well site in Polk County, Florida

[SID, station identification; MM/DD/YYYY, month/day/year; ft, feet; bls, below land surface; U Fldn Aq, upper Floridan aquifer; PVC, polyvinyl chloride; --, not applicable]

SID	Well Name	Date Logged (MM/DD/YYYY)	Logged Interval (ft bls)	Casing Type	Casing Depth (ft bls)	Casing Diameter (inches)	Tool Type	Tool Number
943702	Eagle Lake U Fldn Aq Monitor	08/04/2020	0 - 272.4	PVC	110	8	caliper/gamma- ray	9165C
943702	Eagle Lake U Fldn Aq Monitor	08/10/2020	0 - 324.2	PVC	270	4	caliper/gamma- ray	9074C
943702	Eagle Lake U Fldn Aq Monitor	08/10/2020	0 - 318.4	PVC	270	4	induction	9511C
943702	Eagle Lake U Fldn Aq Monitor	08/10/2020	0 - 319.2	PVC	270	4	multifunction	8144C
943702	Eagle Lake U Fldn Aq Monitor	08/10/2020	0 - 280.3	PVC	270	4	video camera	

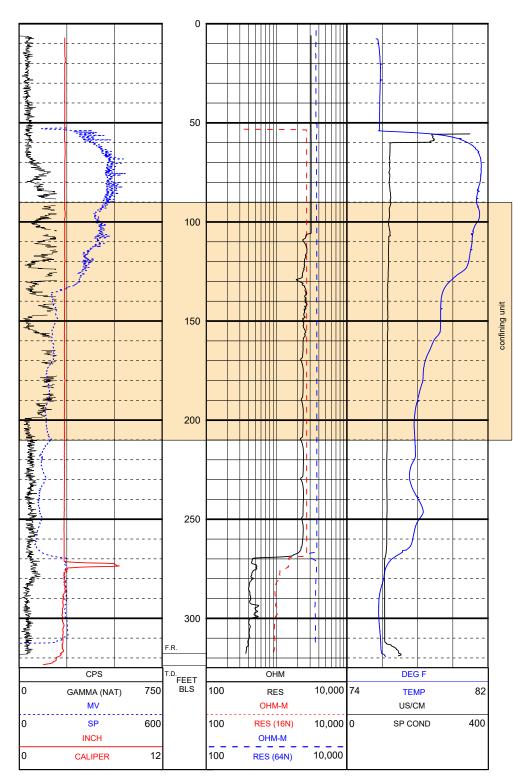
well site. Poorly indurated white to light gray sandy, phosphatic clay cap the formation from 90 to 110 feet bls. The top of the formation is also marked by an increase in gamma-ray activity, which is characteristic of the top of the undifferentiated Arcadia Formation (fig. 7). Well-indurated, yellowish gray mudstone containing phosphatic sand was identified from 113 to 150 feet bls. Large chert nodules (up to 6 centimeters in diameter) were identified between 140 and 142 feet bls. Beds of packstone, wackestone, and mudstone stratify the lower undifferentiated Arcadia Formation from 150 to 205 feet bls. The foraminifera *Sorites sp.* were identified intermittently from 150 to 170 feet bls. The porosity types observed in the undifferentiated Arcadia Formation were intergranular, moldic, vugular, and pinpoint. Grain size ranges from microcrystal-

Figure 6. Stratigraphic column detailing the hydrogeologic setting at the Eagle Lake well site in Polk County, Florida.


line to fine. Mollusks including gastropods, benthic foraminifera, shark teeth, fossil fragments, and molds were identified within the undifferentiated Arcadia Formation. The average core recovery in the undifferentiated Arcadia Formation was approximately 85 percent.

The late Pliocene age Cypresshead Formation extends from land surface to 90 feet bls. This formation is entirely composed of non-fossiliferous, sub-angular to sub-rounded, medium sphericity sand at the Eagle Lake well site. The Cypresshead Formation is characteristically oxidized and mottled, exhibiting shades of red, orange, and white (Scott, 1988). From land surface to 27 feet bls, the sand transitions from fine to medium size grains and is grayish orange pink to very light orange. Samples containing 3 percent clay were identified from 3 to 11 feet bls. Organic material increases with depth, from less than 1 percent (from 3 to 47 feet bls) to 3 percent (from 47 to 71 feet bls). Heavy minerals are present from 39 to 59 feet bls.

Hydrogeology

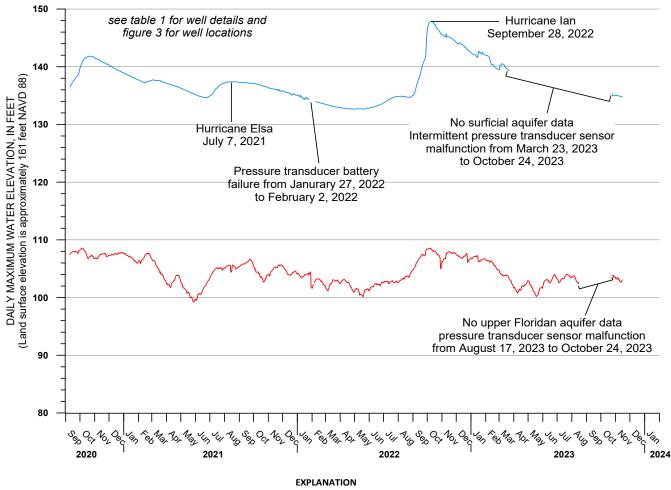

The hydrogeology of the Eagle Lake well site was delineated based on the lithology encountered during continuous split-spoon sampling and core sample collection, and comments made by the drilling contractor during core collection. Drilling mud was used during the split-spoon sampling and exploratory core drilling operation, which can disguise the amount of drilling fluid lost to the formation to estimate permeability. Two aquifers were identified at the Eagle Lake well site: the surficial aquifer and the upper Floridan aquifer. A confining unit separates the two aquifers (fig. 6). The naming convention used for the hydrogeologic units in this report are consistent with aquifer nomenclature guidelines proposed by Laney and Davidson (1986) and the North American Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 2021). A comparison of the nomenclature used in this report (District nomenclature that is not site-specific) and previously published reports is presented in appendix D.

The surficial aquifer is the uppermost hydraulic unit at the Eagle Lake well site and extends from the top of the water table to 89 feet bls. It is contained in the unconsolidated clastic deposits of the Cypresshead Formation. The water table was first encountered at approximately 50 feet bls during splitspoon sample collection. The split-spoon blow count was higher (average of 36 blow counts) in the vadose zone than below the top of the water table (average of 17.5 blow counts). The surficial aquifer is recharged by the precipitation that falls in this region, maintaining the water table between 13 and 28 feet bls (fig. 9). Long-term water level data in the surficial aquifer responds to significant rain events, such as Hurricane Elsa (July 7, 2021) and Hurricane Ian (September 28, 2022). Battery malfunction resulted in insufficient data gathering from January 27 to February 2, 2022. District staff replaced the pressure transducer and battery on February 2, 2022. From

[BLS, below land surface; CPS, counts per second; NAT, natural; F.R., first reading above the total depth a geophysical tool makes a measurement; T.D. total depth of well]

Figure 7. Geophysical log suite for the *U Fldn Aq Monitor* well from land surface to 272.4 feet bls conducted at the Eagle Lake well site in Polk County, Florida. The log was collected on August 4, 2020, using the 9165C (caliper/gamma-ray) tool. Eight-inch PVC casing was installed from land surface to 110 feet bls at the time of logging. The log scale is 2-inches per 75 feet and is linearly scaled. The FR is 265.8 feet bls.

[CPS, counts per second; NAT, natural; MV, millivolt; SP, spontaneous potential; OHM-M, ohm-meter; RES, resistivity; DEG, degree; F, fahrenheit; TEMP, temperature; US/CM, microsiemens per centimeter; SP COND, specific conductance; F.R., first reading above the total depth a geophysical tool makes a measurement; T.D. total depth of well]


Figure 8. Geophysical log suite for the *U Fldn Aq Monitor* well from land surface to 324.2 feet bls conducted at the Eagle Lake well site in Polk County, Florida. The suite was collected on August 10, 2020, using the 8144C (multifunction) and 9074C (caliper/gamma-ray) tools. The tools were run inside a 4-inch Sch 40 PVC casing, set to 270 feet bls. The log scale is 1-inch per 50 feet. Tracks 1 and 3 are linearly scaled and track 2 is in logarithmic scale. The FR is 312.4 feet bls.

12 Well Construction at the Eagle Lake Well Site in Polk County, Florida

March 23, 2023, to October 24, 2023, the pressure transducer that was installed in the *Surf Aq Monitor* well malfunctioned intermittently, leading to errors in the water level data. On October 25, 2023, District staff replaced the surficial aquifer monitor well pressure transducer to mitigate the issue.

A confining unit was delineated from 89 to 210 feet bls in the low permeability, phosphatic clays, mudstones, and fossiliferous limestone of the undifferentiated Arcadia Formation and the top portion of the fossiliferous Suwannee Limestone. The confining unit is based on the lithologic characteristics of the core and the slow advancement of the split-spoon sampler from 90 to 127 feet bls. Many of the blow counts exceeded 50 blows per 6 inches of advancement because of the transition from sand to clay and mudstone with depth. The confining unit separates the surficial aquifer from the underlying upper Floridan aquifer.

The upper Floridan aquifer extends from 210 feet bls to beyond the total depth of exploration at 322 feet bls. The upper Floridan aquifer is contained in the Suwannee and Ocala Limestones at the Eagle Lake well site. The top of the upper Floridan aquifer is consistent with the isopach map completed by Miller (1986), which estimates the top at approximately -50 feet NAVD 88 (211 feet bls). The top of the upper Floridan aquifer was chosen at the depth drilling fluid circulation loss began. Complete loss of circulation was noted at 237 feet bls. Groundwater level data have been collected from the Surf Aq Monitor and the U Fldn Aq Monitor wells since September 10, 2020 (fig. 9). From August 17, 2023, to October 24, 2023, the pressure transducer in the U Fldn Aq Monitor malfunctioned, causing erroneous data, and was replaced on October 25, 2023. A comparison between the Surf Aq Monitor water levels and the UFldn Aq Monitor water levels indicates a downward, recharging head gradient from the surficial aquifer to the upper Floridan aquifer, with an average head difference of 33.5 feet from September 10, 2020, to February 20, 2023.

— Eagle Lake Surf Aq Monitor —— Eagle Lake U Fldn Aq Monitor

[NAVD 88, North American Vertical Datum of 1988; Surf, surficial; U Fldn, upper Floridan; Aq, aquifer]

Figure 9. Hydrograph of the permanent monitor wells at the Eagle Lake well site in Polk County, Florida.

Summary

Two monitor wells were constructed at the Eagle Lake well site in Polk County, Florida. The Eagle Lake *Surf Aq Monitor* was completed on July 15, 2020, and the Eagle Lake *U Fldn Aq Monitor* was completed on August 7, 2020. The wells were constructed as part of the CFWI to monitor groundwater levels in the surficial and upper Floridan aquifers near Eagle Lake. The *Surf Aq Monitor* well has a casing depth of 52 feet bls and a total depth of 72 feet bls, and the *U Fldn Aq Monitor* well has a casing depth of 270 feet bls and a total depth of 322 feet bls. Both wells are secured with lockable metal well covers. As of September 10, 2020, long-term water levels of the *Surf Aq Monitor* and the *U Fldn Aq Monitor* wells have been collected at one-hour intervals.

Prior to well construction, the geology and hydrogeology of the well site were determined using split-spoon and core samples from land surface to 322 feet bls. The geologic units encountered at the well site are: the Ocala Limestone from 265 feet bls to beyond the total depth of exploration at 322 feet bls, the Suwannee Limestone from 205 to 265 feet bls, the undifferentiated Arcadia Formation from 90 to 205 feet bls, and the Cypresshead Formation from land surface to 90 feet bls. The hydrogeologic units encountered at the well site are: the surficial aquifer from the water table to 89 feet bls, a confining unit from 89 to 210 feet bls, and the upper Floridan aquifer from 210 feet bls to beyond the depth of exploration of 322 feet bls.

Selected References

- Central Florida Water Initiative, 2023, What is CFWI: https:// cfiwater.com/what_is_CFWI.html (accessed April 20, 2023).
- Barr, G.L., 1996, Hydrogeology of the Surficial and Intermediate Aquifer Systems in Sarasota and Adjacent Counties, Florida: U.S. Geological Survey Water-Resources Investigations Report 96-4063, 87 p.
- Boggess, D.M., and Watkins, F.A., Jr., 1986, Surficial aquifer system in eastern Lee County, Florida: U.S. Geological Survey Water-Resources Investigations Report 85-4161, 59 p.
- Bush, P. W., 1982, Predevelopment Flow in the Tertiary limestone aquifer, southeastern United States; A Regional Analysis from Digital Modeling: U.S. Geological Survey Water-Resources Investigations Report 82-905, 56 p.
- Clarke, WE., Musgrove, R.M., Menke, G.C., and Cagle, J.W., Jr., 1964, Water resources of Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Report of Investigations 35, 170 p.

- Joyner, B.F., and Sutcliffe, H. Jr., 1976, Water Resources of the Myakka River Basin Area, Southwest Florida: U.S. Geological Survey Water-Resources Investigation 76-58, 87 p.
- Knochenmus, L.A., 2006, Regional Evaluation of the Hydrogeologic Framework, Hydraulic Properties, and Chemical Characteristics of the Intermediate Aquifer System Underlying Southern West-Central Florida: U.S. Geological Survey Scientific Investigations Report 2006-5013, 40 p.
- Laney, R.L., and Davidson, C.B., 1986, Aquifer-nomenclature guidelines: U.S. Geological Survey, Open-File Report 86-534, 60 p.
- Leve, G.L., 1966, Ground water in Duval and Nassau Counties, Florida: Florida Geological Survey Report of Investigations 43, 91 p.
- Lichtler, W.F., 1960, Geology and ground-water resources of Martin County, Florida: Florida Geological Survey Report of Investigations 23, 149 p.
- Miller, J. A., 1982, Geology and configuration of the base of the Tertiary limestone aquifer system, southeastern United States: U.S. Geological Survey Water-Resources Investigations 81-1176, 1 map sheet.
- Miller, J. A., 1986, Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1403-B., 91 p.
- Miller, W.L., 1980, Geologic aspects of the surficial aquifer in the Upper East Coast planning area, southeast Florida: U.S. Geological Survey Water-Resources Investigations Report 80-586, scale 1:62,500, 2 sheets.
- North American Commission on Stratigraphic Nomenclature, 2021, North American Stratigraphic Code (2021), Stratigraphy, v. 18, no. 3, p. 153-204. https://ngmdb.usgs.gov/ Geolex/resources/docs/NACSN Code 2021.pdf
- Parker, G.G., and others, 1955, Water resources of southeastern Florida: U.S. Geological Survey Water-Supply Paper 1255, 965 p.
- Reese, R.S., and Richardson, Emily, 2008, Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida: U.S. Geological Survey Scientific Investigations Report 2007-5207, 60 p., 4 pls., plus apps. (on CD).
- Scott, T.M., 1988, The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida: Florida Geological Survey, Bulletin No. 59, 148 p.

14 Well Construction at the Eagle Lake Well Site in Polk County, Florida

Spechler, R.M., and Kroening, S.E., 2007, Hydrology of Polk County, Florida: U.S. Geological Survey Scientific Investigations Report 2006-5320, 114 p.

Sproul, C.R., Boggess, D.H., and Woodward, H.J., 1972, Saline-water intrusion from deep artesian sources in the McGregor Isles area of Lee County, Florida: Florida Bureau of Geology Information Circular 75, 30 p.

Stringfield, V.T., 1936, Artesian water in the Floridan peninsula: U.S. Geological Survey Water-Supply Paper 773-C, p. C115-C195.

Stringfield, V. T., 1966, Artesian water in Tertiary limestone in the Southeastern States: U.S. Geological Survey Professional Paper 517, 226 p.

Torres, A.E., Sacks, L.A., Yobbi, D.K., Knochenmus, L.A., and Katz, B.G., 2001, Hydrogeological Framework and Geochemistry of the Intermediate Aquifer System in Parts of Charlotte, De Soto, and Sarasota Counties, Florida: U.S. Geological Survey Water-Resources Investigations Report 01-4015, 81 p.

Wedderburn, L.A., Knapp, M.S., Waltz, D.P., and Burns,
W.S., 1982, Hydrogeologic Reconnaissance of Lee County,
Florida: South Florida Water Management District Technical Publication 82-1, pts. 1, 2, and 3, 192 p.White, W.A.,
1970, The Geomorphology of the Florida Peninsula: Florida
Geological Survey Geological Bulletin No. 51, 164 p.

Williams, Christopher P., Scott, Thomas M., and Upchurch, Sam B., 2022, Florida Geomorphology Atlas: Florida Geological Survey Special Publication No. 59, 216 p.

Williams, L.J., and Kuniansky, E.L., 2016, Revised Hydrogeologic Framework of the Floridan Aquifer System in Florida and Parts of Georgia, Alabama, and South Carolina (ver. 1.1, March 2016): U.S. Geological Survey Professional Paper 1807, 140 p., 23 pls., http://dx.doi.org/10.3133/ pp1807.

Wolansky, R.M., 1983, Hydrogeology of the Sarasota-Port Charlotte Area, Florida: U.S. Geological Survey Water-Resources Investigations Report 82-4089, 54 p.

Wyrick, G.G., 1960, Ground-water resources of Volusia County, Florida: Florida Geological Survey Report of Investigations 22, 65 p.

Zydek, J., 2018, Eagle Lake Well Construction Summary, Technical Memorandum, 2 p. Appendix A. Scanned Daily Drilling Logs Taken During Well Construction at the Eagle Lake Well Site in Polk County, Florida

REPORT #			SITE GEOLOGIST	DATE	DATE ON-SITE	SID				
1121		K Mallams		6/10/2020	6/10/2020					
CONTRACTOR			CREW	PROPOSED T.D.	PROGRESS	DEPTH				
Meno	lez	-								
WELL SITE NUM-NAME		Easle La	he Replacement	WELL NAME/ID						
TIME LOG		DEPTH		DETAILS OF O	PERATIONS					
FROM	то		12.11.	2	- 01	1				
1000	1200		K Mellams arri							
					nK Myszewsk					
_			Florida Midland							
			Delia Mendez "	Roy ? arn	ved shartly af					
_	11-15		We also met t	he Ponciple (Connie Loutzeni					
			Assistant Principl	. (Brad Harde						
	1.1		Dwight Marsh 1	Ground's Mane	ser) of The Eler	mentry setwol.				
		-	on site.							
	1		Discussed the Project of everyone so everyone knew what							
	11.27.0		we were doing.	we were doing. Connic L Brad H. mentioned The Kids						
			May Come back to	school 8/10,	So If we are SI	hll construction				
	1.000		the wells, then	we will have	e to check int	The grice				
	0.000.0		evendan, IF 4	here are no Ki	ds 24h school	(Like during				
			The summer time) Then we to	not need to we	ar our budges				
			or have 10 a							
			we found all	the pins for	The temp con	shuchan				
	1	100	easement, The P	ermant + En	try essent i	sill need to				
	5.221		put up temp	Sence around	site per the	Principle3				
	10		request. Chris			1				
	11 2 7		Need to Call T	ECO For we	wheel lines ad	ore Sidewalk.				
	11		Then are close	to where the	Derek will be.	Possibly get				
			them to Install		mmissim thos	livis temp.				
			Called T.		# 2260763					
	11.000									
			(aller 1			assigned to				
			(~ ((0 - 1)	# 48	-72 hrs to be	assigned to d tech will Call Me.				
				# 48		assigned to I tech will Call Me.				
				# 48	Field Tech, Fiel	d tech will Call Me.				
				# 48	-72 hrs to be	d tech will Call Me.				
				# 48	Field Tech, Fiel	Id Herb will Call Me.				
				* 48	Field Tech. Fiel	d tech will Call Me.				
				* 48	r-72 hr; to be Field Tech, Fiel REGIONAL RA	Id Herb will Call Me.				

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION

www.regional-rail.com

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION

			DRILLING LOG	•	
REPORT #		SITE GEOLOGIST	DATE	DATE ON-SITE	SID
2.0	K Mallams		7/13/2020	06/10/2020	
CONTRACTOR	_	CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mendez	Matt Herror	, Roy, Chance	.35'	90	90
WELL SITE NUM-NAME	Eagle L	ake Replacement	WELL NAME/ID	Eagle Lake Rep Surf Az	Miniha
TIME LOG	DEPTH		DETAILS OF O		ict 50 b
FROM TO			· · · · · · · · · · · · · · · · · · ·	Split	Span
900		CT arrived		Plounted m	Moorka Track
920		KM arrived.			
	· · · ·	Discussed wh	en na nont.	6 put the First	SAwellon
		The permant	easement, Pu	ton NE Corne	r
945		Mass up	· · · · · · · · · · · · · · · · · · ·		
		N	• E SAnell		
		1			
1015		Mixing Mud- 1/2	hee		
	0-3	Drill			
· · ·	3-5	Split spoon (1.1	1.3) Cont	Invous split Spo	o France 3-71
		B		pursous appling apple	
1020	5-7	Split Spoon (8,	14,19,16)	59	
	4497-9	Salitsaon (12,	111 11.17	59	······
1035	9-11	Salit Spoon (11,	10 12 11	44	
10.00	11-13		(12)	42	
	13-15	Split Spoon (9,	11-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	.7	· · · · · · · · · · · · · · · · · · ·
· · · ·	15-17	Selitspoon (7		31	
	17-19	Split Spoon (7			
	19-21	Split Span (<u>ר (ף ק ד, 1</u> געעע און אין	46	
	21-23	Split Sporn			
			(0, 11, 0)	<u>67</u>	· · · · · · · · · · · · · · · · · · ·
	23-25	Splitspan (13	· ,	45	
11:10		Split Spon (10,		28	
	27-29	Split Spoon (le		29	
	29-31	Split Spon (6		39	
	31-33	Split Spoon (7		3le	
	33-35	Split Spoon (6		31	·
1147	35-37	Split Spoon (6,		8	
	37-39	Split Sporn [5		4	
1204	39-41	Selit Spoon [9		7	
	41-43	Split Spoon (8	9,10,12) 3	9	
District		• • •	Contractor		i
Representative			Representative		

. '

÷

		GEOHYDROLOG DAILY CORE	IC DATA SECTION DRILLING LOG	1	
REPORT #	5		DATE	DATE ON-SITE	SID
2.1		Mallams	7/13	06/10/2020	· ·
CONTRACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mendez	Matt Heror	, Roy, Chance	35	90	90
WELL SITE NUM-NAME	Eagle La	Ke Replacement	WELL NAME/ID	Engle Larke R Smrt Ag 1	cplacement lonitor
TIME LOG	DEPTH	· · · · · · · · · · · · · · · · · · ·	DETAILS OF O	PERATIONS	
FROM TO					
1215	.43-45	Split Spoon (6	(1, 1, 7, 9)	28	
	45-47	Split Spron (S	457	21	
	47-49	Split Spoon (1	1,3,4,4)	15	
	49-51	split Spon T	<u>2334)</u>	2 5 WL. 4	3-51
	51-153	Split Sporn (23465	5	· .
1300	53-55	Solit Soon (33461	Lo	
	55-57	Solit Spoon (3,34,6) 1	6	
	57-59	Split Spoon ()	2, 3, 4, 6) 1	5	
	59-62	Split Snoon	2(3, 4, 5)	4	
	61-63	Split-Spoon To	2156)	14	
	103-105	Split Spoon (3		7	
	65-67	Split Spoon ("	15,59) 2	23	
1415		Dumpster Arrived			· · ·
	67-69		<u>6,8,9) 26</u>		· .
1450	69-71	Split spoon (3,	477) 21		
,		Proposed we	U diagram	Blank +3 to	
				10:slot screen	51+0716
500	71-7#3	Drill			
.505	73-75		56)17-	non Continuous S	<u>s 73-</u>
	75-78		4,8120		
1520		Drillers went to	get the sel	ent to pump muc	1 into Dumps
	78-80	Split Spoon			
	83-85	(2,2)	6,10) 20 D-3" 5TG1	· · · · · · · · ·	1 N
	88-90	6,50	2-5' 5701	<u> </u>	
		KDM leave - 16	00		
		CS & Drillers le			· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		· · · · · ·		
District			Contractor		••

ر بر ا

.

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION

District Contractor Representative Representative

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG

,

REP	ORT #	S	ITE GEOLOGIST	DATE	DATE ON-SITE	SID
	3.0		Mallans	7/14/2020	6/10/2020	<u></u>
آنور	r			<u>Т</u>		
	RACTOR	14 11 11	CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mende	Z Drilling	Mhtt Herron	, Roy, Chance	70'	72'	72'
	L SITE	EagleLake	Replacement State	WELL NAME/ID	Eagle Lake Repla	coment surf Ag Monitor
TIM	E LOG	DEPTH		DETAILS OF C	PERATIONS <a< td=""><td>Construction</td></a<>	Construction
FROM	то	52.111				Construct to
-700			哲 CS arrived			· · ·
730			Drillers provincial	1		
830			Begin drilling	VII Nimina	l hole	
		5=10	<u> </u>	0	- /)	- -
900		10-15	KDM arrived		· · · · · · · · · · · -	
		13.5-18.5	Drill			· · ·
0930			CS Checkin, mind	weight 9	165/ft-Cs K	Keroinstructed de
6930	0938	18.5-23.5		``````````````````````````````````````		() ~ / 00
0940	10000	23,5-28.5				
0947	0955	28.5-33.5	Drill			
0959	1003	33.5-38.5		· ·		
1008		38,5-43,5			· · · · · · · · · · · · · · · · · · ·	
1016	1020	43.5-48,5				
		48.5-53.5				
1024		53.5-58.5		,		
1041	1000	58,5-63.5	Doll			
1050	1056	63.5-08.5			······································	
1057	1100	68.5-7072	Drill Adding mu	d 1/2 bag -	got down to 72'	
1100			Circulating hole	∂	· · · · · · · · · · · · · · · · · · ·	
115	1124		Tripping out Rods		4	· · · · ·
			Trimmie pipe in L	8' total = S	Crew Hosether	
1150			Flushin, well of F			lockin
		· ·			hm - 11	1001
				4-5 ft Sect		······································
					nm -1911	
					2m-1 the	elded to setter 57
			*.		n between last	
			PVC Casing went d			
	-		Bage of Sand-18	E Calculate	el 12 bas, for Ar	nulus
			Bags of 30/65 - 1/2	bags		······································
		· · · · · · · · · · · · · · · · · · ·		0		
Die	strict			Contractor		

		DAILY CORE D	DRILLING LOG	· · · · · · · · · · · · · · · · · · ·	
REPORT #	SITE GEOLOGIST		DATE	DATE ON-SITE	SID
3.1	I C	Mallans	7/14/2020	6/10/2020	
CONTRACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mendez	Tony Hudsi	m. Matt Herron, Roy			· · ·
WELL SITE NUM-NAME	Eagle La	m, Matt Herron, Roy Charles Nec Replacement	WELL NAME/ID	Eagle Lake Ke Sur Ag	placement Umistr
TIME LOG	DEPTH		DETAILS OF OF	PERATIONS	
FROM TO					۰. ب
		Driller told us the Preparing grout Grout Come to su	sound Came inf	to \$\$ 46'	
310		Preparing grout	Total bags -	8 10 bags 14.5	16s/ft
342	· · · · · · · · · · · · · · · · · · ·	Sile Aleane TO SI	MELUC		
435		Site Clean up Drillers + KM gy 2	sile		
· · ·		CS staying			
		7.5	· ·		
. :	· · · · · · · · · · · · · · · · · · ·				
			<u> </u>		· · · ·
				· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·
					· · ·
		-		· · · · · · · · · · · · · · · · · · ·	
		· · ·			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			
			~	· · · · · · · · · · · · · · · · · · ·	
•	<u> </u>				<u></u>
		.	m		
				· ·	
			····		

75.2

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG

9100 3'1" WL-27.9

REF							
	ORT #	:	SITE GEOLOGIST	DATE	DATE ON-SITE	SID	
4		K	Mallans	7/15/2020	6/10/2020		
CONT	RACTOR	CREW		PROPOSED T.D.	PROGRESS	DEPTH	
Mind		Tony Hudsi	m, Matt Herron, Roy Change	287'	10	ID	
WELL SITE NUM-NAME		0	ake Replacement	WELL NAME/ID	Eagle Laice Re UFldn Ag		
TIME LOG		DEPTH		DETAILS OF O	PERATIONS		
FROM TO							
700			CS arrived				
845			KM arrived w/ F CT = KM tassed	àiline 1758	as Venewatt to	the Di	
		· · · · ·	CT & KM L	losthin 1	A - 75 2' Ch	ick up 3 DS	
			CI KM TASSEA	varning w	77 1512 811	Chap S.C.	
0 AD				·	14,12		
900			Mendez arrived P	1)0			
A10			W.L.= 27,9'	615			
920			Position Pag ver h	ok			
0950			Mast up	نه بو ا و از بوسر و			
0950			On SA well grout 5'bls > Mixing growt + pour Annulus to bring to surface - used 1/2 bag				
			Annulus to bring	to surface.	- used 1/2 bag		
<u>.</u>			Site Prep		· · · · · · · · · · · · · · · · · · ·		
1052			Start pumping sit well - Using 10 gpm - pumping ~ 5 gpm				
			Well went dry,	after primp	ing a while	turned pump	
	ļ		Calculated recover	in 25 Sec/	Ft up in well		
1130			Mendez Called Eng	le lake Utili	this to see if to	H	
11.20	1	1					
			put a metar on h	re hydrant t	or water Supply		
			put a meter on h went down to Fill		or water supply		
1200	· ···		went dorm to Fill	out Application	or water supply		
	\$1400			out Application	or water supply		
1200	\$1400 1445		Went down to Fill Mixing Mud in M Lunch-	but Application	or water Supphy	, Mendeg	
1200	1		Went down to Fill Mixing Mud in M Lunch- Waiting in Eastel	out Application	in water supply in stall a m	. Mendez	
1200 1230 1400	1445		Went down to Fill Mixing Mud in M Lunch- Waiting m Eagle (Freehydrant for hi	out Application	in water supply in stall a m	. Mendez	
1200 1230 1400	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eastel Freehydrant for W Mehr Installation	alle altitut	or water Supphy in s to install a m well. Tony went	eter on the	
1200 1230 1400 1445 1505	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eagle (Fire hydrant for w Meter Installation Check WL (n St	alle ulhi, Hre: alle ulhi, Hre: alor Supply	s to install a m well. Tony want = ~28' bis to S	. Mendeg ie ter on the to get a ho Static we	
1200 1230 1400	1445		Went down to Fill Mixing Mud in M Lunch- Waiting on Eastel Threhydrant for W Mekr Installation Check WL IN St Turn St pump on +	nut Application und tub alce ulti, H, pator Supply 1= 31' bTOC hydrant value	in s to install a m well. Tony hant = ~28' bist-S on to Fill tank (e le on the by get a ho Static W L (200 5-1)	
1200 1230 1400 1445 1505	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eastel Freehydrant for w Mekr Installation Check WL IN SK Turn SA pump on + Pump Capacity of SK	nut Application und tub alce ulti, H, pator Supply 1= 31' bTOC hydrant value	in s to install a m well. Tony hant = ~28' bist-S on to Fill tank (e le on the by get a hor Static W L (200 5-1)	
1200 1230 1400 1445 1505	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eagle (Threhydrant for wi Meter Installation Check WL (n St Turn SA pump in + Pump Capacity of St Tlecovery WL -	put Application lud tub alce ulti, tre: pator Supply 1= 31' bTOC hydrant value 1 pump = 1 mi	or water Supphy in s to install a m well. Tony want = ~28' bis to S on to Fill tank (- 15 sec = to State	Mendeg leter on the loget a ho Static W L (200 Sal) 5 75 sec	
1200 1230 1400 1445 1505	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eastel Freehydrant for w Mekr Installation Check WL IN SK Turn SA pump on + Pump Capacity of SK	put Application lud tub alce ulti, tre: pator Supply 1= 31' bTOC hydrant value 1 pump = 1 mi	or water Supphy in s to install a m well. Tony want = ~28' bis to S on to Fill tank (- 15 sec = to State	Mendeg leter on the loget a ho Static W L (200 Sal) 5 75 sec	
1200 1230 1400 1445 1505 1515	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eastel Freehydrant for W Meter Installation Check WL in SY Turn SA pump in + Pump Capacity of SY The covery WL - Retook Pam, Capacity	nut Application and tub and	br water Supphy in s to install a m well. Tony want = ~28' bis to 5 on to Fill tank (- 15 sec = to 5 pressure = 1 min 2	Mendleg ie her on the ho get a ho Stahic W L (UDO Sal) 5 75 sec 20 sec = 80 s	
1200 1230 1400 1445 1505 1515 1515	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eagle (Freehydrant for w Meter Installation Check WL IN SK Turn SA pump in + Pump Capacity of SK Tlecovery WL- Retook Pamp Capacity Beein drilling w 17	put Application Jud tub alce ulti, H pator Supply 1= 31' bTOC hydrant value 1 pump = 1 mi - lowered HzD, .5" Stair Slep	br water Supphy in s to install a m well. Tony want = ~28' bis to S on to Fill tank (- 15 sec = to Sac pressure = 1 min 2 bit Add Yzb	Mendig iete- on the boget a ho Static WL (UDO Sal) 0 75 sec 20 sec = 80 sec 10 sec = 80 sec	
1200 1230 1400 1400 1505 1515 1515 1515	1445		Went down to Fill Mixing Mud in M Lunch- Waiting in Eastel Freehydrant for W Meter Installation Check WL in SY Turn SA pump in + Pump Capacity of SY The covery WL - Retook Pam, Capacity	put Application Jud tub alce ulti, H pator Supply 1= 31' bTOC hydrant value 1 pump = 1 mi - lowered HzD, .5" Stair Slep	br water Supphy in s to install a m well. Tony want = ~28' bis to S on to Fill tank (- 15 sec = to Sac pressure = 1 min 2 bit Add Yzb	D. Mendig iete on the boget a hor Static WL (UDO Sal) 0 75 sec 20 sec = 80 sec 10 sec = 80 sec	

-	5.5 1 1			GIC DATA SECTION E DRILLING LOG	l .	WL FT
REPORT # S		S	ITE GEOLOGIST	DATE	DATE ON-SITE	SID
2	5	K Ma	Mans	7/17/2020	6/10/2020	н н
CONTRACTOR			CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mend	ez	Tonn Hudsu	n, Martt Henry, Roy	280	70	80'
WELL SITE NUM-NAME		Easle Lat	ke Ruplacement	WELL NAME/ID	Easte Lake Re U Fldm	placement Az Montur
TIME	LOG	DEPTH		DETAILS OF O	PERATIONS SA	W.L. 30.97
FROM	то			м. Табата (1997) С		27.8
845			KM onsile - Ma	malez alrowdan a	Willing W Failing	125D
700			CS showed up		, ,	
715	730		Mendez arrived		5.2	202
	1057	15-22	Drillion - 17/2	stair Step bit		
1040			Drilling - 17/2 Matting pet pre	DACING GEBLING V	lever StA well her	padl - Insta
1057	1130		Cuchulabas	The States		1-0-0-
1140	1346	22-42	Drill			
1200	1344		Adding Mud		· · · · · · · · · · · · · · · · · · ·	
	Land	10				
1346	16.00		Circulating			
1400	1600	42-62		-> hit Cemented		
@1605			Added Quick T.	col to Mud to	lighten it up	
N	<u> </u>		Circulations			<u></u>
[615			KM aff sike		-	
			CS Storys, Cu	ntactors Keep	horking	
			ak .		1 0011	
			* Clinton note	d they got d	um to 80' 1.	
				· · ·		
					· · · · · · · · · · · · · · · · · · ·	
					· · · · · ·	
			· · · ·			
				·		
	· ·				· .	
						-
· ·						
	1		1			

WL 7:30 30.95 Top y Caring

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT
GEOHYDROLOGIC DATA SECTION

			DAILY CORI	E DRILLING LOG		•
REP	ORT #		SITE GEOLOGIST	DATE	DATE ON-SITE	SID
<u> </u>	1		(Mallams	7/17/2020	6/10/2020	
CONTR	RACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Murde		Tony Huds		280	2'	82
		1			E. I. b. D	
	L SITE NAME	tash lo	.K. Replacement	WELL NAME/ID	Engle Lake Rep UFA Mmilor	Construction
TIME	LOG	DEPTH		DETAILS OF OF	PERATIONS	
FROM	то					
0900	-		KDM on site			
1700			CS on sile			·
0715			Mendez on site			
0730			Dumpster Co on sike	to par up full	dumpster. Dumps	Hr. Co spilled
			Some Sand + Fluid	on oppundi Tom	a 15 planningto	bring bub
			Car to site to CO.			5
900	1005	10-82			est night. Dril	led Jonin b
· .			80' last hight L			
930			Looked & Cutting			store a
0950			Added Mud			
005			Preparing to pressu	in arout 12"	PVC Pasine in -c	14 cm 12' B2
<u> </u>		• • • • • • • • • • • • • • • • • • •	PVC Pipe togeth		<u> </u>	
1030	1044		Tripping pipe	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·
1050			Cutting 12" PVC	Cocine - Shar 2	battam	· · · · · · · · · · · · · · · · · · ·
100	1240					Jul 2 clay law
100	1-10		ZO' PVC PIPLIN	- 1111 + 3 . 2' ai	- is going Jama	ad up 2 clay laye
1240						(14016) Past Cay
			Preparato Pres	Save Grow	1270/11-	(14015)
1320		·	Pure ripe donn	n middle of 12"	IU IU DIS	
-Re	1440	· · · · ·	Pumping Mul down	<u> </u>	1 D D 1	A with a life of life of
1400	1970		Bezin Mixing Cene	NT IND of Bag	p= 60 weigh	comont - 1). 2 193/F
				Hod 2 1	ag weigh	brow += 13,5 13
1. 1. 1.				Weigh again	= 13,9 -7F+ = 5	0000
1440				down ~ 300 g.	als	
			Cap leaked abil		·	
			Added Chase w.			1
			Begin Mixing Gran			9 weight 14.015
1540			Primein aport de	mn - Grout C	eme to surface	~ 600 gal for 2nd
1545			ICUM off site	CS & Merdez	remain 2 site	bat
		l				· · · · · · · · · · · · · · · · · · ·
	trict entative			Contractor Representative		

		а. 1. т. т.		GIC DATA SECTION	• · · · · · · · · · · · · · · · · · · ·	Toc
REP	ORT #		SITE GEOLOGIST	DATE	DATE ON-SITE	SID
٢)	KM	alkans	1/20/2020	4/10/2020	
CONT	RACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mind	UNY .	Tony Hudso	n, Mutt Herrin Roy	, 290	33'	115
	L SITE -NAME	Eagle Lake	e Replacement	WELL NAME/ID	Eagle Lake R UFA Minitor	y lacement
TIME	ELOG	DEPTH		DETAILS OF O	PERATIONS	
FROM	то					
130 :			CS on site	· · · ·	-	
100			Mendez on site		· · · · · · · · · · · · · · · · · · ·	
110			KA m sike			
i 30				250 of hile -	Outhin Top 12"	PVCM
145			Moving Failing 1 Moving Detrict 50	Ric on hole -		
			Tagand herde of	12 11 2 75'-	> 7 d armtins	ale bake
			Tagged Inside of Prill through a	mut - Etto US	inn 37/2 drull	hit tricme
15			Mint of 1	NOW - DW	a Jis ann	an an an an
			Mast up a tripp	ing in lods		
			Mixing Mud	*		
55	1115	75-803	Drilling			
120		(1) V(1)	Trip Rods out	2 1. () 0	<u> </u>	
115	1210	83-85	7 (3,10,14) 2	9 * USING M.	anual 14016 han
	1010	85-88	Drill			
		88-90	Split spoon - (8	24,44,47		
300		90-92	Split Sovon (8	,19,50-4) hit		
320	1343	92-98	Drill + Collection	1 Cutting Sample	- bray chert - pt	wsphate 2 9461
100	1500		Weather delay-	Thunderstorm	-Unch	
			Tripping rods	· · ·		
515		98-98.1	Split Spoon - (50	blows-1") Rod	Lusal	
530	1400	98.1-103	Drill			
e15			CDM MSIK			1
	<u> </u>	1	The second secon			
	<u> </u>		Notes from Clinton.	S		
		101-100				······
		103-105		(50(3)/2")	<u> </u>	τ
		108-110	Solit spuon (87,50			
	· · · ·	113-115	Splitsporn (24,25	,50 (5"))		
		1				

			SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG						
REP	ORT #	s							
	8		lallams	7/21/2020	4/10/2020	SID			
				/ - / / -					
	RACTOR	· · · · · · · · · · · · · · · · · · ·	CREW	PROPOSED T.D.	PROGRESS	DEPTH			
Mendo	ez Drill	11/1 Tony Hids	m, Matt Hernon, Roy Chance	280	12'	127			
	L SITE -NAME	Engle Lake	. Replacement	WELL NAME/ID	Eagle Lake R U Fldn A.	eplacement y Mimitar			
TIME	LOG	DEPTH		DETAILS OF O	PERATIONS				
FROM TO									
7830	1		KDM on site	-					
			Talked of Toning.	- and durin	to 115' vester	lan lasili			
					to set temp 4				
			Then will drill down to 118' + Split garm From						
			118-120' Keep split sponing durin toll we hit						
			limistone. Tring is going bigo to home depot right now to Find simething to Stabelize the 4" & temo Casing						
			- " - ^	3	neerze the	1 & Tenp Casing			
900	1045	82-107'	0		$\frac{1}{1}$				
1050	1125		Please out pilot !	1 .	it (tri-come)	108			
	11 25	<u>אטן שוויי</u> אי וניען	Install timp Chaing (4			1-40) - 10 ft & chu			
1145	<u> </u>		Drive temp Crsing						
1150			Installing wooden						
	1200	U.S. M.S.	Trip in Rods - St		ed to arill ow c	Winnes .			
253	1.305	115-118	Drill / Ream hole		<u>N</u>				
320	1.0	118-118.8	Selit Spoon - (50,	SO 610-3-9)	Refusal	`			
	14D	118.8-123	Dull	211 12 10	· · · · · · · · · · · · · · · · · · ·				
11/2-		123-123.1	Selit Sarn- (10)		epusal				
1430	1500	123.1- 128/123		Formation 21	25'-+= Cutt	ings indicate dolusi			
			boing to Core - Wine						
1520	1530		Cleaning Mud out of	hole - 1" PVC	pipe down hole +.	A Plush out Mud			
1600			KOM leave site						
			CS Storys to colle	ut corre					
			· · ·						
						·			
				<u> </u>	•	1.4			
					ž i l				

Appendix A 25

Print Andit Form -

		GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG				
REPORT #						
				DATE	DATE ON-SITE	SID
9 KM			Mallams	7/22/2023	-110/2020	
CONT	RACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
	2 Drillin	Tonn Hudson	, Mutt Herron, Roy	280	73'	2.001
				· · · · · · · · · · · · · · · · · · ·		× .1
WELL SITE NUM-NAME		Ergu Cak	e Eter Replacement	WELL NAME/ID	Eagle Lake I	An Monitor
				· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	
TIMI	ELOG	DEPTH	- -	DETAILS OF O	PERATIONS	
FROM	то					
845		· · ·	KDMonsile			·
			worked until 64:	5 (not nigh	v# -	· · · · · · · · · · · · · · · · · · ·
			reamed the From	· · · ·	· · · · · · · · · · · · · · · · · · ·	
		· .	Cored From 127'	to 140'		· · · · ·
	8:50	145-150	Core	· .		
<u></u>	G:33	150-155	Core		<u>,</u>	
9:48	1007	155-160	Core	· · · · · · · · · · · · · · · · · · ·	· ••	<u></u>
1020	1044	160-165	Corre	· ·		N
1100	1135	165-170	Core			·
1145	133D		Rain delay - Lunc	h		<u></u>
1330	1.10-148	10-10-	Fix a pump seal or	nRug-Rain	Continues (11	shitmin)
1400	H30"×		Core - cloyged up	2-174-nee	ided higo back	doin to retri
1500	1520	175-180	Core			
1525	1600	180-185	Sorre			
			KDM leave		·	
					•	
			Notes from clints			
			+ // / / /	ZOMIN		
			185-190		000-1700	
	· · · ·		190-195		7.00-1715	
			195-200	20 Min	1740-1820	1
	1.		· · · · · · · · · · · · · · · · · · ·		· · · · ·	·
			1			
	· ·					

		SOU	THWEST FLORIDA WAT GEOHYDROLOGI	C DATA SECTION		W.L- 30,71
			DAILY CORE [DRILLING LOG		
REP	ORT#		ITE GEOLOGIST	DATE	DATE ON-SITE	SID
10		K M	allam,	7/23/2020	6/10/2020	
CONTR	ACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
	Drilling	Tomm Hudson	, Mett Herron, Roy	280	40'	240
		1 10101110.2013	Chance			
	_ SITE NAME	Eagle Lake	Replacement	WELL NAME/ID	Eagle Lake Ru UFLd	Lp lacement n Ag
TIME	LOG	DEPTH		DETAILS OF O	PERATIONS	
FROM	то					
845			KOM arrive		·	
<u></u>	850	205-210	Core	,		
0857	0910	210-215	Core	No change 1	shead anessing	L-D Swinn yet
0935	0940	215-220	Cure	0		
5952	1000	220-225	-	mation is	startine to ta	Ke on More H20.0
DIS		725-230	Core	·		
1055	1115	230-235	Core			
1135	1150	235-240	Care 2	37' Change 1	~ Hzo prison	- loss of Circulat
			8	237'->no	return	1 P == 17
1:50	1315		Ran delan / Lun			
320	1415		Tripping out los	e Ruds-aun	cho Set 8" Ca	since to
, [.] .			Stabelize the	hole - will	ap back to c	princonce
-			8" is set		<u> </u>	۲. د
			Going to Spour			
			Isolate loss y Cir	culation zne	. Then he will	start drilling
			The 12" norminal hile		V F	
1330			Mixing Mud for o	halling getti	ng Core Rods o	it - shock
1420			Putting Pen gravel	dom hoke	-89 size 6	bags
1515	1545		removing temp Ca	SING		
1350			KDM off ste		· · · · · · · · · · · · · · · · · · ·	
			11	<u>.</u>	<u></u>	
			<u></u>			
,					. ·	· · ·
					-	
				<u></u>		
	trict			Contractor		

		SOL	JTHWEST FLORIDA WA	TER MANAGEMEN	T DISTRICT	W.L.
				IC DATA SECTION DRILLING LOG	l Anno 1995	
REF	ORT #	5	SITE GEOLOGIST	DATE	DATE ON-SITE	SID
	11		KMallams	7/27/2020	0/10/2020	
CONT	RACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Minde	x	Tony Hudson	n, Roy, Chance	270	-	240
	L SITE -NAME	Engle Lak	a Replacement	WELL NAME/ID	Eagle Lake Re U Flan,	pheemer An Minitar
TIM	E LOG	DEPTH		DETAILS OF OF		
FROM	то					
845			COM on sik -	- CS + Mend	en already on	sik
	<u> </u>		Minde Cleaning	1 1	2	
011	· [- Mendly got,	durn to St	' an Friday of	112"617
0945	1100	Son Hein	Mixing Mind - pr	· • · · · · · · · · · · · · · · · · · ·	# Kean hole tim	m 80 to 115
<u>0950</u>	1120	80-5100		sit 11374"		
1120	1350	100-117	Circulate	31.11.1.1	· · · · · ·	
1415	1050		Ream hole of 11	74 617 11 0: - +	hale and	1 71. 1
			Port-o-let guy Fi			
1350		·	Services has not a			
1500			Circulating mid to Thundurshirm dela	m- Traced	BMOST TOds ou	it d hole befor
			Storm hit	0 at	F	
1555			KDM leave site -	Still rains	×	
			CS + dullerss		1	tall 8" PVC
			Casing from 1	-15. to 117'6	15-last checked	wall cake
			was shill too the	cle		· · · · · · · · · · · · · · · · · · ·
			- Dampster i	vas full - Con	I not pump ald	Mudul
					und. Wait until	
			dumpster people	will trade out	dumpskes to ref	resh mud.
			- CS said bice			, Contractors
			were off site o	2 4:30 yesterda	7	
				/		
1						
			·			
						· · · · · · · · · · · · · · · · · · ·
					·	
Dis	strict			Contractor		

District Contractor Representative Representative SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG

		· · · · · · · · · · · · · · · · · · ·	DAILTCORE	DRILLING LOG		
REP	ORT #		SITE GEOLOGIST	DATE,	DATE ON-SITE	SID
	2	K	Mallams	4/28/2020	9/10/2020	
		1				
CONT	RACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mind	10	Tom Hudse	n, Roy & Chance	280	<u> </u>	240
1-10140	9	1011 10000	7 0	001		
4	L SITE -NAME	Eugle lo	ske Replacement	WELL NAME/ID	Eagle Lake &	uplacement An Manster
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	ELOG	DEPTH		DETAILS OF OI	PERATIONS	•
FROM	то	· ·				
83D			KDM mark	1. 		
			CS + Contract	ms an sile -	dumster trad	le out tout
			nccured.			
cie				· know the	ica this man	I M I
845			Mix new borton	of mina C	1 cucance Mi	a month
<u> </u>			hole			
900	1030		EDP Training - K	DM in trailer	•	
			Tripping Rods			·
1000	1045	LS-117'	Installing 8" PV.	1 - Solumptor	eldel -	
100			Dulo 15 anthon	chick Dal.	1	13-11
			FUC IS gentre	SINCK W CLA	<u>y layer (89'-11</u>	s of the
	.		Umtractor -	Just missus t	he fue to get 1	Funsmele
			Wing	140 16 ham	mento get prot	Clay larger
1100			Preparine to press	Sure cront	8" PVC Casing	in
			I IVC OUN	$\wedge n n u$		
1195			Mixinggrowt - 1st	batch		
		-	HAR R	and word the	20.5 Est	malation a
			202 - 1	Illall		The Days-JF
			300 gal tub			
			Pressure on gauge	- 15 20 psi-0	n PVC Cap	
1238			Mixing Growt - 200	batch		
			#1 bras	Wed - 14 bac	a/s 1/1/165	/Ft ~ 200gal
1310			Pumping grout (F	Pripara lara	+) - approx + Main	i no to surfi
			allow ~ 200 in			
			after ~ 300 100 Hos got Clugger -	7/1/1/	Loss 11 Durn A	
					14	AP TO UNCUS
<u> </u>			It. May have non	c grant in Ca	sing than exp	ected from more
			Pon Chase when	down - 18 -	llons	
1330			Obeaning no site	- Mondez Se	aid hes going	b cme back
· · · · ·	1		have in a Coupl	, has to rem		
1400		<u> </u>	KDM OF Sike		1,10.00	
			MUM UT SIR			
	ļ					
Di-	triot			Contractor		
	trict entative			Contractor Representative		
			···· ····	1	· · · ·	

W.L.

REPORT # SITE GEOLOGIST DATE DATE DATE DATE DATE SITE 13 K.Mallang 7/29/2020 1/0/2020 1/0/2020 1/0/2020 CONTRACTOR CREW PROPOSED T.D. PROGRESS DEPTH Mundez Tony Hudson, Malt Humm, Day 280 240 WELL SITE Engle Lake Replacement Well Engle Lake Replacement Well NUM.NAME Engle Lake Replacement Well Engle Lake Replacement UFIdan Ag Mando TIMELOG DEPTH DETAILS OF OPERATIONS 8.45 Non-100 TIMELOG DEPTH DETAILS OF OPERATIONS 7.30 Mendez onnues TAG-Annalus Lad Surface Tag-In 8" PVC - 117' Debottom of 8" Casing 1220 0150 117-120 Dulk 1200 1225 120 - 140 Drill 1245 150 HD-160 Drill 1245 1500 Mendez Name as 200 Ct ISUS 1200 Drill 120 1245 1300 to 1600 Stay on site - Mendez Name as 50 drill un hi drill un hi drill un hi drill 1545 COM off site ISU to 1600 KOM had Sypervising class - Set in a trailer			DAILY CORE	DRILLING LOG		·
CONTRACTOR CREW PROPOSED T.D. PROGRESS DEPTH Mendez Tory Hudson, Matt Herm, Day 280 - 240 WELL SITE NUMMARE Engle Lake Replacement Well Bask Lake Replacement NUMMARE Engle Lake Replacement Well Bask Lake Replacement U Filds Ag Manife TIME LOG DEPTH DETAILS OF OPERATIONS FROM TO BEAM OF THE STATES TAG Annulus - land surface Tag Annulus - land surface Tag - In 81 PVC - 117 Debottom of 8" Casting Mixing Mud to drill out Content to go down to either 21 1000 1235 120-140 Drill 1745 1500 HD-160 Drill 1545 CS - drilles Stary on Sile - Mendez monts to drill and I de or until by reades 2009t Korm 1330 to 1600 Kom had Supervising class - Set in treiler	REPORT #		SITE GEOLOGIST	DATE	DATE ON-SITE	SID
Mendez Tory Hudson, Matt Herm, Day 280 - 240 Mendez Tory Hudson, Matt Herm, Day 280 - 240 WELL SITE Eagle Lake Replacement Well Bask Lake Replacement U Fidn Ay Months TIME LOG DEPTH DETAILS OF OPERATIONS FROM TO BASS KOM ansile 730 Mendeg arrives Tag Annulus- k-d surface Tag-In 8" PVC - 117 Debttom of 8" Casing Mixing Mud to drill out Concent & go Anne betther 20 920 0150 117-120 Dull 1000 1235 120-140 Drill 1245 1500 Ho-160 Drill 1245 1500 Ho-160 Drill 1545 CS + drillers stay on sile - Mondez worts to drill until d or until by readers 2004 KTrom 1330 to 1600 KOM had Supervoung class - Set in trailer	13		C Mallans	7/29/2020	6/10/2020	
WELL SITE Engle Lake Replacement Well NUM-NAME Engle Lake Replacement Well NAMERO Engle Lake Replacement TIME LOG DEPTH DETAILS OF OPERATIONS FIGM Ang Manual Manual TIME LOG DEPTH DETAILS OF OPERATIONS FROM TO B-45 KDM on site 733 Mendeag annues Ing. Annalus- k-of specifica Tag-In 8 th PVC - 117 Dottom of 8 th Casing 920 0150 117-120 1000 1235 120-140 1235 120-140 Drill 1545 CS - drillers stay on sile - Mondez units to drill ankil de or antil by readers 20074 KFrom 1330 to 1600 KOM had Supervum class - Sort and trailer	CONTRACTO	R	CREW	PROPOSED T.D.	PROGRESS	DEPTH
WELL SITE NUM-NAME Eagle Lake Replacement WELL NAMERID Eagle Lake Replacement U Fldn An Manife U Fldn An Manife TIME LOG DEPTH DETAILS OF OPERATIONS FROM TO Non-Site Ing-Annulus- k-of surface 730 Mendleg onwes 731 Mendleg onwes 735 Mendleg ongenerations 736 Mendleg ongeneratis	Mendez.	Tony Hud	son, Matt Herron, Doy	280		240
FROM TO 8.45 KDM unsite 730 Mendlez arrives Tag-Annulus- In-d Swiften Tag-In 8" PVC - 117 D bottom g 8" Casing Mixing Mud to drill out Conuct 4 go down to either 20 920 0150 117-120 Duile 1000 1235 120-140 Drill 1245 150 40-160 Drill 1245 150 40-160 Drill 1545 CS + drillers stay on site - Mondez wants to drill and d or until by readers 2009t KErron 1330 to 1600 KDM had Supervising class - Set in trailer		EagleL		WELL	Eagle Lake Re U Fldn	placement Ag Mombr
8.45 KOM missile 730 Mendles arrives Tag-Annulus- knod surface Tag-In 8" PVC - 117 Debettern of 8" Casing Mixing Mud to drill out Centent + go down to either 20 920 0150 H17-120 Date 1000 1235 120-140 Drill 1245 1505 H0-160 Drill 1245 1505 H0-160 Drill 1545 COM off sile CS + driller stay on sile - Mondez hants to drill and d or until by reader 200 ft. Ktimm 1330 to 1600 KDM had Supervising class - Set in trailer	TIME LOG	DEPTH		DETAILS OF O	PERATIONS	
730 Mendez annues Tag-Annulus- k-d surface Tag-In 8" PVC - 117 Dottom of 8" Casing Mixing Mud to drill out Centert + go dam to either 20 920 0150 117-120 Dull 1000 1235 120-140 Drill 1245 1500 140-160 Drill 1545 Iboo-180 Dull 1545 Iboo-180 Dull 1545 Iboo-180 Dull IS- drillor stay on site - Mendez hunts to drill un hi de or until by reagen 2009t Ktimm 1330 to 1600 KDM had Supervising class - Set in trailer		0			-	
Ing Annulus - Ind Surface. Tag-In 8" PVC - 117" D bottom g 8" Casi-s Mixing Mud to drill out Coment + go dom to either 20 920 0150 1000 1235 1205 147-120 1205 120-140 1215 120-140 1515 1100-180 1515 1100-180 1515 1100-180 1515 1100-180 1515 1100-180 1515 1100-180 1515 1100-180 1516 1100-180 1517 1100-180 1518 1100-180 1519 1100-180 1510 1100-180 1511 1100-180 1515 1100-180 1516 1100-180 1517 1100-180 1518 1100-180 1519 1100-180 1519 1200-180 1519 1200-180 1519 1200-180 1520 1200-180 1530 12000 1530 12000 1530 12000 1530 12000 1530 12000 1530 12000 1530 12000						·
Tag-In 8" PVC - 117 Debettom g 8" Casing Mixing Mud to drill out Cement & go down to either 21 1000 1025 1000 1235 120 120 120 120 120 120 120 120 120 120 120 120 121 122 1235 1235 120 121 121 1225 1235 <	730		Mendez arrive	\$		
920 0150 117-120 Duilt 1000 1235 120-140 Drill 1245 1505 140-160 Drill 1545 ILOO-180 Drill 1545 ILOO-180 Drill 1545 Kom Had Supervision class - Set in KFrom 1330 to 1600 KOM had Supervision class - Set in trailer			1ag-Annulus-1	and surface		
920 0150 117-120 Duilt 1000 1235 120-140 Drill 1245 1505 140-160 Drill 1545 ILOO-180 Drill 1545 ILOO-180 Drill 1545 Kom Had Supervision class - Set in KFrom 1330 to 1600 KOM had Supervision class - Set in trailer			Tag-In 8" PVC -	- 117 @ bott	um of 8th Casing	
1000 1235 120-140 Drill 1745 1500 140-160 Drill 1515 160-180 Drill 1545 CS + drillers stay on sike - Mondez wants to drill un hi d- or until by reades 2005t KErrom 1330 to 1600 KOM had Supervising class - Sect. in trailer			Mixing Mud to	drill out Ceme	nt + go down to	ether 200
1745 1500 140-160 Drill 1015 160-180 Drill 1545 005 - drillers stay on sile - Mondez monts to drill un hi de or until by readers 20000 had Supervising class - Sect in trailer						
1545 160-180 Driel 1545 CS - drillers stay on sike - Mondez hants to drill un hi de or until he reades 20000 KFrom 1330 to 1600 KOM had Supervising class - Set in trailer 	<u></u>				· · · · · ·	
1545 EDM off site CS + droillers stay on site - Mondez wants to drill un hild or until by reacters zerft KFrom 1330 to 1600 KOM had Supervoury class - Sat in trailer		P 140-160				· · ·
CS + dirillers stay on sile - Mondez hunts to drill un hi de or until by reades 20 ft RFrom 1330 to 1600 KDM had Supervising class - Sut in trailer		160-180				
ar until by reaction 220 ft K From 1330 to 1600 KOM had Supervising class - Set in trailer	1545		DM off sile			
KFrom 1330 to 1600 KOM had Supervising class - Set in trailer			US+drillers sta	yon site - Mon	dez ments to d	rill until dan
			or until he reade	is 200 ft	· .	
						5
			Rtmm 1330 to 16	O KOM had	Supervising clas	5 - Sut in
Image: Section of the sectio			trailer			
Image: Section of the sectio	· · · · · · · · · · · · · · · · · · ·					
Image: Section of the sectio						
Image: Section of the sectio						
Image: Section of the sectio						
Image: Section of the sectio						
Image: Section of the sectio				·		· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·		
		· .			· ····	
			· · · ·			

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG

	<u> </u>		DAILY CORE D	RILLINGLUG	· · · · · · · · · · · · · · · · · · ·	
REP	ORT #	s	SITE GEOLOGIST	DATE	DATE ON-SITE	SID
11	1	KM	allams	n/30/2020	4/20/2020	
		<u> </u>		1 /0=/000	,,	
CONTR	RACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Minde				280	-	ZUD
1. (0) //20	24	Tony Huds		00-	· · · · · · · · · · · · · · · · · · ·	240
	L SITE -NAME	Engle Lad	k Replacement	WELL NAME/ID	Engle Lake Re U Fldn	placement Azy Mmiter
TIBEC		DEDTU				
	LOG	DEPTH		DETAILS OF O	PERATIONS	
FROM	TO					
900			KDM arrived			· · · · · · · · · · · · · · · · · · ·
			Drillers Stanted n	1830 - de	oth 2 180' -	worked unpil 64
830	1145	180-200	Drillers Stanted A Ream/drill			lastn
IID			Added quick Trol			
	1220				10 noner inte	- exculate 1 (D)
12:00	1230		Tripping out Rod.	<u>></u>		
1235	1250		Mouns Failing # Tripping in 4" T	Kis off hole	- moving Detnic	+ Ricon hole
1300	133D	0-205'	Tripping in 4" T	emp Casing -	- got down to 20	0'- 5' hammoned i
1330	1400		Break for Contractor	5-Hot out		
1400	1520					
1530	1920		KDM in Training Trip rodsin - Wal	27/2 12	0 0 1 1 1	
			Improdsin - Wal	NY STO TRI	- ane wale bit	
1550			Ream existing core	hole from 20	00-240	
1555			KOM off sik		· · ·	
			CS + Contractors 1	emain onsite		
		<u></u>				
			*	-		
	1					
						· · · · ·
				······ ·		· · · · · · · · · · · · · · · · · · ·
-					· · · · ·	
•						
	trict			Contractor		
Popros	entative			Representative		

East Homosasse - Appendix H3H2+H3need Attention

			GEOHYDROLO	OGIC DATA SECTION		
	-		DAILY COR	RE DRILLING LOG		
REF	ORT #		SITE GEOLOGIST	DATE	DATE ON-SITE	SID
1	5	KM	allans	7/31/2020	/10/2020	
CONT	RACTOR					
Men		Matt Herror		PROPOSED T.D.	PROGRESS	DEPTH
7 (04)	XC Z.		, Roy, Chance	20+		
	L SITE		· · · ·	WELL		
NUN	-NAME			NAME/ID		
TIM	ELOG	DEPTH		DETAILS OF OP	ERATIONS	
FROM	то					
0900	1		KDM on sile -	left house 2 8.		1. e e e
				m 200-240 i		l
1920			Lost Circulation			
0925	0945	240-245				· ·
1000	1040		Dun Sler Fills h.	me to suck out,	dumpster have	
045	1052	245-250	Corina - comment	is that material	13 Soft or Word-	Cant fell , F , ts
			avoid because	H3 a hydraulic Re	- still no circh	lation
1115	1122	250-255	Coring			
150		255.259	Coring - didnt &	t kat 1' section		
	1209	259-265	Coring			
234	1243	265-270		recover Core - try	to recover it - 1	irculation
	ļ		back	,		
	1306	270-275	Coring - hopingh	o recover last 10	1(265-270) in	this core run
				a 10' banel that		
1320	1330	275-280	Coring = 280 450	tosic to, Swnn - Oca	10. bounding-pos	sibly sawa leas
340	1418		Tripping Rods on	<i>F</i>	····	
450			KDM off sik		•	
		· · · ·	Contractors Clean	inghip - CS rem	ains on sih	
			· · · · · · · · · · · · · · · · · · ·			
	· ·		·	· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·			
						i
<u></u>		· · · · · · · · · · · · · · · · · · ·				
			· · · · · ·			
					· · · · · · · · · · · · · · · · · · ·	
	<u> </u>					

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION DAILY CORE DRILLING LOG

DED	ODT #		And the second strength of the	DATE	DATE ON-SITE	SID
	ORT #	1/ M	SITE GEOLOGIST	8/4/2020	6/10/2020	510
14	P	I ICM	allams	0/4/2020	110/ 2000	
CONT	RACTOR	1.00	CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mend	in	Tonn Huo	Isun,			
	L SITE			+ WELL	Feal I. M.	Restarement
	-NAME	Ease L	ak Rep Ecenni	NAME/ID	Engle Lake	Ag
TIM	ELOG	DEPTH		DETAILS OF O	PERATIONS	1
FROM	то				1	
8:45			KDM on site	2		
1			Vesterday	- reamed hole to	o 81' down from	n 200 +270
			0	- tripped out	temp 4" Casing	-
830			Deshn Arrive	d to graphysical	loc hole - 1us	Frannin Celepe
		C		, has flushing h		
0900	0915	1	Tripping Ridso	st =	a comment	
NG20	0.112		Tripping in 1	aliner lacoma -	usin 4x" lim	e Arms
-100			Bottom	"aliper/gamma - 273' 8"	5 10 10	3 11 12
0636	0945			18 8" Casin		
1.5)	0170		Alinhan	Messured Diece 8	Ell Piece that we	s let de 4
	-	-		lasured no more ti		PH+
			20' 4" PVC		nam ste	
1040			Tripping in &			
11.15		1.2	-11			
1135	-	-	Topping in Tre	mmit	01 117 01	,
220		-	Kouring pungi	ivel in = Need 2 = CS remains	- Pr of Top Pack	ler .
200			NDM 71 Site	- CS remains	on site	
		-				
-				. 6	11054	
			- Cal	1pw/gamma 9	100-	
-				L.S- 27	2.4	
_				0.4		
-	-	1				
		/ 1				
		1				
	strict sentative			Representative		
Repies	Schlauve			Representative		

		SOL		NATER MANAGEMEN OGIC DATA SECTION		WL 10an 29.95
· .			DAILY CO	RE DRILLING LOG	n a far an ann an Anna an Anna an Anna Anna an Anna an Anna Anna	
REP	ORT #	S	ITE GEOLOGIST	DATE	DATE ON-SITE	SID
. 1	7	KM	allans	8/6/2020	· · ·	
	· ·	-				
	ACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mun	dez	44°.			· · · · · · · · · · · · · · · · · · ·	
	SITE			WELL NAME/ID	· · · · · · · · · · · · · · · · · · ·	
TIME	LOG	DEPTH		DETAILS OF OF	PERATIONS	
FROM	то			DETRIED OF OF		
0945			KDM arrived	2 site - Shope	I atom de	ica to Celabrato
<u>~.1.7_/</u>			Trimble		an arigh off	ce ju concord
#30	· .			d - CS alread	le an site - c	witched Riss
			ald of hole -			bry 4" - Charge
				ict to Core nect	1 hole	
1000		270	Flushing hole			+ shick in
				to wagle them,		
1020				locking in Core 1		
1028				saily of SA well		
				WL- 29.95'		······································
		· · · · · · · · · · · · · · · · · · ·		UL - 43.87'(11:18);	93.87 (11:25)	
				apacity - 1min 285		lons 1533 Homes/146 min= 3.
	· .			43.87-27.55') = 0.24		<u> </u>
1040	125"14	273-275		Corehok out y l		· · · · · · · · · · · · · · · · · · ·
657	1100	275-280	N N	h et m	u n	
1105	HILE	280-285'	Coring			
1145	1157	285-290	Coring			
1215	1230	290-295	Coving			
12.53	1324	295-300	Coring 7			
1328	1343	300-305	Corry Jin one ro	an-olid not send cate	other to retrieve come	barrel
1405		305-310	Corins			
		310-315	Corre 3 Inionen	in		
1435	1450	315-320	Come - TD of	IUPA well		
	1500) /	- Incase of Fall in		
5 30	1830		Airlift UFAN		tbls	
年1600			KOM off size	120		
1830	1900		Triped out HQ			

District Contractor Representative Representative

				GIC DATA SECTION DRILLING LOG	N h	JL SA- DL UFA- 2
REP	ORT #	Ş	SITE GEOLOGIST	DATE	DATE ON-SITE	SID
	18	KMall	ams.	8/7/2020	6/10/2020	
	ACTOR		CREW	PROPOSED T.D.	PROGRESS	DEPTH
Mord	63	Tony Hud.	San			<u></u>
	SITE	Easte La	Ke Replacement	WELL NAME/ID	Easte Lake Re UFA	placement
TIME	LOG	DEPTH		DETAILS OF O	PERATIONS	
FROM	TO					
0850			KOM Arrived			
			Mendez clean.	~ up site.	Plan hoday 1	s to de
			will, Spicific	Capacity te	st, COPS both	wells;
	a da			UFA well.	· · · · · · · · · · · · · · · · · · ·	
0915			Cutting 12" Casing			
0925			1 J	sidonni b. be		<u></u>
0915	0930		Sec. S. 1	not Rig onto 5		100000
0958		 	Develop will -		p = 3.05' , let rest 15 min	10gen pi
0138			Hercer Will -	-) -)	in Pump 60 M	· · · · ·
0958	107.9		1St 30 min Purp 60	NGS' WL BTOC	(10:29)	
1029	1045		15 min Rest 5			
1045	1115		Zna 30 min Punp	60.5'WL 6	roc (11:15)	
	~ • • •		Collecting GPS do			,
1115	1130		15 min Rost 51	,		-
1130	1230		60 mm pump	40.6 W BT	<u>oe (1230)</u>	
1230			30 man Rest	· cauch		
1310 1310	1423		Initial Water Love	<u>(- 58.97 b</u>	02	
1210	1765		Turn pump on /of min A	Plex phyping	DD	
	•		1	in hereday	1.0.4.ft	χ.
			3	· · · · · · · · · · · · · · · · · · ·	60.46 ft	
	1.		6		60.47 Ft /	
-	4		10		60.5 fr 7A	verage 60.
			3D		0,56 ft.	
			60	· · · · ·	60.55 Ft	
			Pumping rave -	MADS - (12-UV)	, 40 sec (1404),	39.5 Se->
			reevery w.L.= 58		+ 70 xc (1704),	Sho se)
			Spreific Capacity- 7	1.5358 / 160,49-5	8,49) - 3,76 gr	m/Ft
	trict		*	Contractor		/
Repres	entative.		KOM of site - CS	Representative	e: Mendez is cms	

REPORT #			SITE GEOLOGIST	DATE	DATE ON-SITE	SID			
10		K Mallans 8			K Mallams 8/10/20			6/10/2020	
CONTRACTOR			CREW	PROPOSED T.D.	PROGRESS	DEPTH			
Minde	3	2							
WELL SITE NUM-NAME		Eugle La	Le Replacement	WELL NAME/ID	Erste Lulle Rey U Fildn Ag	Monther well			
TIME	LOG	DEPTH		DETAILS OF O	PERATIONS				
FROM	то								
2430 1145 1230	1035 1205 1425		UFA - 58.2 SA - 29.71 Sending Comerca Multi-tool - a Calipur/gamm TI Induction log Simic log - opin KDM has me Tagsing bottom 324,3 KDM leave S	Ft btoc down UPA wel whilecked data goin >-324 Shug fr hok & Cenant bu chang from Ien-3 - of well - 21 thick - muck	e ng dum + Comin om botton to ~ 3 me Sonic date om - Teans Me	325-3 15' (205 2 Cullechin chig			
				Induction 951 Multi 814	1C LS-324.1 1C LS-318.4 4C LS-319.4 20C LS-316.4 -280.3				

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT GEOHYDROLOGIC DATA SECTION

Appendix B. Lithologic Logs for the Samples Collected at the Eagle Lake Well Site in Polk County, Florida

Well Number: W-19799 (Eagle Lake SA)

Total Depth: 90 Elevation: 160.7 feet. County: Polk

Locat	ion: Sec	: T,R D	Drill Completion Date: 08/27/2020 Other Logs:
USGS	S Quad:	BARTO	W Lat/Long: 27° 58' 28.94" N; 81° 45' 47.51" W
Owne	er/Drille	r: SWFW	/MD
ing	transpo	ort and div	AM C. GLADWIN Verified By PG: KROMHOUT_C Comments: Box #1 (0'-15.2') was shifted dur- viders separating core collapsed. All core was mixed with 9'-15.2' interval falling into other intervals d to reconstruct as best as possible but use caution.
Verifi	cation:	Is Verifie	d
Geolo	ogical F	ormation	Picks
0	-	3	No Samples
3	-	90	CYPR Cypresshead Formation
0	-	3	No Sample; Comments: No sample. 0-3 labelled "Drill"
3	-	5	Sand; Color: Moderate Yellowish Brown (10YR 5/4) to Grayish Orange (10YR 7/4); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Clay - 3%, Organics - <1%; General Fossils: No Fossils
5	-	7	Sand; Color: Grayish Orange Pink (10R 8/2) to Moderate Reddish Orange (10R 6/6); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Clay - 3%, Organics - <1%; General Fossils: No Fossils
7	-	9	Sand; Color: Grayish Orange Pink (10R 8/2) to Moderate Orange Pink (10R 7/4); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Acces- sory Minerals: Clay - 3%, Organics - <1%; General Fossils: No Fossils; Comments: Thin bed of organics near top of interval (2cm thick). Outside of rind is 10YR 6/2, contrast in color to rest of unit.
9	-	11	Sand; Color: Grayish Orange Pink (10R 8/2) to Moderate Reddish Orange (10R 6/6); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Ac- cessory Minerals: Clay - 3%, Organics - <1%; General Fossils: No Fossils; Comments: 10 R 8/2 (grayish orange pink) tapers out and disappears to a 10YR 7/4 (grayish orange) around 9.7'.
11	-	13	Sand; Color: Very Light Orange (10YR 8/2); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils; Comments: Interval all uniform color.
13	-	15	Sand; Color: Grayish Orange (10YR 7/4) to Very Light Orange (10YR 8/2); Grain Size: Fine; Range: Fine to Medium; Roundness: Subangular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils; Comments: Most all interval was made indistinguishable when box was upended. Only 6 inches of sample remains to describe, rest is present but cannot be determined because of mixing with other samples. (See main well comments)
15	-	15.2	Sand; Color: Grayish Orange (10YR 7/4) to Very Light Orange (10YR 8/2); Grain Size: Fine; Range: Fine to Medium; Roundness: Subangular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
15.2	-	17	Sand; Color: Very Light Orange (10YR 8/2); Grain Size: Medium; Range: Fine to Medium; Round- ness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
17	-	19	Sand; Color: Very Light Orange (10YR 8/2) to Grayish Orange (10YR 7/4); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
19	-	21	Sand; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils

21	-	23	Sand; Color: Light Yellowish Orange (10YR 8/6) to Very Light Orange (10YR 8/2); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils; Comments: Grayish orange (10 YR 7/4) starts appearing more prominently towards base of interval
23	-	25	 Sand; Color: Dark Yellowish Orange (10YR 6/6) to Very Light Orange (10YR 8/2); Grain Size: Coarse; Range: Medium to Coarse; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils; Comments: Start color change at 24.6', dark yellowish orange (10 YR 6/6) hits definable boundary with very pale orange (10 YR 8/2). Lithology remains the same.
25	-	27	Sand; Color: Very Light Orange (10YR 8/2) to White (N9); Grain Size: Fine; Range: Fine to Me- dium; Roundness: Sub-angular to Subrounded; Sphericity: Medium; Accessory Minerals: Organ- ics - <1%; General Fossils: No Fossils
27	-	29	Sand; Color: White (N9); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
29	-	31	Sand; Color: White (N9) to Light Brown (5YR 5/6); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Subrounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
31	-	33	Sand; Color: White (N9); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
33	-	33.3	Sand; Color: Very Light Orange (10YR 8/2) to White (N9); Grain Size: Fine; Range: Fine to Me- dium; Roundness: Sub-angular to Subrounded; Sphericity: Medium; Accessory Minerals: Organ- ics - <1%; General Fossils: No Fossils
33.3	-	35	Sand; Color: White (N9) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
35	-	37	Sand; Color: White (N9) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
37	-	39	Sand; Color: White (N9) to Very Light Orange (10YR 8/2); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
39	-	41	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - <1%; General Fossils: No Fossils; Comments: Heavy minerals present react to a magnet.
41	-	43	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - <1%; General Fossils: No Fossils; Comments: Heavy minerals react to a magnet
43	-	45	Sand; Color: White (N9) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - <1%; General Fossils: No Fossils; Comments: Heavy minerals react to a magnet
45	-	47	Sand; Color: White (N9) to Grayish Orange (10YR 7/4); Grain Size: Medium; Range: Fine to Me- dium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - <1%; General Fossils: No Fossils; Comments: Heavy minerals react to a magnet
47	-	47.3	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils; Comments: Heavy minerals react to a magnet
47.3	-	49	Sand; Color: White (N9) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils; Comments: Heavy minerals react to a magnet

49	-	51	Sand; Color: White (N9) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils
51	-	53	Sand; Color: White (N9) to Light Brown (5YR 6/4); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Subrounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils
53	-	55	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils
55	-	57	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils
57	-	59	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Heavy Minerals - <1%, Organics - 2%; General Fossils: No Fossils
59	-	60.3	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 2%; General Fossils: No Fossils
60.3	-	61	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils
61	-	63	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils
63	-	65	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils
65	-	67	Sand; Color: Very Light Orange (10YR 8/2) to Light Yellowish Orange (10YR 8/6); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils
67	-	69	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils; Comments: Only ~1.0# of sample present in interval.
69	-	71	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - 3%; General Fossils: No Fossils
71	-	73	No Sample; Comments: No sample. Labelled "Drill"
73	-	75	Sand; Color: White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Organics - <1%; General Fossils: No Fossils
75	-	78	No Sample; Comments: No sample. Labelled "Drill"
78	-	80	Sand; Color: Light Yellowish Orange (10YR 8/6) to White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Miner- als: Clay - <1%, Organics - <1%; General Fossils: No Fossils; Comments: Clay clusters range in thickness from 0.5cm - 3.0cm.
80	-	83	No Sample; Comments: No sample
83	-	84	 Sand; Color: Grayish Orange (10YR 7/4) to White (N9); Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Clay - <1%, Organics - <1%; General Fossils: No Fossils
84	-	85	Sand; Color: White (N9) to Light Yellowish Orange (10YR 8/6); Grain Size: Fine; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Clay - <1%, Mica - <1%, Organics - 2%; General Fossils: No Fossils
85	-	88	No Sample; Comments: No sample. Labelled "Drill"
88	-	90	Sand; Color: Grayish Orange (10YR 7/4) to Very Light Orange (10YR 8/2); Grain Size: Medium; Range: Fine to Medium; Roundness:

Florida Department of Environmental Protection

Well Number: W-19798 (Eagle Lake UFA)

Total Depth: 322 Elevation: 159.81 feet. County: Polk

Location: Sec 12 T.29S., R.25E. Drill Completion Date: 08/27/2020 Other Logs:

USGS Quad: BARTOW Lat/Long: 27° 58' 28.55" N; 81° 45' 47.61" W

Owner/Driller: SWFWMD

Described By: WILLIAM C. GLADWIN Verified By PG: KROMHOUT_C Comments: No sample from 0'-83'.

Begins in Cypresshead sands similar to the sister well Eagle Lake SA - 19799. Suwannee Limestone/Ocala Limestone contact is based on the occurrence of Ocala index fossils.

Verification: Is Verified

Geological Formation Picks 0 - 83 No Sample CYPR Cypresshead Formation 83 _ 90 90 205 ARCA Arcadia Formation -205 265 SWNN Suwannee Limestone _ 265 OCAL Ocala Limestone 0 83 No Sample 83 85 Sand; Color: Dark Yellowish Orange (10YR 6/6) to Gravish Yellow (5Y 8/4); Porosity: Intergranular; Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Clay - <1%, Mica - <1% 85 88 No Sample 88 90 Sand; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 7/2); Porosity: Intergranular; Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Accessory Minerals: Clay - <1%, Mica - <1% 90 92 Clay; Color: Yellowish Gray (5Y 7/2) to Very Light Orange (10YR 8/2); Porosity: Intergranular; Grain Size: Very Fine; Range: Very Fine to Fine; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Poor Induration; Accessory Minerals: Mica - <1%, Phosphatic Sand - <1%, Silt-Size Dolomite - <1%; Other Features: Calcareous 92 98 No Sample 98 98.1 Mudstone; Color: White (N9) to Very Light Gray (N8); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Poor Induration; Accessory Minerals: Clay - <1%, Phosphatic Sand - <1%, Quartz Sand - <1%; Other Features: Calcareous 98.1 103 No Sample 103 - 105 Clay; Color: Very Light Gray (N8) to Light Gray (N7); Porosity: Intergranular; Grain Size: Very Fine; Range: Very Fine to Fine; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Poor Induration; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 10%, Quartz Sand - 8%, Silt-Size Dolomite - <1%; Other Features: Calcareous 105 - 108 No Sample 108 110 Clay; Color: White (N9) to Very Light Gray (N8); Porosity: Intergranular; Grain Size: Very Fine; Range: Very Fine to _ Fine; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Poor Induration; Accessory Minerals: Organics - <1%, Phosphatic Sand - 15%, Quartz Sand - 3%, Silt-Size Dolomite - <1%; Other Features: Calcareous 110 113 No Sample -113 - 115 Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Poor Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 8%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Mollusks 115 - 118 No Sample 118 - 120 Mudstone; Color: Yellowish Gray (5Y 8/1) to White (N9); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel -<1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Calcareous 120 - 123 No Sample

123	-	123.1	Mudstone; Color: Yellowish Gray (5Y 8/1) to White (N9); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Calcareous
123.1	-	127	No Sample
127	-	128.2	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Moldic, Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 10%, Quartz Sand - 3%; Other Features: Calcare- ous; General Fossils: No Fossils
128.2	-	129.7	Mudstone; Color: Yellowish Gray (5Y 8/1) to Light Bluish Gray (5B 7/1); Porosity: Intergranular; Grain Type: Cal- cilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Organics - <1%, Phosphatic Gravel - 5%, Phosphatic Sand - 15%, Quartz Sand - <1%; Other Features: Calcareous
129.7	-	131.7	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Pinpoint, Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - 5%, Phosphatic Sand - 15%, Quartz Sand - 8%; Other Features: Calcare- ous; General Fossils: Mollusks, Sharks Teeth
131.7	-	133.7	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 10%, Quartz Sand - <1%; Other Features: Calcareous
133.7	-	135	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 10%, Quartz Sand - <1%; Other Features: Calcareous
135	-	136.8	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Acces- sory Minerals: Phosphatic Gravel - 3%, Phosphatic Sand - 7%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
136.8	-	140	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 7%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Mollusks, Fossil Molds, Fossil Fragments
140	-	142	Mudstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Moldic, Vugular, Intergranu- lar; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Clay - <1%, Phosphatic Gravel - 5%, Phosphatic Sand - 15%, Quartz Sand - <1%; Other Features: Calcareous; Comments: Larger chert nodules present. (2.0cm-6.0cm in length)
142	-	144	Mudstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Calcareous
144	-	145.8	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 8%, Quartz Sand - <1%; Other Features: Calcareous
145.8	-	146.8	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%, Phosphatic Gravel - 2%, Phosphatic Sand - 6%, Quartz Sand - <1%; Other Features: Calcareous
146.8	-	150	Mudstone; Color: White (N9); Porosity: Pinpoint, Vugular, Intergranular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Phosphatic Sand - <1%; Other Features: Calcareous
150	-	155	 Wackestone; Color: Very Light Gray (N8) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Molds, Fossil Fragments, Mollusks, Benthic Foraminifera, Gastropods; Index Fossils: Sorites sp.; Comments: Only 3.0 ft of sample recovered

155	-	155.7	 Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 2%, Phosphatic Gravel - <1%, Phosphatic Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Molds, Fossil Fragments, Mollusks, Benthic Foraminifera, Gastropods
155.7	-	156.6	Mudstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Sand - <1%, Quartz Sand - <1%; Other Features: Calcareous
156.6	-	158.6	Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugu- lar; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%, Phosphatic Gravel - <1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera, Gastropods; Index Fossils: Sorites sp.
158.6	-	160.4	 Packstone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%, Phosphatic Gravel - <1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera, Gastropods, Bryozoa; Index Fossils: Sorites sp.
160.4	-	162.4	Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vu- gular; Grain Type: Calcilutite; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilu- tite Matrix; Accessory Minerals: Calcite -5%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Gastropods
162.4	-	165	 Wackestone; Color: Very Light Orange (10YR 8/2) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Gastropods
165	-	167.8	 Wackestone; Color: Very Light Orange (10YR 8/2) to Light Bluish Gray (5B 7/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Mottled; Accessory Minerals: Calcite - <1%, Phosphatic Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera, Coral, Bryozoa
167.8	-	170	 Wackestone; Color: White (N9) to Light Bluish Gray (5B 7/1); Porosity: Intergranular, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Mottled; Accessory Minerals: Calcite - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera, Coral; Index Fossils: Sorites sp.
170	-	174	Wackestone; Color: White (N9) to Light Bluish Gray (5B 7/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 2%, Phosphatic Gravel - <1%, Phosphatic Sand - <1%, Quartz Sand - <1%; Other Features: Fossiliferous, Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foramin- ifera, Gastropods; Comments: Moldic porosity greatly increased compared to previous interval.
174	-	176	Mudstone; Color: Yellowish Gray (5Y 8/1) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Phosphatic Gravel - 2%, Phosphatic Sand - 8%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
176	-	177.6	Mudstone; Color: Yellowish Gray (5Y 8/1) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Phosphatic Gravel - 4%, Phosphatic Sand - 8%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
177.6	-	179	Mudstone; Color: Yellowish Gray (5Y 8/1) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - 3%, Phosphatic Sand - 14%, Quartz Sand - <1%; Other Features: Calcareous

179	-	181	Mudstone; Color: Yellowish Gray (5Y 8/1) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 10%, Quartz Sand - <1%; Other Features: Calcareous
181	-	182.4	Mudstone; Color: Yellowish Gray (5Y 8/1) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - 1%, Phosphatic Sand - 10%, Quartz Sand - <1%; Other Features: Calcareous
182.4	-	183.2	Clay; Color: Light Olive (10Y 6/2); Porosity: Intergranular; Grain Size: Microcrystalline; Range: Microcrystalline to Very Fine; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Good Induration; Cement Type: Clay Matrix; Accessory Minerals: Calcilutite - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - <1%; General Fossils: No Fossils
183.2	-	184.2	Mudstone; Color: Light Olive (10Y 6/2); Porosity: Intergranular, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine; Good Induration; Cement Type: Calcilutite Matrix; Sedimentary Structures: Mot-tled; Accessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Calcareous
184.2	-	185	Sand; Color: Yellowish Gray (5Y 8/1) to Light Olive Gray (5Y 6/1); Porosity: Intergranular; Grain Size: Medium; Range: Fine to Medium; Roundness: Sub-angular to Sub-rounded; Sphericity: Medium; Moderate Induration; Ce- ment Type: Calcilutite Matrix; Sedimentary Structures: Mottled; Accessory Minerals: Calcilutite - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%; Other Features: Calcareous; General Fossils: No Fossils
185	-	187.4	Mudstone; Color: Light Gray (N7) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint; Grain Type: Calcilu- tite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Phosphatic Gravel - 2%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Calcareous
187.4	-	190	Mudstone; Color: Light Gray (N7) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 2%, Phosphatic Gravel - 3%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Sharks Teeth; Comments: Interval same as previous but with increase in intermittent beds of sand.
190	-	191.2	 Wackestone; Color: Light Gray (N7) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite; Grain Size: Microcrystalline; Range: Microcrystalline; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds
191.2	-	193.2	Packstone; Color: White (N9) to Light Bluish Gray (5B 7/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 6%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%, Quartz Sand - 8%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Mollusks, Gastropods
193.2	-	195	 Wackestone; Color: Light Gray (N7) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Clay - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - 5%, Quartz Sand - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Mollusks, Gastropods; Comments: Clay layers very phosphatic.
195	-	196	 Wackestone; Color: Light Gray (N7) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - 2%, Quartz Sand - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Mollusks, Gastropods
196	-	196.8	Packstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Bio- genic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Clay - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Mollusks
196.8	-	198.8	 Packstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Very Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Clay - <1%, Phosphatic Gravel - <1%, Phosphatic Sand - 3%, Quartz Sand - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Mollusks

198.8	-	200	Mudstone; Color: White (N9) to Light Greenish Gray (5GY 8/1); Porosity: Intergranular, Vugular; Grain Type: Calci- lutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Acces- sory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - <1%, Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
200	-	205	Mudstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Vugular; Grain Type: Calci- lutite; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Ac- cessory Minerals: Phosphatic Gravel - <1%, Phosphatic Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera
205	-	206.7	Wackestone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks
206.7	-	208.7	 Wackestone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera, Gastropods
208.7	-	210	No Sample
210	-	215	Wackestone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Medium; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Quartz Sand - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Mollusks, Benthic Foraminifera; Comments: Only 1.5 ft of sample recovered
215	-	217.5	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Medium; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%; Other Features: Calcareous; General Fossils: Fossil Frag- ments, Fossil Molds
217.5	-	220	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Medium; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
220	-	222.8	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Medium; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
222.8	-	225	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Medium; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Frag- ments, Fossil Molds
225	-	230	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 2%; Other Features: Calcareous; General Fossils: Fossil Frag- ments, Fossil Molds, Mollusks, Gastropods, Benthic Foraminifera; Comments: Fossil content increased compared to recent former intervals
230	-	232	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Frag- ments, Fossil Molds, Mollusks, Gastropods, Benthic Foraminifera
232	-	234	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Frag- ments, Fossil Molds, Mollusks, Gastropods, Benthic Foraminifera
234	-	236.1	 Packstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%, Clay - <1%; Other Features: Calcareous; General Fossils: Bryozoa, Fossil Fragments, Fossil Molds, Mollusks, Gastropods, Benthic Foraminifera; Comments: Many Bryozoa present. Occur in grey layers throughout.

236.1	-	238	Packstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 2%, Clay - <1%; Other Features: Calcareous; General Fossils: Bryozoa, Fossil Fragments, Fossil Molds, Gastropods, Benthic Foraminifera
238	-	240	 Packstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 2%, Clay - <1%; Other Features: Calcareous; General Fossils: Bryozoa, Fossil Fragments, Fossil Molds, Gastropods, Benthic Foraminifera
240	-	245.4	Packstone; Color: White (N9) to Yellowish Gray (5Y 8/1); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Cal- cilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Bryozoa, Fossil Fragments, Fossil Molds, Gastropods, Benthic Foraminifera; Comments: Only 3.0 inches of sample recovered
245.4	-	250	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint; Grain Type: Calci- lutite, Biogenic, Pellet; Grain Size: Coarse; Range: Medium to Coarse; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 4%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Bryozoa, Gastropods, Miliolids; Comments: Only 6.0 inches of sample recovered
250	-	252	 Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint; Grain Type: Calcilutite, Biogenic, Pellet; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 3%; Other Features: Calcareous; General Fossils: Fossil Frag- ments, Fossil Molds, Bryozoa, Gastropods, Benthic Foraminifera, Miliolids
250	-	252	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint; Grain Type: Calci- lutite, Biogenic, Pellet; Grain Size: Coarse; Range: Medium to Coarse; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Bryozoa, Gastropods, Miliolids
252	-	255	Wackestone; Color: White (N9); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Coarse; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Miliolids
255	-	257.6	Packstone; Color: White (N9); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Min- erals: Calcite - 3%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
257.6	-	259.6	Packstone; Color: White (N9); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pel- let; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 3%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera
259.6	-	260	Grainstone; Color: Very Light Gray (N8) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Very Fine; Range: Very Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera
260	-	265	Grainstone; Color: Very Light Gray (N8) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Very Fine; Range: Very Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera; Comments: Only 1.0 ft of sample recov- ered.
265	-	265.7	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Very Fine; Range: Very Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera
265.7	-	275	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Very Fine; Range: Very Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera; Comments: Only 5.0 inches of sample recovered.
275	-	276.2	Packstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Very Fine; Range: Very Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera

276.2	-	280	Packstone; Color: White (N9); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Medium; Range: Medium to Coarse; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds; Comments: Only 1.5 ft of sample recovered
280	-	283.4	Wackestone; Color: White (N9); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Min- erals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
283.4	-	285	Wackestone; Color: White (N9); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Min- erals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
285	-	287	Wackestone; Color: White (N9); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Min- erals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
287	-	290	Mudstone; Color: White (N9); Porosity: Intergranular, Vugular; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Moderate Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera
290	-	292.9	Mudstone; Color: White (N9); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Bryozoa
292.9	-	295	Mudstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Bryozoa, Coral; Comments: Becomes increasingly more fossiliferous towards last 8.0 inches of interval.
295	-	296.3	Mudstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint, Vugular; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Bryozoa, Coral; Index Fossils: Lepidocyclina ocalana; Comments: Ocala limestone index fossils are present throughout.
296.3	-	298.3	 Wackestone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Bryozoa, Miliolids; Index Fossils: Lepidocyclina ocalana; Comments: Ocala limestone index fossils are present throughout.
298.3	-	300.3	 Wackestone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Moldic, Vugular; Grain Type: Biogenic, Calcilutite, Pellet; Grain Size: Fine; Range: Fine to Medium; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - 5%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera, Bryozoa, Miliolids; Index Fossils: Lepidocyclina ocalana; Comments: Ocala limestone index fossils are present throughout.
300.3	-	301.7	 Mudstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Vugular; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous, Fossiliferous; General Fossils: Fossil Frag- ments, Fossil Molds, Coral, Benthic Foraminifera
301.7	-	303.7	Mudstone; Color: White (N9) to Very Light Orange (10YR 8/2); Porosity: Intergranular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds; Index Fossils: Lepidocyclina ocalana; Comments: Notable disappearance of large fossils, only fragments and molds. Ocala limestone index fossils are present throughout.
303.7	-	305	Mudstone; Color: Very Light Orange (10YR 8/2) to White (N9); Porosity: Intergranular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Bryozoa, Benthic Foraminifera, Coral

305	-	307	Mudstone; Color: Very Light Orange (10YR 8/2) to White (N9); Porosity: Intergranular, Vugular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Cal- cilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Bryozoa, Benthic Foraminifera, Coral
307	-	309	Mudstone; Color: Very Light Orange (10YR 8/2) to White (N9); Porosity: Intergranular, Vugular, Moldic; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Bryozoa, Benthic Foraminifera, Coral; Index Fossils: Nummulites ocalanus; Comments: Ocala limestone index fossils are present throughout.
309	-	311.1	Mudstone; Color: Very Light Orange (10YR 8/2) to White (N9); Porosity: Intergranular, Vugular, Moldic; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Bryozoa, Benthic Foraminifera, Coral; Index Fossils: Lepidocyclina ocalana; Comments: Ocala limestone index fossils are present throughout.
311.1	-	315	Mudstone; Color: White (N9); Porosity: Intergranular, Vugular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera; Index Fossils: Lepidocyclina ocalana; Comments: Only 2.3 feet of sample recovered. Ocala limestone index fossils are present throughout.
315	-	316.3	Mudstone; Color: White (N9); Porosity: Intergranular, Vugular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera
316.3	-	318.3	Mudstone; Color: White (N9); Porosity: Intergranular, Vugular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds, Benthic Foraminifera
318.3	-	320.2	Mudstone; Color: White (N9); Porosity: Intergranular, Vugular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds
320.2	-	322	Mudstone; Color: White (N9); Porosity: Intergranular, Vugular, Pinpoint; Grain Type: Biogenic, Calcilutite; Grain Size: Very Fine; Range: Very Fine to Fine; Good Induration; Cement Type: Calcilutite Matrix; Accessory Minerals: Calcite - <1%; Other Features: Calcareous; General Fossils: Fossil Fragments, Fossil Molds

Appendix C. Digital Photographs of Samples Retrieved from the Eagle Lake Well Site in Polk County, Florida

Appendix D. Correlation Charts

SWFWMD PRESENT	surficial aquifer	confining unit
BOGGESS 1986; ARTHUR AND OTHERS 2008	surficial aquifer system	confining unit
MILLER 1980	surficial aquifer	confining unit
WOLANSKY 1978	unconfined aquifer	confining unit
LEVE 1966	shallow aquifer system	confining unit
CLARKE 1964	water-table aquifer	confining unit
LICHTLER 1960	Shallow aquifer	confining unit
WYRICK 1960	nonartesian aquifer	confining unit

[SWFWMD, Southwest Florida Water Management District]

m

SWFWMD PRESENT	confining unit	Peace River aquifer	confining unit	upper Arcadia aquifer	confining unit	lower Arcadia aquifer	confining unit
ARTHUR AND OTHERS 2008	confining unit		u	ר aquifer syste aquifers were not delineated		wsH	confining unit
A		: / \	nn n n	ate aquifer sys iate confining	sibər bəm	ntern Inter	
KNOCHENMUS 2006	confining unit	Zone 1	confining unit	Zone 2	confining unit	Zone 3	confining unit
Ŷ		u	ıəte	ate aquifer sy	ibəm		
TORRES AND OTHERS 2001	confining unit	Tamiami/ Peace River zone (PZ1)	confining unit	Upper Arcadia zone (PZ2)	confining unit	Lower Arcadia zone (PZ3)	confining unit
٩	ΪŤ			ate aquifer sy			ΪŤ
BARR 1996	confining unit	Permeable Zone 1	confining unit	Permeable Zone 2	confining unit	Permeable Zone 3	confining unit
		u	reter	ate aquifer sy		nətnl	
WOLANSKY 1983	confining unit		Iamiami -	Hawthorn aquifer	confining unit	Lower Hawthorn - upper Tampa aquifer	confining unit
~	Ō		S.	ediate aquifei	məfi	ul	0
WEDDERBURN AND OTHERS 1982	confining unit	Sandstone aquifer	confining unit	mid-Hawthorn aquifer	confining unit	lower Hawthorn / Tampa producing	zone confining unit
N ∢		System	ıəfiu			SAA	
JOYNER, SUTCLIFFE 1976	confining unit	Zone 1	confining unit	Zone 2	confining unit	Zone 3	confining unit
SPROUL AND OTHERS 1972	confining unit	sandstone aquifer	confining unit	upper Hawthorn aquifer	confining unit	lower Hawthorn aquifer	confining unit

Figure F1. Nomenclature of (A), the surficial aquifer, (B), the Hawthorn aquifer system, and (C), the Floridan aquifer system used for the Eagle Lake well site compared to nomenclature in previously published reports.

o +	<i>jit</i>		y zone ' zone ²	gı	y zone ²	ddle unit I	e unit I	dan Iow VI Ining dan Ining	iit
SWFWMD PRESENT	confining unit	upper Floridan aquifer	Ocala low- permeability zone Avon Park high- permeability zone	confining unit l	Avon Park high- permeability zone	aquifer below middle confining unit l	middle confining unit II or VI	lower Floridan aquifer below middle confining unit UIII ³ lower Floridan aquifer below middle confining	confining unit
	0			mətə	aquifer sys	Floridan			0
WILLIAMS AND KUNIANSKY 2016	confining unit	Upper permeable zone	ridan aquifer Park low permeability zone		₹ ª	Floridan	Middle-Avon Park confining unit (MAPCU)	Lower Floridan aquifer Permeable Zone Cone Cone Canaconte Canaconte Calaucipui GLAUCipui Calaucipui Calaucipui Cone Zone Zone Zone	ıfinin
ARTHUR AND OTHERS 2008	confining unit		Upper Floridan		aquifer sy:	Floridan	Middle Floridan confining unit ^r	Lower Floridan aquifer	confining unit
REESE AND RICHARDSON 2008	confining unit	Lower Hawfhorn producing zone Upper Floridan aquifer	MC1 (middle semiconfining unit and/or confining unit,	upper part)	aquifer sy permeable	Eloridan MC2 (middle	ing unit and/or confining unit, lower part)	Lower Floridan aquifer	confining unit
MILLER 1986	confining unit	Upper Floridan	aquifer middle	S	aquifer sy. Floridan	be cor	middle confining unit II or VI	Lower Floridan aquifer below middle confining unit II or VI middle confining Lower Floridan aquifer below middle confining	confining unit
BUSH 1982	confining unit		Upper	permeable zone	a ənotzən	ופנחפנ) וונ	Intra-aquifer Iow-permeablity zone	Lower permeable zone	confining unit
MILLER 1982	confining unit		e Second	zone	iups anot		less permeable zone	permeable zone	confining unit
STRINGFIELD 1966	confining unit		principal artesian	aquifer					
PARKER AND OTHERS 1955	confining unit		Floridan aquifer						
STRINGFIELD 1936	confining unit	a cinto	oner water-bearing artesian formations						

[Terms shown are for hydrogeologic units present within the Southwest Florida Water Management District (SWFWMD)]

Arthur and others acknowledge existence of the middle confining unit I within the Southwest Florida Water Management but do not map it for Special Publication 68.

²The Avon Park high-permeability zone (SWFWMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk.

³The middle confining unit VIII of Miller (1986) in south Florida was extended across the entire peninsula as the Glauconite marker unit based on new data in Williams and Kuniansky (2016).

Figure F1. (Continued) Nomenclature of (A), the surficial aquifer, (B), the Hawthorn aquifer system, and (C), the Floridan aquifer system used for the Eagle Lake well site compared to nomenclature in previously published reports.

C

Holoce			ndifferentiated and and clay				
Pleistoce	ene		presshead Fm	surficial aquifer			
Pliocen	e		oosahatchee Fm Tamiami Fm				
	late				confining unit		
	middle		Peace River Formation Formation Formation Formation	stem ¹	Peace River aquifer		
Miocene		dn	For	r sys	confining unit		
	early	Hawthorn Group	_	Hawthorn aquifer system	upper Arcadia aquifer		
	Carry	wthe	Member Nocatee	thor	confining unit		
Olizanona	late	На	Arcadia Formation Member Member Member Member	Haw	lower Arcadia aquifer		
Oligocene		_			confining unit		
	early	Suwa	annee Limestone		Ocala low-		
	late		Ocala Limestone		upper permeability zone		
				Ę	Floridan aquifer Avon Park high- permeability zone ²		
			Avon Park	syster	middle confining unit unit l		
	middle		Formation	ifer s	Avon Park high- permeability zone ²		
Eocene				Floridan aquifer system	lower Floridan aquifer below middle confining unit I		
	early		Oldsmar Formation	Flor	middle confining unit II or VI lower Floridan aquifer below middle confining unit II or VI		
			Cedar Keys		middle condfining unit VIII ³ lower Floridan aquifer below middle confining unit VIII		
Paleoce	ne		Formation	confining unit			

Southwest Florida Water Management District Stratigraphic Correlation Chart

Figure F2. Chart correlating chronostratigraphic and lithostratigraphic units to the current hydrogeologic framework of the Southwest Florida Water Management District.

This chart may be used to correlate the chronostratigraphic and lithostratigraphic units of the current hydrogeologic framework model of the Southwest Florida Water Management District. Note: ¹The Hawthorn aquifer system was previouly referred to as the intermediate aquifer system. ²The Avon Park high-permeability zone (SWF-WMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in

below the middle contining unit I in southern Polk. ³The middle confining unit VIII of Miller (1986) was extended beyond the original extent in south Florida based on new data.

Holoce	ne			ndifferentiated			
Pleistocene			sand and clay		surficial		
Pliocene				presshead Fm posahatchee Fm	aquifer		
Pliocene				Tamiami Fm			
	late	Alachua Formation		. o Bone		confining unit	
	middle			Coosawhatchie Formation Peace River Formation	item ¹	Peace River aquifer	
Miocene			Hawthorn Group	For	sys	confining unit	
	early				Hawthorn aquifer system ¹	upper Arcadia aquifer confining unit	
Oligocene	late		Нам	Arcadia Formation - Member - Member - Member - Member	Hawt	lower Arcadia aquifer	
J						confining unit	
	early	Crystal River Fm	Suwa	nnee Limestone Ocala		Ocala low-	
	late	Williston Formation		Limestone		upper permeability zone	
	middle			Avon Park	er system	Floridan aquifer _{Avon} Park high- permeability zone ⁹ middle confining unit unit I Avon Park high-	
Eocene		Lake City Limestone	Formation		Floridan aquifer system	permeability zone ² lower Floridan aquifer below middle confining unit I middle confining	
	early		Oldsmar Formation		Ē	unit II or VI lower Floridan aquifer below middle confining unit II or VI middle confining unit VIII ³ lower Floridan aquifer below middle confining	
Paleoce	ne			Cedar Keys Formation		unit VIII confining unit	

Southwest Florida Water Management District Stratigraphic Correlation Chart

This chart may be used to correlate the stratigraphic units in past reports to the current hydrogeologic framework model of the Southwest Florida Water Management District. Note: ¹The Hawthorn aquifer system was previouly referred to as the intermediate aquifer system. ²The Avon Park high-permeability zone (SWF-WMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk. ³The middle confining unit VIII of Miller (1986) was extended beyond the original extent in south Florida based on new data.

Figure F3. Chart correlating lithostratigraphic units used in past reports to current lithostratigraphic units and the current hydrogeologic framework of the Southwest Florida Water Management District.

