
WYRICK 1960	LICHTLER 1960	CLARKE 1964	LEVE 1966	WOLANSKY 1978	MILLER 1980	BOGGESS 1986; ARTHUR AND OTHERS 2008	SWFWMD PRESENT
nonartesian aquifer	Shallow aquifer	water-table aquifer	shallow aquifer system	unconfined aquifer	surficial aquifer	surficial aquifer system	surficial aquifer
confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit

Not to scale

[SWFWMD, Southwest Florida Water Management District]

Not to scale

[FAS, Floridan aquifer system; PZ, permeable zone; SWFWMD, Southwest Florida Water Management District]

STRINGFIELD 1936	PARKER AND OTHERS 1955	STRINGFIELD 1966	MILLER 1982	BUSH 1982	MILLER 1986	REESE AND RICHARDSON 2008	ARTHUR AND OTHERS 2008	WILLIAMS AND KUNIANSKY 2016	SWFWMD PRESENT
confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit
chief water-bearing artesian formations	Floridan aquifer	principal artesian aquifer	permeable zone	Upper permeable	Upper Floridan aquifer <i>middle</i>	Lower Hawthom producing zone Upper Floridan aquifer MC1 (middle semiconfining unit and/or confining unit, upper part)	Upper Floridan aquifer aquifer	Leading and the permeable zone Dead addite permeable zone Ocala-Avon Park low permeability zone (OCAPIpz)	upper Floridan aquifer Ocala low- permeability zone Avon Park high- permeability zone ² <i>middle</i>
			ertiary limestone aquifer sys	Tertiary limestone aquifer auoz	Confining unit I Lower Floridan aquifer below middle confining unit I	Avon Park permeable zone MC2 (middle semiconfin-		Floridan aquifer system Deper F Subsection Subsection System Syst	Confining unit I Avon Park high- permeability zone ² lower Floridan aquifer below middle confining unit I
			permeable zone permeable zone	Intra-aquifer Iow-permeablity zone Lower permeable zone	middle confining unit II or VI Lower Floridan aquifer below middle confining unit II or VI middle confining unit VIII ³ Lower Floridan aquifer below middle confining unit VIII	ing unit and/or confining unit, lower part) Lower Floridan aquifer	Middle Floridan confining unit ¹ Lower Floridan aquifer	Middle-Avon Park confining unit (MAPCU) Junit (MAPCU) Lower Avon Park permeable zone Glauconite marker unit (GLAUCIpu) Oldsmar permeable zone	middle confining unit II or VI lower Floridan aquifer below middle confining unit II or VI middle confining unit VIII ³ lower Floridan aquifer below middle confining unit VIII
			confining unit	confining unit	confining unit	confining unit	confining unit	confining unit	confining unit

Not to scale

[Terms shown are for hydrogeologic units present within the Southwest Florida Water Management District (SWFWMD)]

¹Arthur and others acknowledge existence of the middle confining unit I within the Southwest Florida Water Management but do not map it for Special Publication 68.

²The Avon Park high-permeability zone (SWFWMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk.

³The middle confining unit VIII of Miller (1986) in south Florida was extended across the entire peninsula as the Glauconite marker unit based on new data in Williams and Kuniansky (2016).

Holocene		undifferentiated			surficial aquifer		
Pleistoce	sand and clay						
Pliocen	Cypresshead Fm						
i nocen	Caloosahatchee Fm Tamiami Fm						
	late		chie	Bone		confining unit	
	middle	٩	Coosawhatchie Formation	Formation Peace River Valley Member	stem ¹	Peace River aquifer	
Missons		rou	S P I	For	Hawthorn aquifer system ¹	confining unit	
Miocene	early	Hawthorn Group				upper Arcadia aquifer	
		Hav				confining unit	
			Arcadia Formation	Tampa Member ²	Haw	lower Arcadia aquifer	
	late	Suwannee Limestone				confining unit	
Oligocene	early						
	late	Ocala Limestone Avon Park Formation		Floridan aquifer system	Ocala low- upper permeability zone Floridan aquifer		
	middle				Avon Park high- permeability zone ³ middle confining unit unit l		
Eocene					Avon Park high- permeability zone ³ lower Floridan aquifer below middle confining unit I middle confining		
	early		Oldsmar Formation			unit II or VI lower Floridan aquifer below middle confining unit II or VI middle condfining unit VIII ⁴ lower Floridan aquifer	
Paleocene		Cedar Keys Formation			below middle confining unit VIII confining unit		

Southwest Florida Water Management District Stratigraphic Correlation Chart

This chart may be used to correlate the chronostratigraphic and lithostratigraphic units of the current hydrogeologic framework model of the Southwest Florida Water Management District.

Note: ¹The Hawthorn aguifer system was previously referred to as the intermediate aquifer system. It is present only in the southern part of the District and pinches out north of central Hillsborough County. Where no aquifers are present, the Hawthorn sediments are confining and pinch out north of central Pasco County. ²The upper Floridan aquifer includes the Tampa Limestone where confinement is not present. ³The Avon Park highpermeability zone (SWFWMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk. ⁴The middle confining unit VIII of Miller (1986) was extended beyond the original extent in south Florida based on new data.

			_		_		
Holocene				ndifferentiated			
Pleistocene				and and clay		surficial	
				presshead Fm		aquifer	
Pliocene			Caloosahatchee Fm Tamiami Fm				
	late	Alachua Formation		· Bone		confining unit	
	middle		ę	Coosawhatchie Formation Peace River Formation	'stem ¹	Peace River aquifer	
Missons			D D	D D D D D D D D D D D D D D D D D D D	' sy:	confining unit	
Miocene	early		Hawthorn Group	Arcadia Boundar Mattion Nocatee Nocatee	Hawthorn aquifer system ¹	upper Arcadia aquifer confining unit	
				Tampa Member ²	Haw	lower Arcadia aquifer	
	late			Member		confining unit	
Oligocene	early		Suwa	innee Limestone			
	late	Crystal River Fm Williston Formation Inglis Formation		Ocala Limestone		Ocala low- upper permeability zone Floridan	
Eocene	middle	Lake City Limestone		Avon Park Formation	Floridan aquifer system	aquifer Avon Park high- permeability zone middle confining unit unit I Avon Park high- permeability zone lower Floridan aquifer below middle confining unit I middle confining	
	early			Oldsmar Formation		unit II or VI lower Floridan aquifer below middle confining unit II or VI middle condfining unit VIII ⁴ lower Floridan aquifer	
Paleocene				Cedar Keys Formation		below middle confining unit VIII confining unit	

Southwest Florida Water Management District Stratigraphic Correlation Chart

This chart may be used to correlate the chronostratigraphic and lithostratigraphic units of the current hydrogeologic framework model of the Southwest Florida Water Management District.

Note: ¹The Hawthorn aquifer system was previously referred to as the intermediate aquifer system. It is present only in the southern part of the District and pinches out north of central Hillsborough County. Where no aquifers are present, the Hawthorn sediments are confining and pinch out north of central Pasco County. ²The upper Floridan aquifer includes the Tampa Limestone where confinement is not present. ³The Avon Park highpermeability zone (SWFWMD fracture zone) crosses middle confining unit I in central Polk County; therefore, it occurs above the middle confining unit I in northern Polk and below the middle confining unit I in southern Polk. ⁴The middle confining unit VIII of Miller (1986) was extended beyond the original extent in south Florida based on new data.

SA References (in chronological order):

Wyrick, G.G., 1960, Ground-water resources of Volusia County, Florida: Florida Geological Survey Report of Investigations 22, 65 p.

- Lichtler, W.F., 1960, Geology and ground-water resources of Martin County, Florida: Florida Geological Survey Report of Investigations 23, 149 p.
- Clarke, WE., Musgrove, R.M., Menke, G.C., and Cagle, J.W., Jr., 1964, Water resources of Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Report of Investigations 35, 170 p.
- Leve, G.L., 1966, Ground water in Duval and Nassau Counties, Florida: Florida Geological Survey Report of Investigations 43, 91 p.
- Wolansky, R.M., 1978, Feasibility of water-supply development from the unconfined aquifer in Charlotte County, Florida: U.S. Geological Survey Water-Resources Investigations Report 78-26, 34 p.
- Miller, W.L., 1980, Geologic aspects of the surficial aquifer in the Upper East Coast planning area, southeast Florida: U.S. Geological Survey Water-Resources Investigations Report 80-586, scale 1:62,500, 2 sheets.
- Boggess, D.M., and Watkins, F.A., Jr., 1986, Surficial aquifer system in eastern Lee County, Florida: U.S. Geological Survey Water-Resources Investigations Report 85-4161, 59 p.
- Arthur, J.D., Fischler, C., Kromhout, C., Clayton, J.M., Kelley, M., Lee, R.A., O'Sullivan, M., Green, R.C., and Werner, C.L., 2008, Hydrogeologic Framework of the Southwest Florida Water Management District: Florida Geological Survey Bulletin No. 68, 104 p.

HAS References (in chronological order):

- Sproul, C.R., Boggess, D.H., and Woodward, H.J., 1972, Saline-water intrusion from deep artesian sources in the McGregor Isles area of Lee County, Florida: Florida Bureau of Geology Information Circular 75, 30 p.
- Joyner, B.F., and Sutcliffe, H. Jr., 1976, Water Resources of the Myakka River Basin Area, SouthwestFlorida: U.S. Geological Survey Water-Resources Investigation 76-58, 87 p.
- Wedderburn, L.A., Knapp, M.S., Waltz, D.P., and Burns, W.S., 1982, Hydrogeologic Reconnaissance of Lee County, Florida: South Florida Water Management District Technical Publication 82-1, pts. 1, 2, and 3, 192 p.
- Wolansky, R.M., 1983, Hydrogeology of the Sarasota-Port Charlotte Area, Florida: U.S. Geological Survey Water-Resources Investigations Report 82-4089, 54 p.
- Barr, G.L., 1996, Hydrogeology of the Surficial and Intermediate Aquifer Systems in Sarasota and Adjacent Counties, Florida: U.S. Geological Survey Water-Resources Investigations Report 96-4063, 87 p.
- Torres, A.E., Sacks, L.A., Yobbi, D.K., Knochenmus, L.A., and Katz, B.G., 2001, Hydrogeological Framework and Geochemistry of the Intermediate Aquifer System in Parts of Charlotte, De Soto, and Sarasota Counties, Florida: U.S. Geological Survey Water-Resources Investigations Report 01-4015, 81 p.
- Knochenmus, L.A., 2006, Regional Evaluation of the Hydrogeologic Framework, Hydraulic Properties, and Chemical Characteristics of the Intermediate Aquifer System Underlying Southern West-Central Florida: U.S. Geological Survey Scientific Investigations Report 2006-5013, 40 p.
- Arthur, J.D., Fischler, C., Kromhout, C., Clayton, J.M., Kelley, M., Lee, R.A., O'Sullivan, M., Green, R.C., and Werner, C.L., 2008, Hydrogeologic Framework of the Southwest Florida Water Management District: Florida Geological Survey Bulletin No. 68, 104 p.

FAS References (in chronological order):

Stringfield, V.T., 1936, Artesian water in the Floridan peninsula: U.S. Geological Survey Water-Supply Paper 773-C, p. C115-C195.

Parker, G.G., and others, 1955, Water resources of southeastern Florida: U.S. Geological Survey Water-Supply Paper 1255, 965 p.

Stringfield, V. T., 1966, Artesian water in Tertiary limestone in the Southeastern States: U.S. Geological Survey Professional Paper 517, 226 p.

- Miller, J. A., 1982, Geology and configuration of the base of the Tertiary limestone aquifer system, southeastern United States: U.S. Geological Survey Water-Resources Investigations 81-1176, 1 map sheet.
- Bush, P. W., 1982, Predevelopment Flow in the Tertiary limestone aquifer, southeastern United States; A Regional Analysis from Digital Modeling: U.S. Geological Survey Water-Resources Investigations Report 82-905, 56 p.
- Miller, J. A., 1986, Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1403-B., 91 p.
- Reese, R.S., and Richardson, Emily, 2008, Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida: U.S. Geological Survey Scientific Investigations Report 2007-5207, 60 p., 4 pls., plus apps. (on CD).
- Arthur, J.D., Fischler, C., Kromhout, C., Clayton, J.M., Kelley, M., Lee, R.A., O'Sullivan, M., Green, R.C., and Werner, C.L., 2008, Hydrogeologic Framework of the Southwest Florida Water Management District: Florida Geological Survey Bulletin No. 68, 104 p.
- Williams, L.J., and Kuniansky, E.L., 2016, Revised Hydrogeologic Framework of the Floridan Aquifer System in Florida and Parts of Georgia, Alabama, and South Carolina (ver. 1.1, March 2016): U.S. Geological Survey Professional Paper 1807, 140 p., 23 pls., http://dx.doi.org/10.3133/pp1807.