Appendix P

Table of Contents

Project Objectives	1
Data Collection and Analysis	2
Surface Water Basins	2
Basin Land Use	3
Basin Slope	4
Rainfall	4
Evaporation	7
Agricultural Irrigation	7
Stream Flow	9
Baseflow	10
Florida Progress Water Use	10
Model Preparation	11
Integrated Northern Tampa Bay Model	11
Gaged/Un-Gaged Little Manatee River Basin	12
Model Basin Parameters	13
Model Reach Parameters	13
Model Simulation and Results	14
Calibration and Verification Results	14
Predictive Simulation Results	16
Recommendations	16
REFERENCES	18
APPENDICES	19

List of Tables

Table 1 Statistically Defined Rainfall Distributions	. 6
Table 2 Generalized Landuse Codes.	13

List of Figures

Figure 1 Little Manatee River Basin with Gaged and Un-Gaged Areas Highlighted	1
Figure 2 Little Manatee River Basins with Model Subbasins	3
Figure 3 Little Manatee River Basin and Generalized Landuse Map	4
Figure 4 Rain Gage Locations	<i>6</i>
Figure 5 Pan Evaporation Station Locations	7
Figure 6 Agricultural Irrigation Land Segments and Water Use Points	9
Figure 7 Calibration and Verification Streamflow Gage Locations	10
Figure 8 Little Manatee River Subbasins and INTB Basin Overlay	12
Figure 9 Ungaged Subbasins of the Little Manatee River Watershed	16

Project Objectives

The objective of this project was to determine the un-gaged inflows to the Little Manatee River (see Figure 1) in response to rainfall events. These flows are needed to evaluate the salinity interface in conjunction with determining minimum flows and levels (MFL) in the river. The ungaged inflows to the river can significantly affect the location and distribution of the salinity wedge. Currently the U.S. Geological Survey (USGS) gages the upper two thirds of the basin (see blue shaded basin in Figure 1). The lower third of the basin remains un-gaged (shown in yellow). The ability to continuously gage the lower portion of any river basin is reduced due to the impacts of the tidal fluxes. The surface water model HSPF (Hydrological Simulation Program - FORTRAN) was used to estimate the storm water response of the Little Manatee basin. The HSPF model was calibrated utilizing the rainfall response from the gaged portion of the basin. The calibrated parameters were then extrapolated to the un-gaged basins utilizing the available landuse distribution.

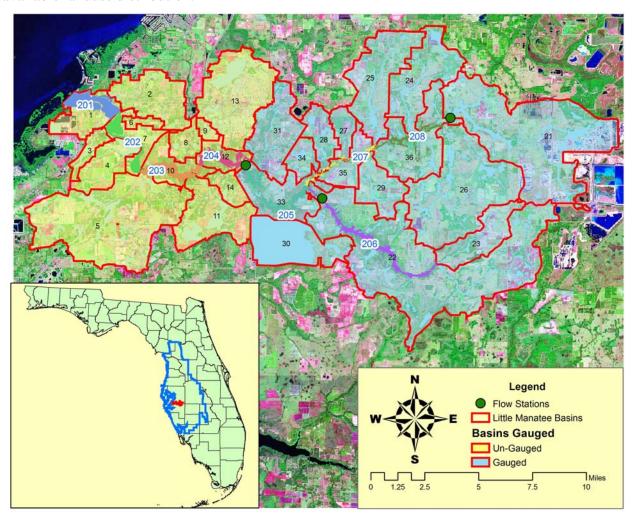


Figure 1 Little Manatee River Basin with Gaged and Un-Gaged Areas Highlighted

Data Collection and Analysis

Before applying the HSPF model, specific data were required for boundary condition fluxes and to provide calibration targets (observed internal/external fluxes). In addition spatial data (from GIS (Geographical Information System) analysis) is required to help develop model parameters. In this case many groups of external fluxes and thematic spatial data were used to drive the model. The data developed for this effort is described below.

Surface Water Basins

Several basin boundaries were collected from a number of sources including Southwest Florida Water Management District (SWFWMD or District), USGS, Tampa Bay Water (TBW), and Hillsborough County. The basins used in this project were derived from the extremely detailed basin delineation performed by Hillsborough County. The resolution of the county basins was far too detailed (2000 basins) for the requirements of this work so the basins were aggregated into 29 sub-basins (see Figure 2). The USGS quadrangles, 100,000 scale hydrography, USGS drainage basins, and even the Digital Orthophoto Quarter Quadrangle (DOQQ)'s were all used to aid in the aggregation process. The final basin delineation is shown in Figure 2.

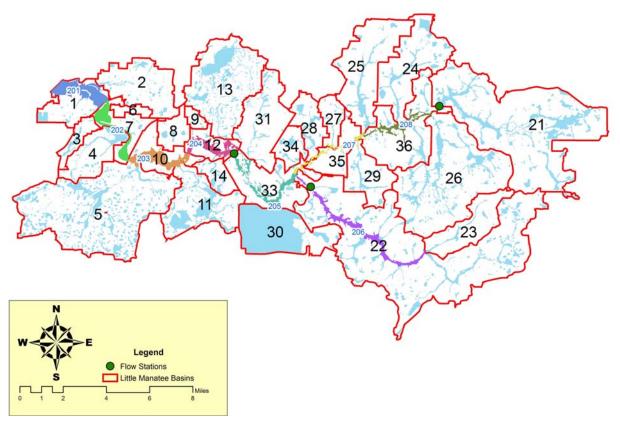


Figure 2 Little Manatee River Basins with Model Subbasins

Basin Land Use

The land use and land cover map (dated 2000) was obtained from the District's online GIS data. The landuse data was used as the best estimate for the spatial coverage of wetlands and lakes which produced the hydrography area used in the model. This area was assumed to act as a storage reservoir and was simulated as such in HSPF (see Model Preparation section below). Prior efforts made an attempt at estimating the wetlands that acted like closed basins. Using a thorough review of the available data it was determined that the amount of closed or conditionally connected reaches was fairly insignificant due to the considerable ditching in the area. The land use map was also utilized to determine the irrigated agricultural areas. The irrigated portion for each basin was simulated as a separate land segment. Separating each basin into multiple land segments allows for better definition of model parameters and boundary conditions (i.e., irrigation inflows are not averaged over the entire basin only over the irrigated agricultural lands). The generalized landuse map is shown in Figure 3. See Appendix A.1 for a table showing the Florida Land Use, Cover and Forms Classification System (FLUCCS) codes

and the generalized land use conditions for each code. Each generalized land use condition was represented in the model as a separate computational element to eliminate gross parameter lumping. Appendix E shows a table of the basin areas (in acres) as simulated in the model.

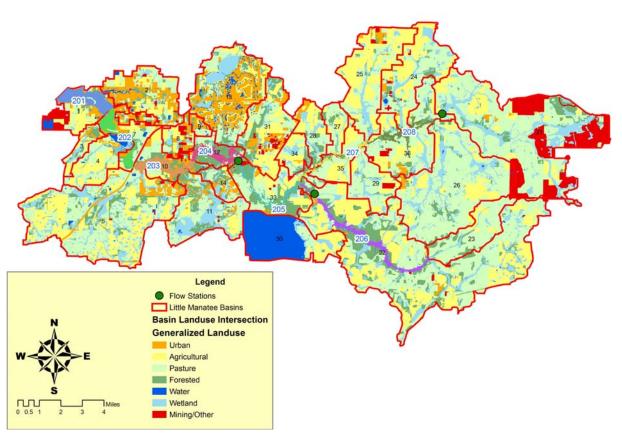


Figure 3 Little Manatee River Basin and Generalized Landuse Map

Basin Slope

The seamless Digital Elevation Model (DEM) data was obtained for the Little Manatee River Basin from USGS. The DEM data was converted to a slope grid in ArcMap. The zonal statistics for each basin was computed using the slope surface. The computed average slope determined from the zonal statistics was used to develop the HSPF data set.

Rainfall

Rainfall data was obtained at various time scales from various agencies including: TBW, SWFWMD, National Oceanic and Atmospheric Association (NOAA), as well as local municipalities (see Figure 4 for a map of station locations and resulting Thiessen polygons; see

Appendix A.2 for a table of rain stations utilized). The daily data was utilized to capture the best definition of the spatial distribution of rainfall. The NOAA 15-minute data were obtained to provide the best temporal distribution. The daily rainfall data, obtained from the SWFWMD, are predominately volunteer data collectors that read standard volumetric rain gages. This data is prone to errors for many reasons (not read, not read on time, zero data mistaken for missing records, etc.). However, the 16 SWFWMD daily rainfall stations represent the best spatial resolution available. Only 3 stations were available from the NOAA 15 Minute data, 1 from the NOAA Summary of the Day data. By averaging all available rain data on a daily basis the best daily volume or basin average is obtained for modeling. This averaging was performed using the area of the Thiessen polygons as a weighting factor (if no data was available the area was excluded from the averaging). The daily volume was then disaggregated into a fifteen-minute time-series for use by the hydrologic model. The disaggregation was performed using the temporal distribution found at the nearest fifteen-minute station (86880 Parrish station, 84797 Lakeland, 84802 Lakeland 2, and 87886 St. Petersburg) that had a similar (+/- 50%) daily total rainfall. If no NOAA 15 minute station fit these criteria, standardized distributions were used (Table 1, Hernandez, 2001). The standard distribution was developed from high frequency rain data collected at USF (Hernandez, 2001). The daily rainfall value for a basin was disaggregated into a 15-minute time series by scaling the precipitation record of the nearest 15-minute station by the proportionate difference in rainfall at the basin. For example, if 1 inch of precipitation was estimated for a basin and the closest 15-minute station recorded 2 inches, each 15-minute record would be scaled by ½ for that basin. The developed rainfall time-series for the Little Manatee River Basin was stored in a model binary data format (WDM) for use by HSPF.

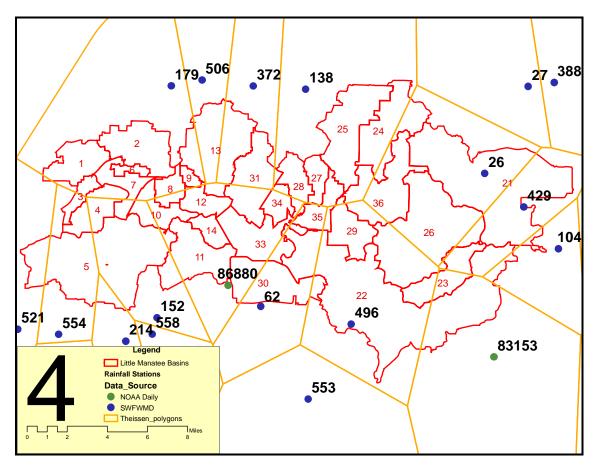
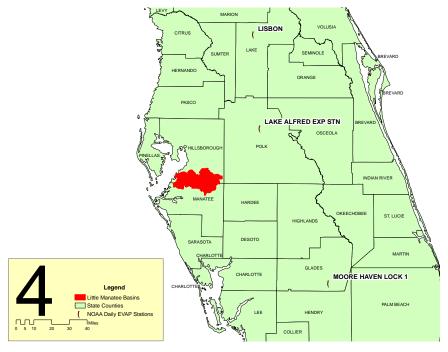


Figure 4 Rain Gage Locations


Table 1 Statistically Defined Rainfall Distributions

	, , , , , , , , , , , , , , , , , , ,	Daily Rainfall Total (inches)				
	Time of Day	< 0.2	0.2 to 0.4	0.4 to 0.7	> 0.7	
	5:15 PM	1	0.15	0.11	0.07	
	5:30 PM		0.7	0.11	0.07	
50	5:45 PM		0.15	0.56	0.07	
ions	6:00 PM			0.11	0.07	
ract	6:15 PM			0.11	0.43	
n F	6:30 PM				0.07	
II utic	6:45 PM				0.07	
Rainfall Distribution Fractions	7:00 PM				0.07	
Rai Dis	7:15 PM				0.07	

Evaporation

The potential evaporation time-series (daily) was developed from the available pan evaporation data from the Lake Alfred, Moore Haven, and Lisbon NOAA ET stations (see Figure 5 for station locations). Other sources of pan evaporation data were investigated (SWFWMD, TBW, and Manatee Water Supply) but only NOAA data was used in this project. The other sources were too problematic to successfully apply to this study. A hierarchy was set up for the data source for the model. Lake Alfred pan data was the first choice. When Lake Alfred was not available, the missing data was replaced using one of two methods. For short periods of missing data, simple linear interpolation was employed. For longer periods, for example the month of October 1997, the average of two simulated Lake Alfred data (simulated using linear regressions from Lisbon and Moore Haven gage data) was employed. Lake Alfred pan data collection ceased in May 2000, this period was also filled using the average of the two simulated time series. The pan evaporation data was then scaled during the model simulation (HSPF multiplication factor) by a factor of 0.7 to estimate the potential ET of the region. The corrected pan data was stored in WDM binary file format for use by HSPF.

Figure 5 Pan Evaporation Station Locations

Agricultural Irrigation

For detailed water budget analysis of basins heavily impacted by groundwater pumping it is necessary to return groundwater pumping used for irrigation to the surface water system. The groundwater to surface water exchange can have a significant effect on the overall water budget

in agricultural areas especially the low flow conditions. The metered and estimated monthly groundwater-pumping rates were obtained from the District. Agricultural and recreational wells identified by USETYPE codes 'A' and 'R' (respectively) in the SWFWMD well permit database were used to develop the irrigation time series. Irrigated land was identified by selecting areas with a FLUCCS code between 2100 and 2600 as well as 1800. This selection criterion included all irrigated land uses including agriculture and recreation. Recreation was included to account for irrigation on golf courses. Figure 6 shows the irrigation land use polygons with the associated water use points. The water pumped from agricultural wells was then applied to the irrigated land areas within the basins identified as agricultural land use conditions. agricultural pumping for the month was distributed to all days without significant rainfall (<.5 inches). The developed daily time-series assumed the irrigation volume for the day is applied to the land surface and to interception storage (HSPF Lateral surface inflow [SURLI] and Initial Interception Storage [CEPS] variables) within a four hour application interval from 5:00AM to 9:00AM. The fraction of irrigation delivered to CEPS and SURLI was obtained from the INTB model application. The fraction of drip irrigation and spray irrigation was determined from available data on crop types. The estimated irrigation data was not available for the years 2003 for the calibration period and both 2004 and 2005 for the verification/predictive simulations. These missing years were estimated using representative years. The selection of the representative years were based on a simple analysis using the precipitation time series both annual rainfall totals as well as seasonal totals (using the assumption that irrigation practices would be similar for similar rainfall). The developed time series for each basin is stored in the WDM binary format for use by HSPF.

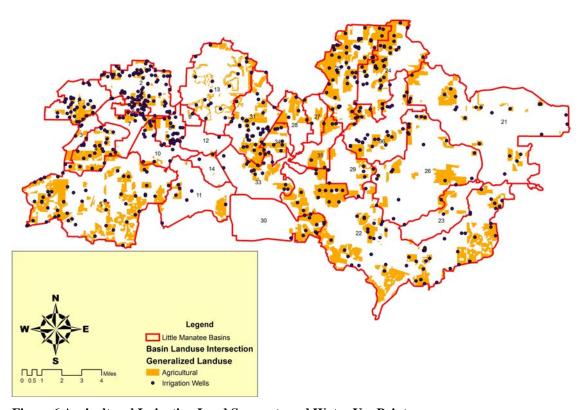


Figure 6 Agricultural Irrigation Land Segments and Water Use Points

Stream Flow

Observed stream flows were obtained from the USGS for three stations: Little Manatee River at Wimauma (USGS station ID 02300100), Little Manatee River at Fort Lonesome (USGS station ID 02300100), and South Fork Little Manatee River near Wimauma (USGS station ID 02300300). The data represents the observed average daily flow. This data was converted to an estimate for runoff and baseflow for calibration and verification comparisons (see following sections). The South Fork Little Manatee River gage was not used for calibration comparison. The time series for this gage started on 10/1/2000. Originally this gage was not included in the calibration due to the short record available. This gage, however, was included in the verification comparisons (see results). Figure 7 shows the Little Manatee River Basin and subbasins with the locations of the USGS gaging stations.

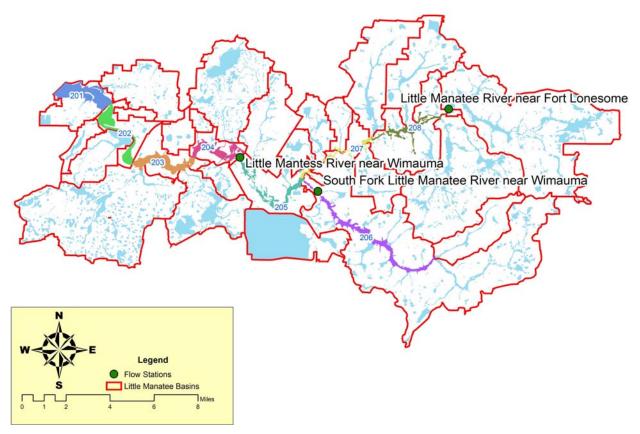


Figure 7 Calibration and Verification Streamflow Gage Locations

Baseflow

Baseflow at each observed streamflow station was estimated using a numerical baseflow separation technique. The technique is described in detail in the Southern District Modeling study (Geurink *et al.* 2001). The method is basically a low pass filter time series filter. This technique was used for both the observed and simulated hydrographs. A separation method was necessary for the observed hydrographs because only total streamflow can be measured. As it is impossible to fully differentiate groundwater flow from surface water flow in a stream flow record, it was desirable to utilize the same procedures on the simulated results so as to make an assessment of the low flow model performance (see results section below).

Florida Progress Water Use

Florida Progress uses a large surface water use permit to supply make up water for their reservoir. The metered water use was obtained from the District. These water use rates were

available only in monthly accumulated totals (million gallons). These monthly rates were converted into a WDM data set and applied as a withdrawal time series to the routing reach 205.

Model Preparation

The HSPF model for the Little Manatee River basin was developed using the spatial data and temporal data collected and processed as described above. The basins were divided into the land segments to preserve the correct parameters and avoid parameter lumping (for example averaging impervious with pervious). The reaches were developed from the land use mapping and the USGS rating tables. This allowed correct representation of the reach storage potential and therefore reach water budget. Details on the model development, calibration, and predictions are included in the sections below.

Integrated Northern Tampa Bay Model

The model developed in this study was built from the existing model parameters that were developed for the Integrated Northern Tampa Bay (INTB) model application (Ruskauff *et al.* 2001). In the INTB model, the Little Manatee basin was represented with 5 basins (see Figure 8). Since the INTB application used the same landuse based calibration the INTB model parameters were used as a starting point for this calibration exercise. Other non landuse based parameters (for example soils based data) were extrapolated from the INTB calibration based on an overlay of the basins.

The Integrated Northern Tampa Bay (INTB) Model was calibrated from 1/1/1989 to 12/31/2000 (Ruskauff *et al.* 2003). This period represented a significant dry period as well as two significant wet periods (1992-1993 and 1997-1998). This large variation in the calibration period is useful to help build confidence in the model's predictive capability for a wide variety of conditions. The INTB model was shown to predict cumulative hydrographs as well as hydrograph peaks and basin annual targets of estimated ET to within acceptable differences for the scale of the problem. The INTB model parameters for the basins that comprised the Little Manatee River (specifically 157, 158, 159, 160, and 161) were used as a starting point for this model. The parameters were further calibrated (see calibration section below).

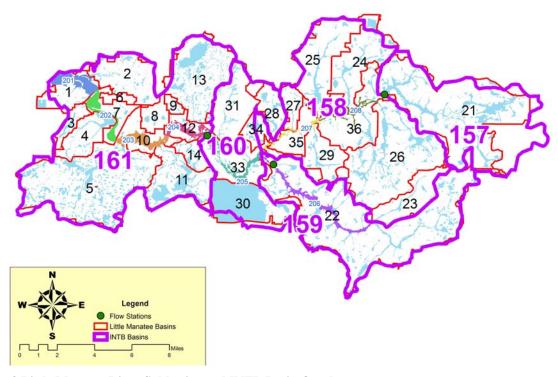


Figure 8 Little Manatee River Subbasins and INTB Basin Overlay

Gaged/Un-Gaged Little Manatee River Basin

As stated previously, the Little Manatee basin for this project was sub-divided into 29 sub-basins (see Figure 2). The 29 subbasins defined the entire Little Manatee basin. The un-gaged portion of the Little Manatee River is represented by 14 of those subbasins while the gaged portion was represented with 15 subbasins. The 29 subbasins were divided into 137 pervious land segments and 28 impervious land segments. Dividing the basins into land segments practically eliminates the parameter lumping typically found in hydrologic models. The resulting operation number in the HSPF data set was set to BasinID*10 + generalized land use code. The generalized land use codes used in the model are listed in Table 2. The landuse and soils parameters for the un-gaged basins were extrapolated from the calibrated parameters from the gaged basins. This extrapolation assumes that the landforms within the basins upstream of the gages are hydraulically similar to the basins downstream of the gages. Unfortunately this is an assumption that is problematic. Moving westward towards Tampa Bay, the amount of development or impervious area, mining effects, and drainage all change dramatically. Nevertheless, it is still the best available information given the lack of measurements and difficulty in making those measurements. Also the downstream basins have generally shallower depth to water table and the water budget may be affected by groundwater discharge zones. Model parameters were adjusted to help account for this but no information or calibration data is available.

The 14 basins that represent the un-gaged portion of the Little Manatee River include: 1) "Lower Little Manatee", 2) Marsh Branch, 3) "Sun City", 4) Wildcat Creek, 5) Curiosity Creek, 6) "Fish Hatcheries 1", 7) Mill Bayou, 8) "Fish Hatcheries 2", 9) "No Name 1", 10) Upper "Middle Little Manatee River", 11) "No Name 2", 12) "Upper Little Manatee River", 13) Cypress Creek, and 14) "No Name 3".

Table 2 Generalized Landuse Codes

Land Use Code	Land Use Description
1	Urban
2	Agricultural
3	Pasture
4	Forested
7	Other/Mining

Model Basin Parameters

Appendix B tabulates model parameters and the entire HSPF model data set used in both the calibration as well as the predictive hydrologic simulations.

Model Reach Parameters

The hydrography or reaches (wetlands, lakes, and streams) play a very significant role in the hydrologic response of the basins in West-Central Florida. The reaches have considerable impact on modifying the basin runoff response to given rainfall events. The storage in these water features attenuates or even completely captures the runoff hydrograph from upland portions of the basin. The available storage capacity before a storm is a function of the antecedent moisture condition. The best way to represent this storage in HSPF is through the Free Flowing Reach or Reservoir (RCHRES) module. In the Little Manatee River Model two types of reaches were utilized to represent the hydrography in the basin: storage attenuation reaches and routing reaches. The storage attenuation reaches were defined as an aggregate of all wetlands and lakes within each of the sub-basin boundaries (one for each sub-basin). The storage attenuation reaches were classified with the basin ID in which they resided therefore the RCHRES operation ID used the same number. The routing reaches were defined as the rivers and associated riparian wetlands that convey the runoff hydrographs from each basin (technically each storage attenuation reach) to the final outfall, Tampa Bay. The routing reaches RCHRES operations were number from 201 to 208 (see figure 2). An additional RCHRES operation was utilized to simplify post-processing. This additional RCHRES (operation ID 300, not shown on any map) is used to accumulate flows from reaches 205 and 31.

In HSPF's RCHRES operations, the non-linear relationship between reach stage, storage volume, and discharge is defined with a table called an F-TABLE. The 2000 land-use map was used as the best available data for defining the spatial extent or the area of the reaches. The area for each reach was defined as a constant for all stages based on the land use mapping. This assumes the mapping represents normal pool extents. The constant area was used to eliminate the possibility of mass balance errors caused by double accounting for areas that may or may not be inundated. If the reach area were allowed to change at different stages, then the basin areas would have to change as well to conserve mass (precipitation times area and ET times area). Standard HSPF does not allow the basin areas to change with time (the reach area would not be available until after the reaches are simulated thus making it an iterative problem). Maintaining constant reach areas does introduce errors. The constant area forces the model to remove potential evaporation and add rainfall over the defined area at all times. When the reach is dry the area that should be represented with full open water potential evaporation should be something less than the defined constant area. This will over-estimate the reach evaporation rates. In turn the inflow volume will be over-estimated for rain event during times of low wetland stage. The high water table (even during dry periods) and the dense vegetation in wetlands will cause the actual ET to approach that of open water evaporation rates. The over-estimation of precipitation inflows will be reduced because the storage volume can include (below the invert of discharge) vadose zone soil storage. The most representative USGS rating or stage-discharge relationship of each observed gage was scaled for each reach based on the ratio between the contributing area to the reach and the contributing area of the gage. The nearest downstream rating was used to define this relationship for each reach. The volumes were then defined as the reach area times the stage (defined again by the scaling the USGS rating condition) times a volume adjustment factor. The volume adjustment factor allowed for a diminishing volume stored at lower stages while exponentially increasing at the higher stages to allow for the extreme volumes stored at high stages. The volume adjustment factors were adjusted to improve the match between observed and simulated stream discharges. This methodology dramatically simplifies the reach calibration while remaining true to the available data.

Model Simulation and Results

The simulation results include a complete water budget for all basins and reaches included in the simulation. For the gaged portion of the basin the simulation results were compared to the observed measurements. After the calibration and extrapolation of the basin and reach parameters, the un-gaged results were generated into time series inflows to the Little Manatee River.

Calibration and Verification Results

Model calibration and verification are necessary and critical steps in any model application. For HSPF, as with any numerical model, calibration is an iterative procedure of parameter evaluation and refinement, as a result of comparing simulated and observed values of interest. It is required for parameters that cannot be deterministically, and uniquely, evaluated from topographic, climatic, edaphic, or physical/chemical characteristics of the watershed and compounds of

interest. Ideally, calibration is based on several years of simulation in order to evaluate parameters under a variety of climatic, soil moisture, and water quality conditions. Calibration should result in parameter values that produce the best overall agreement between simulated and observed values throughout the calibration period while remaining within the bounds of published literature ranges.

Calibration includes the comparison of both monthly and annual values, and individual storm events, whenever sufficient data are available for these comparisons. In addition, when a continuous observed record is available, such as for streamflow, simulated and observed values should be analyzed on a frequency basis and their resulting cumulative distributions compared to assess the model behavior and agreement over the full range of observations. In addition, other calibration targets can include estimates for baseflow, ET, and reach stage or storage.

Model verification is an extension of the calibration process. Its purpose is to assure that the calibrated model properly assesses all the variables and conditions which can affect model results. While there are several approaches to validating a model, perhaps the most effective procedure is to use only a portion of the available record of observed values for calibration; once the final parameter values are developed through calibration, simulation is performed for the remaining period of observed values and goodness-of-fit between recorded and simulated values is reassessed (Donigian, 2002).

The Little Manatee model was calibrated for the period from January 1, 1992 to December 31, 2003. Two long term flow gages (Little Manatee near Wimauma and Little Manatee near Fort Lonesome) were available for this period. The calibration comparisons were made using a variety of graphical and statistical analyses. Graphical plots included cumulative volume as well as arithmetic and logarithmic hydrographs. The cumulative graphs show the running volume comparisons over the calibration period. The arithmetic hydrographs provide an effective comparison of low flows. Scatter plots of simulated versus observed average daily flows, for the period from January 1, 1992 to September 30, 2005, were also generated giving both a visual and statistical (R²) measure of model performance. The calibration process also included the use of the HSPF Expert System (HSPEXP). This valuable tool provides statistical analysis of a wide range of model components (peak flows, low flows, recession rates, seasonal variations, etc.).

For model verification (as well as the predictive simulations, see below), the simulation period was extended until September 30, 2005. These additional years were required to predict the inflows to the Little Manatee River during which river salinities were collected. Using this period for verification also provided an additional observed flow record (South Fork Little Manatee near Ft Lonesome) for model comparison (there was not enough useful data at this station for use in calibration).

The calibration and verification results were considered reasonable estimates of total streamflow for all the gaging stations considering the scale of the application and the uncertainty of hydrologic input and hydrologic processes. The calibration comparisons for each flow gage are shown in Appendix C.

Predictive Simulation Results

Predictive simulations were performed on the basins that were not gaged. The un-gaged portion of the Little Manatee River is represented by 14 individual time series. These time series of flow enter the Little Manatee River as either a point source or non-point source. The un-gaged basins are shown in Figure 9. The hydro-dynamic model domain is required in order to determine the locations for the application of the time series.

The time series of streamflow discharges for the 14 basins were generated for the period 1989-2005 and were transmitted in electronic file format to the District for use in the salinity model. Running hydrographs for each ungaged basin are shown in Appendix D.

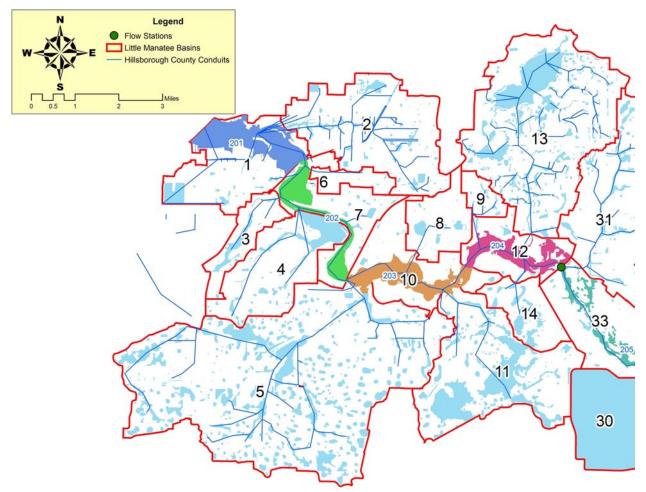


Figure 9 Ungaged Subbasins of the Little Manatee River Watershed

Recommendations

This project estimated the un-gaged flows into the Little Manatee River. Confidence in the estimate is modest given limitations in rainfall measurement, lack of regional groundwater

discharges, and inadequacies in calibration extrapolation. However, to date it is the best available estimate given these data inadequacies and the limited scope of this effort. Short-comings in the results include (in no particular order of significance):

- 1. Observed stream flow estimates. Confidence in the model performance would greatly increase if more observations were available for tributaries of the un-gaged portion of the basin. Ideally gages would record hydrologic response from basins with a single predominant landform. This would isolate the processes and improve model calibration.
- 2. Rainfall estimates. Rainfall is the most important component of the water budget. It is also the easiest to measure at a point. To best observe the spatial distribution of the storm many rain gages are necessary. Also, for surface water modeling, finer temporal distribution is required. Model performance can be significantly increased by a more thorough review of the single most significant component of the water budget: rain fall. Suspected data gaps and accumulation errors plague the daily rainfall dataset (e.g., cooperator either does not read the rain gage or accumulated the past several days together). These errors can usually be identified, but it is a time consuming task. Also, a new source of rain data has been recently been made available. The radar rain or raster rain utilizes Doppler radar to detect rainfall quantities on a 2km x 2km grid. The district has recently purchased the data. The radar rain can be readily processed into input for the HSPF surface water model of the Little Manatee River.
- 3. Integrated surface/ groundwater modeling. Considerable thought should be given towards using an integrated surface / groundwater model to better estimate the ungaged flows. Given the coastal proximity of this part of the basin it is, understandably, heavily influenced by regional groundwater discharges which impact the surface water budget through maintaining higher water table heads thereby generating more runoff, baseflow and ET. These regional groundwater discharges can be at times (especially during dry periods) a significant inflow to the Manatee River.

REFERENCES

- Geurink, J., Nachabe, M., Ross, M., Tara, P. (2001). "Development of Interfacial Boundary Conditions for the Southern District Ground Water Model of the Southwest Florida Water Management District." University of South Florida.
- Tara, P.D., Trout, K., Vomacka, J., Ross, M.A., Stewart, M. (2000). "Hydrologic Investigation of the Phosphate Mined Upper Saddle Creek Watershed, West-Central Florida." University of South Florida.
- Hernandez T., (2001). "Rainfall-Runoff Modeling in Humid Shallow Water Table Environments." Masters Thesis, University of South Florida.
- Tara, P.D., Rokicki, R., Trout, K., Ross, M.A. (2002). "Estimating the Un-Gaged Flows in the Alafia River." University of South Florida.
- Ruskauff, G., Aly, A., Tara, P., (2004), "Integrated Northern Tampa Bay an Application of the IHM." INTERA.
- Donigian, A.S. Jr. (2002) "Watershed Model Calibration and Validation: The HSPF Experience." WEF National TMDL Science and Policy 2002, November 13-16, 2002. Phoenix, AZ. WEF Specialty Conference Proceedings on CD-ROM.



APPENDICES

APPENDIX A.1 Land Use Codes within the Little Manatee River Basin

FLUCCSCODE	FLUCSDESC	Generalized Land Use Code
1100	RESIDENTIAL LOW DENSITY < 2 DWELLING UNITS	1
1200	RESIDENTIAL MED DENSITY 2->5 DWELLING UNIT	1
1300	RESIDENTIAL HIGH DENSITY	1
1400	COMMERCIAL AND SERVICES	1
1500	INDUSTRIAL	1
1600	EXTRACTIVE	7
1700	INSTITUTIONAL	1
1800	RECREATIONAL	2
1900	OPEN LAND	3
2100	CROPLAND AND PASTURELAND	3
2140	ROW CROPS	2
2200	TREE CROPS	2
2300	FEEDING OPERATIONS	2
2400	NURSERIES AND VINEYARDS	2
2440	VINEYARDS	2
2500	SPECIALTY FARMS	7
2550	TROPICAL FISH FARMS	7

FLUCCSCODE	FLUCSDESC	Generalized Land Use Code
2600	OTHER OPEN LANDS	3
3100	HERBACEOUS	3
3200	SHRUB AND BRUSHLAND	3
3300	MIXED RANGELAND	3
4100	UPLAND CONIFEROUS FOREST	4
4110	PINE FLATWOODS	4
4200	UPLAND HARDWOOD FORESTS - PART 1	4
4340	HARDWOOD CONIFER MIXED	4
4400	TREE PLANTATIONS	4
5100	STREAMS AND WATERWAYS	5
5200	LAKES	5
5300	RESERVOIRS	5
5400	BAYS AND ESTUARIES	5
6110	BAY SWAMPS	6
6120	MANGROVE SWAMPS	6
6150	STREAM AND LAKE SWAMPS (BOTTOMLAND)	6
6200	WETLAND CONIFEROUS FORESTS	6
6210	CYPRESS	6
6300	WETLAND FORESTED MIXED	6
6400	VEGETATED NON-FORESTED WETLANDS	6

FLUCCSCODE	FLUCSDESC	Generalized Land Use Code
6410	FRESHWATER MARSHES	6
6420	SALTWATER MARSHES	6
6430	WET PRAIRIES	6
6440	EMERGENT AQUATIC VEGETATION	6
6500	NON-VEGETATED	6
6510	TIDAL FLATS/SUBMERGED SHALLOW PLATFORM	6
6520	SHORELINES	6
6530	INTERMITTENT PONDS	6
7400	DISTURBED LAND	7
8100	TRANSPORTATION	1
8200	COMMUNICATIONS	1
8300	UTILITIES	1

APPENDIX A.2 Rain Stations Used to Develop Model Data Time Series

Site	UIDSITENAM	Туре	LAT	LONG	Data Source	Min Date	Max Date
5	KINGSFORD	RAIN	27.7975	-82.0019	SWFWMD	1/1/1990	5/31/2003
26	HERRING	RAIN	27.6998	-82.1421	SWFWMD	1/1/1982	2/28/1999
27	ROMP 49 BALM PARK	RAIN	27.7631	-82.1074	SWFWMD	8/1/1989	9/3/2005
62	FP & L	RAIN	27.6017	-82.3232	SWFWMD	1/1/1988	4/30/2000
104	FOUR CORNERS MINE	RAIN	27.6456	-82.0816	SWFWMD	9/1/1978	5/31/2003
138	WIMAUMA	RAIN	27.7595	-82.2885	SWFWMD	1/1/1981	7/31/1993
152	BLISS TOWER	RAIN	27.5925	-82.4074	SWFWMD	10/1/1975	7/31/1996
172	FORT GREEN	RAIN	27.6731	-81.9883	SWFWMD	10/1/1975	5/31/2003
179	RUSKIN	RAIN	27.7609	-82.3980	SWFWMD	5/1/1976	9/30/2000
214	PARRISH NWS	RAIN	27.5753	-82.4327	SWFWMD	1/1/1958	12/31/2004
254	RG-3 C & F INDUSTRIES	RAIN	27.5628	-81.9938	SWFWMD	1/1/1976	4/30/2005
372	BROWN TOWER	RAIN	27.7614	-82.3313	SWFWMD	7/1/1970	4/30/1998
388	WIMAUMA AIRPORT	RAIN	27.7661	-82.0863	SWFWMD	8/1/1993	10/2/2005
427	ROMP 40 FOUR CORNERS	RAIN	27.6478	-82.0460	SWFWMD	6/27/1992	7/17/2005
429	ROMP 123 STARLING	RAIN	27.6756	-82.1102	SWFWMD	1/2/1992	7/17/2005
496	ROMP 39 OAK KNOLL	RAIN	27.5895	-82.2496	SWFWMD	8/15/1999	7/17/2005
506	ROMP TR 9-2 APOLLO BEACH	RAIN	27.7653	-82.3730	SWFWMD	8/6/1999	7/17/2005
521	ROMP TR 8-1 RUBONIA	RAIN	27.5831	-82.5205	SWFWMD	4/11/2000	7/17/2005
553	GAMBLE CREEK	RAIN	27.5348	-82.2839	SWFWMD	3/6/2001	7/17/2005
554	FROG CREEK	RAIN	27.5797	-82.4872	SWFWMD	8/16/2000	7/16/2005
555	GOVERNMENT HAMMOCK	RAIN	27.5347	-82.4968	SWFWMD	4/4/2001	7/17/2005
558	PARRISH CEMETERY	RAIN	27.5806	-82.4111	SWFWMD	1/1/2001	5/31/2005

ì	1	i i	1	Î.	i .	1	i i
83153	FORT GREEN 12 WSW	RAIN	27.5667	-82.1333	NOAA daily	1/1/1989	7/31/2005
86880	PARRISH	RAIN	27.6167	-82.3500	NOAA daily	1/1/1989	7/31/2005
86880	PARRISH	RAIN	27.6167	-82.3500	NOAA 15-minute	1/1/1989	6/1/2005
84797	LAKELAND	RAIN	28.0167	-81.9167	NOAA 15-minute	1/1/1980	5/1/2003
84802	LAKELAND 2	RAIN	27.9833	-82.0167	NOAA 15-minute	11/1/2001	6/1/2005
87886	ST PETERSBURG WHITTD	RAIN	27.7667	-82.6333	NOAA 15-minute	1/1/1989	6/1/2005

APPENDIX B Model Dataset

RUN	PERLND	82
	PERLND	83
GLOBAL	PERLND	84
LittleManatee, Base5 scen, dec. LZETP, inc. INFILT	PERLND	87
START 1992/ 1/01 00:00 END 2005/ 9/30 24:00	IMPLND	81
RUN INTERP OUTPT LEVELS 5 0	PERLND	91
RESUME 0 RUN 1 UNITS 1	PERLND	92
END GLOBAL	PERLND	93
	PERLND	94
FILES	IMPLND	91
<pre><file> <un#>***<file name<="" td=""><td>> PERLND</td><td>101</td></file></un#></file></pre>	> PERLND	101
MESSU 24 Base6.ech	PERLND	102
91 Base6.out	PERLND	103
WDM1 25 Base6.wdm	PERLND	104
WDM2 26 LManPred.wdm	PERLND	107
BINO 92 Final.hbn	IMPLND	101
END FILES	PERLND	111
	PERLND	112
OPN SEQUENCE	PERLND	113
INGRP INDELT 00:15	PERLND	114
PERLND 11	PERLND	117
PERLND 12	IMPLND	111
PERLND 13	PERLND	121
PERLND 14	PERLND	122
PERLND 17	PERLND	123
IMPLND 11	PERLND	124
PERLND 21	PERLND	127
PERLND 22	IMPLND	121
PERLND 23	PERLND	131
PERLND 24	PERLND	132
PERLND 27	PERLND	133
IMPLND 21	PERLND	134
PERLND 31	PERLND	137
PERLND 32	IMPLND	131
PERLND 33	PERLND	141
PERLND 34	PERLND	142
PERLND 37	PERLND	143
IMPLND 31	PERLND	144
PERLND 41	IMPLND	141
PERLND 42	PERLND	211
PERLND 43	PERLND	212
PERLND 44	PERLND	213
IMPLND 41	PERLND	214
PERLND 51	PERLND	217
PERLND 52	IMPLND	211
PERLND 53	PERLND	221
PERLND 54	PERLND	222
PERLND 57	PERLND	223
IMPLND 51	PERLND	224
PERLND 61	PERLND	227
PERLND 62	IMPLND	221
PERLND 63	PERLND	231
PERLND 64	PERLND	232
PERLND 67	PERLND	233
IMPLND 61	PERLND	234
PERLND 71	PERLND	237
PERLND 72	IMPLND	231
PERLND 73	PERLND	241
PERLND 74	PERLND	242
PERLND 77 IMPLND 71	PERLND	243 244
IMPLND 71 PERLND 81	PERLND PERLND	244
LEUTIND 01	PERLND	24/

IMPLND	241
PERLND	251
PERLND	252
PERLND	253
PERLND	254
PERLND	257
IMPLND	251
PERLND	261
PERLND	262
PERLND	263
PERLND	264
PERLND	267
IMPLND	261
PERLND	271
PERLND	272
PERLND	273
PERLND	274
IMPLND	271
PERLND	281
PERLND	282
PERLND	283
PERLND	284
IMPLND	281
PERLND	292
PERLND	293
PERLND	294
PERLND	297
PERLND	301
PERLIND	302
PERLND	303
PERLND	304
IMPLND	301
PERLND	311
PERLND	312
PERLND	313
PERLND	314
PERLND	317
IMPLND	311
PERLIND	331
PERLND	332
PERLND	333
PERLND	334
PERLND	337
IMPLND	331
PERLND	341
PERLND	342
PERLIND	343
PERLND	344
PERLND	347
IMPLND	341
PERLND	351
PERLND	352
PERLND	353
PERLND	354
IMPLND	351
PERLND	361
PERLND	362
PERLND	363
PERLND	364
PERLND	367
IMPLND	361
RCHRES	1
RCHRES	2
RCHRES	3
RCHRES	4
RCHRES	5
RCHRES	6
RCHRES	7
	,

```
RCHRES
     RCHRES
    RCHRES
              10
     RCHRES
              11
     RCHRES
              12
    RCHRES
              13
    RCHRES
              14
    RCHRES
              21
    RCHRES
              22
    RCHRES
              23
     RCHRES
              24
    RCHRES
              25
     RCHRES
               26
     RCHRES
               27
    RCHRES
              28
     RCHRES
               29
     RCHRES
               30
    RCHRES
              31
    RCHRES
              33
     RCHRES
              34
    RCHRES
              35
    RCHRES
              36
     RCHRES
              206
    RCHRES
             208
    RCHRES
             207
    RCHRES
              205
    RCHRES
             300
     RCHRES
             204
     RCHRES
             203
    RCHRES
             202
     RCHRES
             201
     COPY
               1
    COPY
   END INGRP
END OPN SEQUENCE
PERLND.
ACTIVITY
*** <PLS >
                   Active Sections
*** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
 11 367 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
*** < PLS>
                          Print-flags
                                                          PIVL PYR
*** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC
 11 367 4 4 5 4 4 4 4 4 4 4 4 4
 END PRINT-INFO
 BINARY-INFO
*** < PLS>
                   Binary Output Flags
                                                         PIVL PYR
*** x - x ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC
 11 367 4 4 4 4 4 4 4 4 4 4 4 4
 END BINARY-INFO
 GEN-INFO
                               Unit-systems Printer BinaryOut
*** <PLS >
                                  t-series Engl Metr Engl Metr
*** x - x
                                   in out
                                   1 1 91
  11
       Urban
        Irrigated Land
                                   1 1 91
                                              0 92
  12
  13
        Grass/Pasture
                                   1
                                       1 91
                                               0 92
                                       1 91 0 92
        Forested
  14
                                   1
  17
        Mining/Other
                                   1
                                       1 91
                                              0 92
                                                        0
  21
        Urban
                                           91
  22
        Irrigated Land
                                           91
                                   1
  23
        Grass/Pasture
                                   1 1 91 0 92
                                                        0
```

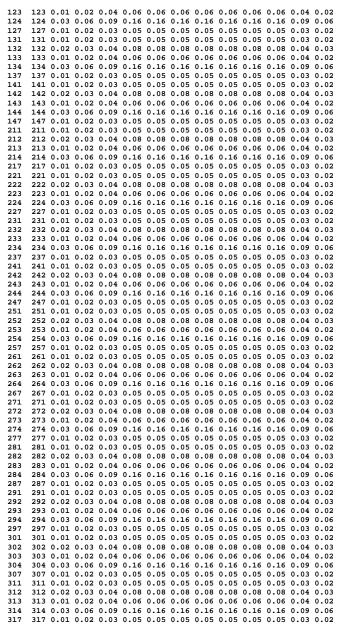

1 1 91

24

27	Mining/Other	1	1	91	0	92	0	231		Urban			1	1	91	0	92	0	
31	Urban	1	1	91	0	92	0	232		Irrigated Land			1	1	91	0	92	0	
32	Irrigated Land	1	1	91	0	92	0	233		Grass/Pasture			1	1	91	0	92	0	
33	Grass/Pasture	1	1	91	0	92	ō	234		Forested			1	1	91	0	92	0	
34	Forested	1	1	91	0	92	0	237		Mining/Other			1	1	91	0	92	0	
					-		•			3						-		•	
37	Mining/Other	1	1	91	0	92	0	241		Urban			1	1	91	0	92	0	
41	Urban	1	1	91	0	92	0	242		Irrigated Land			1	1	91	0	92	0	
42	Irrigated Land	1	1	91	0	92	0	243		Grass/Pasture			1	1	91	0	92	0	
43	Grass/Pasture	1	1	91	0	92	0	244		Forested			1	1	91	0	92	0	
44	Forested	1	1	91	0	92	0	247		Mining/Other			1	1	91	0	92	0	
51	Urban	1	1	91	0	92	0	251		Urban			1	1	91	0	92	0	
52	Irrigated Land	1	1	91	Ö	92	0	252		Irrigated Land			1	1	91	Ö	92	0	
		1	1	91	0	92	0						1	1	91	0	92	0	
53	Grass/Pasture						-	253		Grass/Pasture			_					•	
54	Forested	1	1	91	0	92	0	254		Forested			1	1	91	0	92	0	
57	Mining/Other	1	1	91	0	92	0	257		Mining/Other			1	1	91	0	92	0	
61	Urban	1	1	91	0	92	0	261		Urban			1	1	91	0	92	0	
62	Irrigated Land	1	1	91	0	92	0	262		Irrigated Land			1	1	91	0	92	0	
63	Grass/Pasture	1	1	91	0	92	0	263		Grass/Pasture			1	1	91	0	92	0	
64	Forested	1	1	91	0	92	0	264		Forested			1	1	91	0	92	0	
67	Mining/Other	1	1	91	Ö	92	0	267		Mining/Other			1	1	91	Ö	92	o o	
							-											-	
71	Urban	1	1	91	0	92	0	271		Urban			1	1	91	0	92	0	
72	Irrigated Land	1	1	91	0	92	0	272		Irrigated Land			1	1	91	0	92	0	
73	Grass/Pasture	1	1	91	0	92	0	273		Grass/Pasture			1	1	91	0	92	0	
74	Forested	1	1	91	0	92	0	274		Forested			1	1	91	0	92	0	
77	Mining/Other	1	1	91	0	92	0	281		Urban			1	1	91	0	92	0	
81	Urban	1	1	91	0	92	0	282		Irrigated Land			1	1	91	0	92	0	
82	Irrigated Land	1	1	91	0	92	0	283		Grass/Pasture			1	1	91	ō	92	0	
83		1	1	91	0	92	0	284		Forested			1	1	91	0	92	0	
	Grass/Pasture	_			-		•						_			•		•	
84	Forested	1	1	91	0	92	0	292		Irrigated Land			1	1	91	0	92	0	
87	Mining/Other	1	1	91	0	92	0	293		Grass/Pasture			1	1	91	0	92	0	
91	Urban	1	1	91	0	92	0	294		Forested			1	1	91	0	92	0	
92	Irrigated Land	1	1	91	0	92	0	297		Mining/Other			1	1	91	0	92	0	
93	Grass/Pasture	1	1	91	0	92	0	301		Urban			1	1	91	0	92	0	
94	Forested	1	1	91	0	92	0	302		Irrigated Land			1	1	91	0	92	0	
101	Urban	1	1	91	0	92	0	303		Grass/Pasture			1	1	91	0	92	0	
					-		•									•		•	
102	Irrigated Land	1	1	91	0	92	0	304		Forested			1	1	91	0	92	0	
103	Grass/Pasture	1	1	91	0	92	0	311		Urban			1	1	91	0	92	0	
104	Forested	1	1	91	0	92	0	312		Irrigated Land			1	1	91	0	92	0	
107	Mining/Other	1	1	91	0	92	0	313		Grass/Pasture			1	1	91	0	92	0	
111	Urban	1	1	91	0	92	0	314		Forested			1	1	91	0	92	0	
112	Irrigated Land	1	1	91	0	92	0	317		Mining/Other			1	1	91	0	92	0	
113	Grass/Pasture	1	1	91	0	92	0	331		Urban			1	1	91	0	92	0	
114	Forested	1	1	91	0	92	0	332					1	1	91	0	92	0	
					-		•			Irrigated Land						-		•	
117	Mining/Other	1	1	91	0	92	0	333		Grass/Pasture			1	1	91	0	92	0	
121	Urban	1	1	91	0	92	0	334		Forested			1	1	91	0	92	0	
122	Irrigated Land	1	1	91	0	92	0	337		Mining/Other			1	1	91	0	92	0	
123	Grass/Pasture	1	1	91	0	92	0	341		Urban			1	1	91	0	92	0	
124	Forested	1	1	91	0	92	0	342		Irrigated Land			1	1	91	0	92	0	
127	Mining/Other	1	1	91	0	92	0	343		Grass/Pasture			1	1	91	0	92	0	
131	Urban	1	1	91	Ö	92	0	344		Forested			1	1	91	0	92	0	
				91			-						_		91	-		0	
132	Irrigated Land	1	1		0	92	0	347		Mining/Other			1	1		0	92	•	
133	Grass/Pasture	1	1	91	0	92	0	351		Urban			1	1	91	0	92	0	
134	Forested	1	1	91	0	92	0	352		Irrigated Land			1	1	91	0	92	0	
137	Mining/Other	1	1	91	0	92	0	353		Grass/Pasture			1	1	91	0	92	0	
141	Urban	1	1	91	0	92	0	354		Forested			1	1	91	0	92	0	
142	Irrigated Land	1	1	91	0	92	0	361		Urban			1	1	91	0	92	0	
143	Grass/Pasture	1	1	91	0	92	0	362		Irrigated Land			1	1	91	ō	92	0	
144	Forested	1	1	91	Ö	92	0	363		Grass/Pasture			1	1	91	Ö	92	0	
							-						_					-	
211	Urban	1	1	91	0	92	0	364		Forested			1	1	91	0	92	0	
212	Irrigated Land	1	1	91	0	92	0	367		Mining/Other			1	1	91	0	92	0	
213	Grass/Pasture	1	1	91	0	92	0	END	GEN	N-INFO									
214	Forested	1	1	91	0	92	0												
217	Mining/Other	1	1	91	0	92	0	PWA	r-pa	ARM1									
221	Urban	1	1	91	0	92	0	*** </td <td></td> <td></td> <td>Flags</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Flags								
222	Irrigated Land	1	1	91	Ö	92	0			x CSNO RTOP UZFG	VCS VU		VIFW	VIRC	VLE :	FFC	HWT 1	RRG IFRD	
222	Grass/Pasture	1	1	91	0	92	0	11		0 1 1		0 0	O	VIRC 0	1	1	0	0 0	
							-												
224	Forested	1	1	91	0	92	0	12		0 1 1	_	0 0	0	0	1	1	0	1 0	
227	Mining/Other	1	1	91	0	92	0	13	1	17 0 1 1	1	0 0	0	0	1	1	0	0 0	

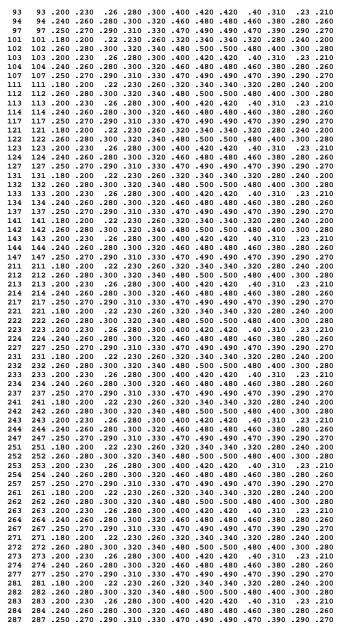
21	0	1	1	1	0	0	0	0	1	1	0	0	0	303 307 0 1 1 1 0 0 0 0 1 1 0 0 0
22	0	1	1	1	0	0	0	Ô	1	1	0	1	0	311 0 1 1 1 0 0 0 0 1 1 0 0 0
	•				•	-	•	-			•		-	
23 27	0	1	1	1	0	0	0	0	1	1	0	0	0	312 0 1 1 1 0 0 0 0 1 1 0 1 0
31	0	1	1	1	0	0	0	0	1	1	0	0	0	313 317 0 1 1 1 0 0 0 0 1 1 0 0 0
32	0	1	1	1	0	0	0	0	1	1	0	1	0	331 0 1 1 1 0 0 0 0 1 1 0 0 0
	0				0								0	
33 37	•	1	1	1	•	0	0	0	1	1	0	0	•	
41	0	1	1	1	0	0	0	0	1	1	0	0	0	333 337 0 1 1 1 0 0 0 0 1 1 0 0 0
42	0	1	1	1	0	0	0	0	1	1	0	1	0	341 0 1 1 1 0 0 0 0 1 1 0 0 0
43 47	0	1	1	1	0	0	0	0	1	1	0	0	0	342 0 1 1 1 0 0 0 0 1 1 0 1 0
	-			_	-	-	-	-	_		-	-	-	
51	0	1	1	1	0	0	0	0	1	1	0	0	0	343 347 0 1 1 1 0 0 0 0 1 1 0 0 0
52	0	1	1	1	0	0	0	0	1	1	0	1	0	351 0 1 1 1 0 0 0 0 1 1 0 0 0
53 57	0	1	1	1	0	0	0	0	1	1	0	0	0	352 0 1 1 1 0 0 0 0 1 1 0 1 0
	-				-		-	-	_		0		-	
61	0	1	1	1	0	0	0	0	1	1	-	0	0	*** ***
62	0	1	1	1	0	0	0	0	1	1	0	1	0	361 0 1 1 1 0 0 0 0 1 1 0 0 0
63 67	0	1	1	1	0	0	0	0	1	1	0	0	0	362 0 1 1 1 0 0 0 0 1 1 0 1 0
71	0	1	1	1	0	0	0	0	1	1	0	0	0	363 367 0 1 1 1 0 0 0 0 1 1 0 0 0
	•		_	_	•	-	-	-	_		-	-	-	
72	0	1	1	1	0	0	0	0	1	1	0	1	0	END PWAT-PARM1
73 77	0	1	1	1	0	0	0	0	1	1	0	0	0	
81	0	1	1	1	0	0	0	0	1	1	0	0	0	*** Use same assumptions as INTB model for irrigation (comments below from INTB)
	0		1		0	Ö	0	0			0	-	0	obe same assumptions as INID model for illigation (comments below from INID)
82	•	1	-	1	•		-	-	1	1	•	1	•	
83 87	0	1	1	1	0	0	0	0	1	1	0	0	0	*** All spray irrigation is considered as coming from an external source
91	0	1	1	1	0	0	0	0	1	1	0	0	0	*** and all is applied as additional precip, i.e. subject to interception.
92	0	1	1	1	0	0	0	0	1	1	0	1	0	*** It is applied using the irrigation function instead of additional
	0	_	1		0		0	0	1		0	0	0	
93 97	•	1	-	1	-	0	-	-	_	1	-	-	-	*** precip so that the amounts can be tracked separately by the program.
101	0	1	1	1	0	0	0	0	1	1	0	0	0	
102	0	1	1	1	0	0	0	0	1	1	0	1	0	*** Drip irrigation is handled separately as lateral inflow. It is not
103 107	0	1	1	1	0	0	0	0	1	1	0	0	0	*** handled as part of the single irrigation demand timeseries so that it
	•		_			-	•	•			•	-	•	
111	0	1	1	1	0	0	0	0	1	1	0	0	0	*** can be given a different daily schedule (6 hrs in the morning) than
112	0	1	1	1	0	0	0	0	1	1	0	1	0	*** the spray (3 hrs in the morning).
113 117	0	1	1	1	0	0	0	0	1	1	0	0	0	
121	0	1	1	1	0	Ö	Ö	Ô	1	1	0	Ö	0	IRRIG-SOURCE
	-		-		-			-		_	-		-	
122	0	1	1	1	0	0	0	0	1	1	0	1	0	*** < PLS> <external><groundwater><></groundwater></external>
123 127	0	1	1	1	0	0	0	0	1	1	0	0	0	*** x - x XPRIOR XFRAC GPRIOR GFRAC RPRIOR RFRAC IRCHNO
131	0	1	1	1	0	0	0	0	1	1	0	0	0	12 362 1 1.0
	•				•	-	-	-			-	-	-	
132	0	1	1	1	0	0	0	0	1	1	0	1	0	END IRRIG-SOURCE
133 137	0	1	1	1	0	0	0	0	1	1	0	0	0	
141	0	1	1	1	0	0	0	0	1	1	0	0	0	IRRIG-TARGET
142	0	1	1	1	0	Ö	Ö	Ô	1	1	Ö	1	0	
	•				•			•					•	
143 147			1	1	0	0	0	0	1	1	0	0	0	*** x - x Intercep Surface Upper Lower Active GW
113 117	0	1											0	
211	0	1	1	1	0	0	0	0	1	1	0	0		12 362 1.0
211	0	1	_	_	•	-	•	•	_	_	•	-	•	
211 212	0	1	1	1	0	0	Ö	0	1	1	Ö	1	0	12 362 1.0 END IRRIG-TARGET
211 212 213 217	0 0	1 1 1	1 1	1 1	0	0	0	0	1	1	0	1	0	END IRRIG-TARGET
211 212	0	1	1	1	0	0	Ö	0	1	1	Ö	1	0	END IRRIG-TARGET
211 212 213 217 221	0 0	1 1 1 1	1 1 1	1 1 1	0	0 0 0	0	0	1	1 1 1	0	1 0 0	0	<pre>END IRRIG-TARGET *** initial LSUR values from Intera geodatabase, all others from corresponding</pre>
211 212 213 217 221 222	0 0 0 0	1 1 1 1	1 1 1	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0 0	1 1 1	1 1 1	0 0 0 0	1 0 0	0 0 0 0	<pre>END IRRIG-TARGET *** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use</pre>
211 212 213 217 221 222 223 227	0 0 0 0 0	1 1 1 1 1	1 1 1 1	1 1 1 1	0 0 0	0 0 0 0	0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	1 0 0 1	0 0 0 0	END IRRIG-TARGET *** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB
211 212 213 217 221 222 223 227 231	0 0 0 0	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	1 0 0 1 0	0 0 0 0 0	END IRRIG-TARGET *** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2
211 212 213 217 221 222 223 227	0 0 0 0 0	1 1 1 1 1	1 1 1 1	1 1 1 1	0 0 0	0 0 0 0	0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	1 0 0 1	0 0 0 0	END IRRIG-TARGET *** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB
211 212 213 217 221 222 223 227 231	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	1 0 0 1 0	0 0 0 0 0	END IRRIG-TARGET *** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC
211 212 213 217 221 222 223 227 231 232 233 237	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1	0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day)
211 212 213 217 221 222 223 227 231 232 233 237 241	0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1	0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 217 221 222 223 227 231 232 233 237 241 242	0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0	#** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 217 221 222 223 227 231 232 233 237 241	0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1	0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 221 222 223 223 231 232 233 241 242 243 247	0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1 0 0 1 0	0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB FWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251 252	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 1 0 0 1	0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251 252	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251 252 253 257 261	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB FWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251 252 253 257 261 262	000000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 245. 0.0051 0. 0.999
211 212 213 217 221 222 223 227 231 232 237 241 242 243 247 251 252 253 257 261 262 263 267	000000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251 252 253 257 261 262	000000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 245. 0.0051 0. 0.999
211 211 212 213 217 221 222 223 227 231 232 233 237 241 242 243 247 251 252 253 257 261 262 263 267 271	000000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB FWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 302. 0.0051 0. 0.999 24 1. 4.40 0.220 500. 0.0069 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0049 0. 0.999
211 211 212 213 217 221 222 223 227 231 232 241 242 243 247 251 252 253 257 261 262 263 267 271 272	000000000000000000000000000000000000000						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 302. 0.0051 0. 0.999 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 245. 0.0041 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0049 0. 0.999 28 1. 4.20 0.250 500. 0.0049 0. 0.999 29 20 1. 4.20 0.250 500. 0.0049 0. 0.999 20 1. 3.60 0.250 500. 0.0049 0. 0.999
211 212 213 217 221 222 223 227 231 241 242 243 247 251 252 253 257 261 262 263 267 271 272 273 277	000000000000000000000000000000000000000							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 324. 0.0051 0. 0.099 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0039 0. 0.999 28 1. 4.20 0.250 302. 0.0051 0. 0.999 29 21 1. 4.20 0.250 302. 0.0051 0. 0.999 20 21 1. 4.20 0.250 302. 0.0051 0. 0.999 21 1. 4.20 0.250 500. 0.0049 0. 0.999 22 1. 4.20 0.250 500. 0.0033 0. 0.999 23 1. 4.20 0.250 159. 0.0068 0. 0.999
211 211 212 213 217 221 222 223 227 231 232 241 242 243 247 251 252 253 257 261 262 263 267 271 272	000000000000000000000000000000000000000						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 302. 0.0051 0. 0.999 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0049 0. 0.999 28 1. 4.20 0.250 302. 0.0051 0. 0.999 29 20 1. 4.20 0.250 302. 0.0051 0. 0.999 20 1. 3.60 0.250 500. 0.0049 0. 0.999
211 212 213 217 221 222 223 227 231 241 242 243 247 251 252 253 257 261 262 263 267 271 272 273 277	000000000000000000000000000000000000000							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC *** x - x (in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 324. 0.0051 0. 0.099 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0039 0. 0.999 28 1. 4.20 0.250 302. 0.0051 0. 0.999 29 21 1. 4.20 0.250 302. 0.0051 0. 0.999 20 21 1. 4.20 0.250 302. 0.0051 0. 0.999 21 1. 4.20 0.250 500. 0.0049 0. 0.999 22 1. 4.20 0.250 500. 0.0033 0. 0.999 23 1. 4.20 0.250 159. 0.0068 0. 0.999
211 211 212 213 217 221 222 223 227 231 241 242 243 247 251 262 263 267 271 272 273 277 281 282	000000000000000000000000000000000000000							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 302. 0.0051 0. 0.999 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0049 0. 0.999 28 1. 4.20 0.250 302. 0.0051 0. 0.999 29 20 1. 4.20 0.250 500. 0.0049 0. 0.999 30 1. 4.20 0.250 159. 0.0068 0. 0.999 31 0. 3.60 0.250 159. 0.0068 0. 0.999 32 1. 4.20 0.250 322. 0.003 0. 0.999 33 1. 4.20 0.250 322. 0.0043 0. 0.999 34 1. 4.40 0.220 500. 0.0089 0. 0.999
211 211 212 213 217 221 222 233 227 231 237 241 242 243 247 251 252 253 257 261 262 263 267 271 272 273 277 281 282 283 287	000000000000000000000000000000000000000						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 325. 0.0051 0.0051 0. 0.999 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0039 0. 0.999 28 1. 4.20 0.250 302. 0.0051 0. 0.999 31 0. 3.60 0.250 159. 0.003 0. 0.999 32 1. 4.20 0.250 322. 0.003 0. 0.999 33 1. 4.20 0.250 322. 0.003 0. 0.999 34 1. 4.40 0.220 500. 0.0089 0. 0.999 35 1. 4.20 0.250 322. 0.0043 0. 0.999 36 1. 4.20 0.250 322. 0.0048 0. 0.999 37 1. 3.80 0.150 300. 0.0089 0. 0.999
211 211 212 213 217 221 222 223 227 231 232 241 242 243 247 251 262 263 267 271 272 273 277 281 282 283 287 291	000000000000000000000000000000000000000				000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000					1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB FWAT-PARM2 *** < PLS> FOREST
211 211 212 213 217 221 222 233 227 231 237 241 242 243 247 251 252 253 257 261 262 263 267 271 272 273 277 281 282 283 287	000000000000000000000000000000000000000						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC (1/in) (in/hr) (ft) (1/in) (1/day) 11 0. 3.60 0.250 143. 0.0068 0. 0.999 12 1. 4.20 0.250 273. 0.0043 0. 0.999 13 1. 4.20 0.250 311. 0.0042 0. 0.999 14 1. 4.40 0.220 500. 0.0061 0. 0.999 17 1. 3.80 0.150 300. 0.0039 0. 0.999 21 0. 3.60 0.250 151. 0.0046 0. 0.999 22 1. 4.20 0.250 245. 0.0041 0. 0.999 23 1. 4.20 0.250 325. 0.0051 0.0051 0. 0.999 24 1. 4.40 0.220 500. 0.0051 0. 0.999 25 1. 4.20 0.250 302. 0.0051 0. 0.999 26 1. 4.20 0.250 302. 0.0051 0. 0.999 27 1. 3.80 0.150 50. 0.0039 0. 0.999 28 1. 4.20 0.250 302. 0.0051 0. 0.999 31 0. 3.60 0.250 159. 0.003 0. 0.999 32 1. 4.20 0.250 322. 0.003 0. 0.999 33 1. 4.20 0.250 322. 0.003 0. 0.999 34 1. 4.40 0.220 500. 0.0089 0. 0.999 35 1. 4.20 0.250 322. 0.0043 0. 0.999 36 1. 4.20 0.250 322. 0.0048 0. 0.999 37 1. 3.80 0.150 300. 0.0089 0. 0.999
211 211 212 213 217 221 222 223 227 231 232 241 242 243 247 251 262 263 267 271 272 273 277 281 282 283 287 291	000000000000000000000000000000000000000				000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000					1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB FWAT-PARM2 *** < PLS> FOREST
211 211 212 213 217 221 222 223 227 231 241 242 243 247 251 252 253 257 261 262 263 267 271 272 273 277 281 282 283 287 291 292 293 297	000000000000000000000000000000000000000				000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2 *** < PLS> FOREST
211 211 212 213 217 221 222 233 227 231 232 243 247 251 262 263 267 271 272 273 277 281 282 283 287 293 297 301	000000000000000000000000000000000000000				000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0		*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB FWATT-PARM2 *** x - x
211 211 212 213 217 221 222 223 227 231 241 242 243 247 251 252 253 257 261 262 263 267 271 272 273 277 281 282 283 287 291 292 293 297	000000000000000000000000000000000000000				000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** initial LSUR values from Intera geodatabase, all others from corresponding INTB land use *** Adjusted INFILT values down by 75% from INTB PWAT-PARM2

52	1.	4.20	0.250	190.	0.0041	0.	0.999	252	1.	5.10	0.250	267.	0.0082	0.	0.999
53	1.	4.20	0.250	315.	0.0048	0.	0.999	253	1.	4.60	0.250	300.	0.0107	0.	0.999
54	1.	4.40	0.220	500.	0.0071	0.	0.999	254	1.	5.40	0.220	500.	0.0128	0.	0.999
57	1.	3.80	0.150	300.	0.0016	0.	0.999	257	1.	3.70	0.150	235.	0.0178	0.	0.999
61	0.	3.60	0.250	159.	0.0054	0.	0.999	261	0.	3.70	0.250	200.	0.0111	0.	0.999
62	1.	4.20	0.250	218.	0.0073	0.	0.999	262	1.	5.10	0.250	182.	0.0078	0.	0.999
63	1.	4.20	0.250	301.	0.0048	0.	0.999	263	1.	4.60	0.250	330.	0.0072	0.	0.999
64	1.	4.40	0.220	500.	0.0077	0.	0.999	264	1.	5.40	0.220	500.	0.0068	0.	0.999
67	1.	3.80	0.150	50.	0.0025	0.	0.999	267	1.	3.70	0.150	300.	0.0051	0.	0.999
71	0.	3.60	0.250	147.	0.0097	0.	0.999	271	0.	3.70	0.250	150.	0.0033	0.	0.999
72	1.	4.20	0.250	198.	0.0048	0.	0.999	272	1.	5.10	0.250	165.	0.009	0.	0.999
73	1.	4.20	0.250	302.	0.0076	0.	0.999	273	1.	4.60	0.250	328.	0.0127	0.	0.999
74	1.	4.40	0.220	500.	0.0186	0.	0.999	274	1.	5.40	0.220	500.	0.0139	0.	0.999
77	1.	3.80	0.150	50.	0.0028	0.	0.999	281	0.	3.70	0.250	144.	0.0079	0.	0.999
81	0.	3.60	0.250	187.	0.0055	0.	0.999	282	1.	5.10	0.250	225.	0.0082	0.	0.999
82	1.	4.20	0.250	228.	0.0035	0.	0.999	283	1.	4.60	0.250	344.	0.0092	0.	0.999
83	1.	4.20	0.250	304.	0.006	0.	0.999	284	1.	5.40	0.220	500.	0.0111	0.	0.999
84	1.	4.40	0.220	500.	0.0055	0.	0.999	292	1.	5.10	0.250	185.	0.0072	0.	0.999
87	1.	3.80	0.150	50.	0.0053	0.	0.999	293	1.	4.60	0.250	309.	0.0072	0.	0.999
91	0.	3.60	0.250	126.	0.004	0.	0.999	294	1.	5.40	0.220	500.	0.0092	0.	0.999
92	1.	4.20	0.250	200.	0.004	0.	0.999	297	1.	3.70	0.150	50.	0.0053	0.	0.999
93	1.	4.20	0.250	304.	0.0069	0.	0.999	301	0.	3.70	0.250	150.	0.046	0.	0.999
94	1.	4.40	0.220	500.	0.0046	0.	0.999	302	1.	5.10	0.250	268.	0.0092	0.	0.999
101		3.60	0.250	181.	0.0046		0.999	303	1.	4.60	0.250	314.	0.0106	0.	0.999
101	0.	4.20	0.250	250.	0.0078	0. 0.	0.999	304	1.	5.40	0.230	500.	0.0108	0.	0.999
103	1. 1.	4.20	0.250	309.	0.0058	0.	0.999	311	0.	3.70	0.250	175.	0.0104	0.	0.999
104	1.	4.40	0.230	500.	0.0109	0.	0.999	312	1.	5.10	0.250	195.	0.0104	0.	0.999
107	1.	3.80	0.150	50.	0.0047	0.	0.999	313	1.	4.60	0.250	338.	0.008	0.	0.999
111	0.	3.60	0.250	188.	0.0063	0.	0.999	314	1.	5.40	0.220	500.	0.0122	0.	0.999
112	1.	4.20	0.250	196.	0.0082	0.	0.999	317	1.	3.70	0.150	50.	0.0081	0.	0.999
113	1.	4.20	0.250	337.	0.0049 0.0072	0.	0.999	331 332	0.	3.70	0.250 0.250	165.	0.0176	0.	0.999 0.999
114 117	1.	4.40	0.220	500.		0. 0.	0.999	332	1.	5.10		198. 331.	0.01	0.	
121	1.	3.80	0.150	96.	0.0041	••	0.999		1.	4.60	0.250		0.0127	0.	0.999 0.999
	0.	3.60	0.250	179.	0.0078	0.	0.999	334	1.	5.40	0.220	500.	0.0171	0.	
122	1.	4.20	0.250	300.	0.0268	0.	0.999	337	1.	3.70	0.150	256.	0.0178	0.	0.999
123	1.	4.20	0.250	325.	0.0124	0.	0.999	341	0.	3.70	0.250	109.	0.0039	0.	0.999
124	1.	4.40	0.220	500.	0.0135	0.	0.999	342	1.	5.10	0.250	165.	0.0039	0.	0.999
127	1.	3.80	0.150	50.	0.005	0.	0.999	343	1.	4.60	0.250	312.	0.0035	0.	0.999
131	0.	3.60	0.250	109.	0.0059	0.	0.999	344	1.	5.40	0.220	500.	0.0095	0.	0.999
132	1.	4.20	0.250	188.	0.0058	0.	0.999	347	1.	3.70	0.150	50.	0.0034	0.	0.999
133	1.	4.20	0.250	318.	0.0065	0.	0.999	351	0.	3.70	0.250	200.	0.0214	0.	0.999
134	1.	4.40	0.220	500.	0.0105	0.	0.999	352	1.	5.10	0.250	156.	0.0073	0.	0.999
137	1.	3.80	0.150	300.	0.0096	0.	0.999	353	1.	4.60	0.250	317.	0.013	0.	0.999
141	0.	3.60	0.250	194.	0.0063	0.	0.999	354	1.	5.40	0.220	500.	0.0222	0.	0.999
142	1.	4.20	0.250	269.	0.0118	0.	0.999	361	0.	3.70	0.250	191.	0.0081	0.	0.999
143	1.	4.20	0.250	368.	0.0061	0.	0.999	362	1.	5.10	0.250	272.	0.0115	0.	0.999
144	1.	4.40	0.220	500.	0.0046	0.	0.999	363	1.	4.60	0.250	313.	0.0103	0.	0.999
211	0.	3.70	0.250	160.	0.0104	0.	0.999	364	1.	5.40	0.220	500.	0.0131	0.	0.999
212	1.	5.10	0.250	222.	0.0091	0.	0.999	367	1.	3.70	0.150	50.	0.0096	0.	0.999
213	1.	4.50	0.250	309.	0.0084	0.	0.999	END PWAT-P	ARMZ						
214	1.	5.0	0.220	500.	0.0075	0.	0.999								
217	1.	3.8	0.150	300.	0.0068	0.	0.999	*** All init							
221	0.	3.40	0.250	186.	0.012	0.	0.999	*** Adjusted							
222	1.	5.70	0.250	221.	0.0069	0.	0.999	*** Adjusted							
223	1.	4.70	0.250	322.	0.0078	0.	0.999	*** Adjusted		lues down	by 50% or	more			
224	1.	6.2	0.220	500.	0.0153	0.	0.999	PWAT-PARM3							
227	1.	3.4	0.150	223.	0.0059	0.	0.999	*** < PLS>	PETMAX	PETMIN	INFEXP	INFILD	DEEPFR	BASETP	AGWETP
231	0.	3.70	0.250	200.	0.0076	0.	0.999	*** x - x	(deg F)	(deg F)	_			_	
232	1.	5.10	0.250	155.	0.0062	0.	0.999	11	40	35	2	2.0	0.1	0	0.1
233	1.	4.60	0.250	320.	0.0062	0.	0.999	12	40	35	2	2.0	0.1	0	0.15
234	1.	5.40	0.220	500.	0.0058	0.	0.999	13	40	35	2	2.0	0.1	0	0.11
237	1.	3.70	0.150	300.	0.0025	0.	0.999	14	40	35	2	2.0	0.1	0	0.12
241	0.	3.70	0.250	200.	0.0078	0.	0.999	17	40	35	2	2.0	0.1	0	0.14
242	1.	5.10	0.250	273.	0.0062	0.	0.999	21	40	35	2	2.0	0.1	0	0.1
243	1.	4.60	0.250	321.	0.0074	0.	0.999	22	40	35	2	2.0	0.1	0	0.15
244	1.	5.40	0.220	500.	0.0093	0.	0.999	23	40	35	2	2.0	0.1	0	0.11
247	1.	3.70	0.150	50.	0.0116	0.	0.999	24	40	35	2	2.0	0.1	0	0.12
251	0.	3.70	0.250	189.	0.0109	0.	0.999	27	40	35	2	2.0	0.1	0	0.14


31	40	35	2	2.0	0.1	0	0.1	232	40	35	2	2.0	0.1	0	0.15
32	40	35	2	2.0	0.1	0	0.15	233	40	35	2	2.0	0.1	0	0.11
33	40	35	2	2.0	0.1	0	0.11	234	40	35	2	2.0	0.1	ő	0.12
						-								-	
34	40	35	2	2.0	0.1	0	0.12	237	40	35	2	2.0	0.1	0	0.14
37	40	35	2	2.0	0.1	0	0.14	241	40	35	2	2.0	0.1	0	0.1
41	40	35	2	2.0	0.1	0	0.1	242	40	35	2	2.0	0.1	0	0.15
42	40	35	2	2.0	0.1	0	0.15	243	40	35	2	2.0	0.1	0	0.11
43	40	35	2	2.0	0.1	0	0.11	244	40	35	2	2.0	0.1	0	0.12
44	40	35	2	2.0	0.1	0	0.12	247	40	35	2	2.0	0.1	0	0.14
51	40	35	2	2.0	0.1	0	0.1	251	40	35	2	2.0	0.1	0	0.1
						0								0	
52	40	35	2	2.0	0.1	•	0.15	252	40	35	2	2.0	0.1	Ü	0.15
53	40	35	2	2.0	0.1	0	0.11	253	40	35	2	2.0	0.1	0	0.11
54	40	35	2	2.0	0.1	0	0.12	254	40	35	2	2.0	0.1	0	0.12
57	40	35	2	2.0	0.1	0	0.14	257	40	35	2	2.0	0.1	0	0.14
61	40	35	2	2.0	0.1	0	0.1	261	40	35	2	2.0	0.1	0	0.1
62	40	35	2	2.0	0.1	0	0.15	262	40	35	2	2.0	0.1	0	0.15
63	40	35	2	2.0	0.1	0	0.11	263	40	35	2	2.0	0.1	0	0.11
64	40	35	2	2.0	0.1	0	0.12	264	40	35	2	2.0	0.1	0	0.12
			_			-								0	
67	40	35	2	2.0	0.1	0	0.14	267	40	35	2	2.0	0.1	0	0.14
71	40	35	2	2.0	0.1	0	0.1	271	40	35	2	2.0	0.1	0	0.1
72	40	35	2	2.0	0.1	0	0.15	272	40	35	2	2.0	0.1	0	0.15
73	40	35	2	2.0	0.1	0	0.11	273	40	35	2	2.0	0.1	0	0.11
74	40	35	2	2.0	0.1	0	0.12	274	40	35	2	2.0	0.1	0	0.12
77	40	35	2	2.0	0.1	0	0.14	281	40	35	2	2.0	0.1	0	0.1
81	40	35	2	2.0	0.1	0	0.1	282	40	35	2	2.0	0.1	0	0.15
82	40	35	2	2.0	0.1	0	0.15	283	40	35	2	2.0	0.1	ő	0.11
		35				-								0	
83	40		2	2.0	0.1	0	0.11	284	40	35	2	2.0	0.1	-	0.12
84	40	35	2	2.0	0.1	0	0.12	292	40	35	2	2.0	0.1	0	0.15
87	40	35	2	2.0	0.1	0	0.14	293	40	35	2	2.0	0.1	0	0.11
91	40	35	2	2.0	0.1	0	0.1	294	40	35	2	2.0	0.1	0	0.12
92	40	35	2	2.0	0.1	0	0.15	297	40	35	2	2.0	0.1	0	0.14
93	40	35	2	2.0	0.1	0	0.11	301	40	35	2	2.0	0.1	0	0.1
94	40	35	2	2.0	0.1	0	0.12	302	40	35	2	2.0	0.1	0	0.15
101	40	35	2	2.0	0.1	0	0.1	303	40	35	2	2.0	0.1	0	0.11
						•								•	
102	40	35	2	2.0	0.1	0	0.15	304	40	35	2	2.0	0.1	0	0.12
103	40	35	2	2.0	0.1	0	0.11	311	40	35	2	2.0	0.1	0	0.1
104	40	35	2	2.0	0.1	0	0.12	312	40	35	2	2.0	0.1	0	0.15
107	40	35	2	2.0	0.1	0	0.14	313	40	35	2	2.0	0.1	0	0.11
111	40	35	2	2.0	0.1	0	0.1	314	40	35	2	2.0	0.1	0	0.12
112	40	35	2	2.0	0.1	0	0.15	317	40	35	2	2.0	0.1	0	0.14
113	40	35	2	2.0	0.1	0	0.11	331	40	35	2	2.0	0.1	0	0.1
						•								0	
114	40	35	2	2.0	0.1	0	0.12	332	40	35	2	2.0	0.1	-	0.15
117	40	35	2	2.0	0.1	0	0.14	333	40	35	2	2.0	0.1	0	0.11
121	40	35	2	2.0	0.1	0	0.1	334	40	35	2	2.0	0.1	0	0.12
122	40	35	2	2.0	0.1	0	0.15	337	40	35	2	2.0	0.1	0	0.14
123	40	35	2	2.0	0.1	0	0.11	341	40	35	2	2.0	0.1	0	0.1
124	40	35	2	2.0	0.1	0	0.12	342	40	35	2	2.0	0.1	0	0.15
127	40	35	2	2.0	0.1	0	0.14	343	40	35	2	2.0	0.1	0	0.11
131	40	35	2	2.0	0.1	0	0.1	344	40	35	2	2.0	0.1	0	0.12
132	40	35	2	2.0	0.1	0	0.15	347	40	35	2	2.0	0.1	0	0.12
						•								0	
133	40	35	2	2.0	0.1	0	0.11	351	40	35	2	2.0	0.1	0	0.1
134	40	35	2	2.0	0.1	0	0.12	352	40	35	2	2.0	0.1	0	0.15
137	40	35	2	2.0	0.1	0	0.14	353	40	35	2	2.0	0.1	0	0.11
141	40	35	2	2.0	0.1	0	0.1	354	40	35	2	2.0	0.1	0	0.12
142	40	35	2	2.0	0.1	0	0.15	361	40	35	2	2.0	0.1	0	0.1
143	40	35	2	2.0	0.1	0	0.11	362	40	35	2	2.0	0.1	0	0.15
144		35	2	2.0	0.1	0	0.12	363	40	35	2		0.1	ő	0.11
	40					-						2.0		-	
211	40	35	2	2.0	0.1	0	0.1	364	40	35	2	2.0	0.1	0	0.12
212	40	35	2	2.0	0.1	0	0.15	367	40	35	2	2.0	0.1	0	0.14
213	40	35	2	2.0	0.1	0	0.11	END PWAT-PA	ARM3						
214	40	35	2	2.0	0.1	0	0.12								
217	40	35	2	2.0	0.1	0	0.14	*** initial U	JZSN and N	SUR values	from Inter	a geodata	abase, all	others from	INTB
221	40	35	2	2.0	0.1	0	0.1	*** Adjusted				3	,		
222	40	35	2	2.0	0.1	0	0.15	PWAT-PARM4	var	acc up by 2					
						0			CEDGG	TIPON	Morro	Thimself	TDG	T GEORG	
223	40	35	2	2.0	0.1	-	0.11	*** <pls></pls>	CEPSC	UZSN	NSUR	INTFW	IRC	LZETP	
224	40	35	2	2.0	0.1	0	0.12	*** x - x	(in)	(in)			(1/day)		
227	40	35	2	2.0	0.1	0	0.14	11	0.05	0.118	0.239	1.20	0.2	0.22	
231	40	35	2	2.0	0.1	0	0.1	12	0.090	0.113	0.298	1.20	0.2	0.35	

13	0.061	0.078	0.300	1.15	0.2	0.2	21	4 0.16	0.15	0.430	1.10	0.2	0.4
14	0.16	0.15	0.450	1.10	0.2	0.4	21		0.1	0.2	1.10	0.2	0.44
17	0.050	0.1	0.2	1.10	0.2	0.44	22		0.137	0.273	1.20	0.2	0.22
21	0.05	0.117	0.229	1.20	0.2	0.22	22		0.100	0.300	1.20	0.2	0.35
22	0.079	0.105	0.288	1.20	0.2	0.35	22		0.089	0.289	1.15	0.2	0.2
23	0.060	0.076	0.303	1.15	0.2	0.2	22	4 0.16	0.15	0.450	1.10	0.2	0.4
24	0.16	0.15	0.450	1.10	0.2	0.4	22	7 0.037	0.119	0.2	1.10	0.2	0.44
27	0.030	0.107	0.2	1.10	0.2	0.44	23		0.150	0.300	1.20	0.2	0.22
31	0.05	0.112	0.240	1.20	0.2	0.22	23		0.081	0.300	1.20	0.2	0.35
32	0.075	0.101	0.295		0.2	0.35	23		0.088	0.290	1.15	0.2	0.2
				1.20									
33	0.064	0.074	0.301	1.15	0.2	0.2	23		0.15	0.450	1.10	0.2	0.4
34	0.16	0.15	0.450	1.10	0.2	0.4	23		0.107	0.2	1.10	0.2	0.44
37	0.030	0.05	0.2	1.10	0.2	0.44	24	1 0.05	0.150	0.300	1.20	0.2	0.22
41	0.05	0.122	0.247	1.20	0.2	0.22	24	2 0.091	0.113	0.297	1.20	0.2	0.35
42	0.090	0.113	0.300	1.20	0.2	0.35	24		0.088	0.290	1.15	0.2	0.2
43	0.066	0.085	0.292	1.15	0.2	0.2	24		0.15	0.450	1.10	0.2	0.4
													0.4
44	0.16	0.15	0.450	1.10	0.2	0.4	24		0.1	0.2	1.10	0.2	0.44
51	0.05	0.127	0.264	1.20	0.2	0.22	25		0.143	0.279	1.20	0.2	0.22
52	0.064	0.091	0.299	1.20	0.2	0.35	25	2 0.089	0.111	0.298	1.20	0.2	0.35
53	0.064	0.084	0.294	1.15	0.2	0.2	25	3 0.060	0.080	0.300	1.15	0.2	0.2
54	0.16	0.15	0.449	1.10	0.2	0.4	25	4 0.16	0.15	0.450	1.10	0.2	0.4
57	0.050	0.1	0.2	1.10	0.2	0.44	25		0.099	0.2	1.10	0.2	0.44
													0.22
61	0.05	0.127	0.253	1.20	0.2	0.22	26		0.150	0.300	1.20	0.2	
62	0.067	0.098	0.270	1.20	0.2	0.35	26		0.089	0.292	1.20	0.2	0.35
63	0.058	0.069	0.309	1.15	0.2	0.2	26	3 0.069	0.092	0.285	1.15	0.2	0.2
64	0.16	0.15	0.450	1.10	0.2	0.4	26	4 0.16	0.15	0.450	1.10	0.2	0.4
67	0.030	0.1	0.2	1.10	0.2	0.44	26	7 0.050	0.1	0.2	1.10	0.2	0.44
71	0.05	0.113	0.225	1.20	0.2	0.22	27	1 0.05	0.080	0.200	1.20	0.2	0.22
72	0.065	0.093	0.294	1.20	0.2	0.35	27		0.084	0.300	1.20	0.2	0.35
73	0.059	0.070	0.308	1.15	0.2	0.2	27		0.091	0.286	1.15	0.2	0.2
74	0.16	0.15	0.450	1.10	0.2	0.4	27		0.15	0.450	1.10	0.2	0.4
77	0.030	0.1	0.2	1.10	0.2	0.44	28	1 0.05	0.116	0.216	1.20	0.2	0.22
81	0.05	0.142	0.283	1.20	0.2	0.22	28	2 0.075	0.100	0.300	1.20	0.2	0.35
82	0.076	0.101	0.300	1.20	0.2	0.35	28	3 0.071	0.098	0.278	1.15	0.2	0.2
83	0.061	0.078	0.301	1.15	0.2	0.2	28		0.15	0.450	1.10	0.2	0.4
84		0.15	0.450		0.2	0.4	29		0.089	0.300		0.2	0.35
	0.16			1.10							1.20		
87	0.030	0.1	0.2	1.10	0.2	0.44	29		0.084	0.296	1.15	0.2	0.2
91	0.05	0.108	0.222	1.20	0.2	0.22	29		0.15	0.450	1.10	0.2	0.4
92	0.070	0.100	0.300	1.20	0.2	0.35	29	7 0.030	0.1	0.2	1.10	0.2	0.44
93	0.061	0.078	0.301	1.15	0.2	0.2	30	1 0.05	0.096	0.200	1.20	0.2	0.22
94	0.16	0.15	0.450	1.10	0.2	0.4	30	2 0.089	0.112	0.300	1.20	0.2	0.35
101	0.05	0.124	0.263	1.20	0.2	0.22	30		0.086	0.293	1.15	0.2	0.2
102	0.083	0.107	0.300	1.20	0.2	0.35	30		0.15	0.450	1.10	0.2	0.4
103	0.062	0.083	0.296	1.15	0.2	0.2	31		0.136	0.264	1.20	0.2	0.22
104	0.16	0.15	0.438	1.10	0.2	0.4	31		0.092	0.297	1.20	0.2	0.35
107	0.030	0.1	0.2	1.10	0.2	0.44	31		0.095	0.282	1.15	0.2	0.2
111	0.05	0.139	0.275	1.20	0.2	0.22	31	4 0.16	0.15	0.449	1.10	0.2	0.4
112	0.064	0.093	0.295	1.20	0.2	0.35	31	7 0.030	0.1	0.2	1.10	0.2	0.44
113	0.071	0.093	0.283	1.15	0.2	0.2	33		0.115	0.237	1.20	0.2	0.22
114	0.16	0.15	0.450	1.10	0.2	0.4	33		0.093	0.300	1.20	0.2	0.35
117	0.030	0.084	0.2	1.10	0.2	0.44	33		0.092	0.285	1.15	0.2	0.33
121	0.05	0.125	0.263	1.20	0.2	0.22	33		0.15	0.450	1.10	0.2	0.4
122	0.100	0.120	0.300	1.20	0.2	0.35	33		0.068	0.2	1.10	0.2	0.44
123	0.067	0.087	0.290	1.15	0.2	0.2	34	1 0.05	0.104	0.117	1.20	0.2	0.22
124	0.16	0.15	0.443	1.10	0.2	0.4	34	2 0.055	0.084	0.300	1.20	0.2	0.35
127	0.030	0.1	0.2	1.10	0.2	0.44	34	3 0.063	0.085	0.294	1.15	0.2	0.2
131	0.05	0.100	0.193	1.20	0.2	0.22	34		0.15	0.450	1.10	0.2	0.4
132	0.065	0.095	0.300	1.20	0.2	0.35	34		0.1	0.2	1.10	0.2	0.44
133	0.063	0.071	0.305	1.15	0.2	0.2	35		0.150	0.300	1.20	0.2	0.22
134	0.16	0.15	0.450	1.10	0.2	0.4	35		0.082	0.300	1.20	0.2	0.35
137	0.030	0.1	0.2	1.10	0.2	0.44	35		0.087	0.292	1.15	0.2	0.2
141	0.05	0.147	0.289	1.20	0.2	0.22	35	4 0.16	0.15	0.450	1.10	0.2	0.4
142	0.089	0.112	0.295	1.20	0.2	0.35	36		0.146	0.282	1.20	0.2	0.22
143	0.079	0.098	0.274	1.15	0.2	0.2	36		0.112	0.300	1.20	0.2	0.35
144	0.16	0.15	0.434	1.10	0.2	0.4	36		0.085	0.294	1.15	0.2	0.33
211	0.05	0.126	0.246	1.20	0.2	0.22	36		0.15	0.450	1.10	0.2	0.4
212	0.074	0.099	0.299	1.20	0.2	0.35	36		0.1	0.2	1.10	0.2	0.44
213	0.062	0.084	0.296	1.15	0.2	0.2	EN	D PWAT-PARM4					

PWAT-STATE1														
*** <	PLS>	PWA:	TER st	tate '	varial	oles	(in)							
*** x	- x		CEPS		SURS		UZS		IFWS		LZS		AGWS	GWVS
11	367		0.01		0.01		0.1		0.02		5.0	:	20.00	0.01
END	PWAT-	-STAT	E1											
*** max CEPSC values from Intera geodatabase, used INTB for variation MON-INTERCEP														
*** <p< td=""><td></td><td></td><td>ercept</td><td>tion :</td><td>stora</td><td>re car</td><td>pacity</td><td>z at s</td><td>start</td><td>of ea</td><td>ach mo</td><td>onth</td><td>(in)</td><td></td></p<>			ercept	tion :	stora	re car	pacity	z at s	start	of ea	ach mo	onth	(in)	
*** x											OCT		DEC	
11					0.05								0.02	
12	12	0.02	0.03	0.04	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.04	0.03	
13					0.06									
14					0.16									
17					0.05									
21 22					0.05									
23					0.06									
24					0.16									
27					0.05									
31					0.05									
32	32	0.02	0.03	0.04	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.04	0.03	
33					0.06									
34					0.16									
37 41					0.05									
41					0.05									
42					0.06									
44					0.16									
47					0.05									
51	51	0.01	0.02	0.03	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.03	0.02	
52					0.08									
53					0.06									
54					0.16									
57 61					0.05									
62					0.05									
63					0.06									
64					0.16									
67					0.05									
71					0.05									
72					0.08									
73					0.06									
74					0.16									
77 81					0.05									
82					0.08									
83					0.06									
84	84	0.03	0.06	0.09	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.09	0.06	
87	87	0.01	0.02	0.03	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.03	0.02	
91					0.05									
92					0.08									
93 94					0.06 0.16									
97					0.05									
101					0.05									
102					0.08									
103					0.06									
104					0.16									
107					0.05									
111					0.05									
112					0.08									
113 114					0.06									
114					0.16									
121					0.05									
122					0.08									



334 334 0.03 0.06 0.09 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.09 0.06 344 344 0.03 0.06 0.09 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.09 0.06 354 0.03 0.06 0.09 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.09 0.06 364 364 0.03 0.06 0.09 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.09 0.06 END MON-INTERCEP

*** INTB values lowered 25 to 50 percent

MON-LZETPARM

*** <PLS > Lower zone evapotransp parm at start of each month *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 11 11 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 12 12 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 13 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 14 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 17 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 21 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 22 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 23 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 24 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 27 27 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 31 31 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 32 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 33 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 34 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 37 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 41 41 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 42 42 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 43 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 44 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 47 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 51 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 52 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 53 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 54 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 57 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 61 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 62 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 63 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 64 64 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 67 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 71 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 72 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 73 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 74 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 77 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 81 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 82 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280 83 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210 84 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260 87 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270 91 91 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200 92 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280


```
291 291 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                         11 361 0 0 0 0
 292 292 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                        END IWAT-PARM1
 293 293 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
 294 294 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                        TWAT-PARM2
  297 297 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270
                                                                                       *** <ILS >
                                                                                                      T.STIR
                                                                                       *** x - x
 301 301 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                                      (ft)
 302 302 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                         11
                                                                                                      100.
 303 303 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
                                                                                         21
                                                                                                      100.
 304 304 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                         31
                                                                                                     100.
 307 307 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270
                                                                                         41
                                                                                                     100.
  311 311 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                         51
                                                                                                      100.
 312 312 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                                     100
                                                                                         61
 313 313 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
                                                                                         71
                                                                                                      100.
 314 314 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                         81
                                                                                                      100.
 317 317 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270
                                                                                         91
                                                                                                     100.
  331 331 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                        101
                                                                                                      100.
  332 332 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                        111
                                                                                                      100.
 333 333 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
                                                                                        121
                                                                                                     100.
 334 334 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                        131
                                                                                                     100.
  337 337 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270
                                                                                        141
                                                                                                      100.
 341 341 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                        211
                                                                                                     100.
 342 342 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                        221
                                                                                                     100.
  343 343 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
                                                                                        231
                                                                                                      100.
 344 344 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                        241
                                                                                                     100.
 347 347 .250 .270 .290 .310 .330 .470 .490 .470 .390 .290 .270
                                                                                        251
                                                                                                     100.
 351 351 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                        261
                                                                                                      100.
 352 352 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                        271
                                                                                                     100.
 353 353 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
                                                                                        281
                                                                                                      100.
  354 354 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                        301
                                                                                                      100.
 357 357 .250 .270 .290 .310 .330 .470 .490 .470 .390 .290 .270
                                                                                        311
                                                                                                     100.
  361 361 .180 .200 .22 .230 .260 .320 .340 .340 .320 .280 .240 .200
                                                                                        331
                                                                                                      100.
  362 362 .260 .280 .300 .320 .340 .480 .500 .500 .480 .400 .300 .280
                                                                                        341
                                                                                                      100.
 363 363 .200 .230 .26 .280 .300 .400 .420 .420 .40 .310 .23 .210
                                                                                        351
                                                                                                     100.
 364 364 .240 .260 .280 .300 .320 .460 .480 .480 .460 .380 .280 .260
                                                                                        361
                                                                                                     100.
 367 367 .250 .270 .290 .310 .330 .470 .490 .490 .470 .390 .290 .270
                                                                                        END TWAT-PARM2
 END MON-LZETPARM
                                                                                        TWAT-PARM3
END PERLND
                                                                                       *** <ILS > PETMAX
                                                                                       *** x - x
                                                                                                   (deg F)
TMDT ND
                                                                                         11 361
                                                                                                      40.
 ACTIVITY
                                                                                        END IWAT-PARM3
*** <ILS >
                      Active Sections
*** x - x ATMP SNOW IWAT SLD IWG IQAL
                                                                                        IWAT-STATE1
 11 361 0 0 1 0 0
                                                                                       *** x - x
 END ACTIVITY
                                                                                                     RETS
                                                                                         11 361
                                                                                                      0.01
                                                                                        END IWAT-STATE1
*** <ILS > ****** Print-flags ****** PIVL PYR
*** x - x ATMP SNOW IWAT SLD IWG IQAL *******
                                                                                      END IMPLND
 11 361 4 4 4 4 4 1 12
 END PRINT-INFO
                                                                                      RCHRES
                                                                                        ACTIVITY
 BINARY-INFO
*** <ILS > **** Binary-Output-flags **** PIVL PYR
*** x - x ATMP SNOW IWAT SLD IWG IQAL ********
 11 361 4 4 5 4 4 1 12
                                                                                         END ACTIVITY
 END BINARY-INFO
                                                                                        PRINT-INFO
 GEN-INFO
                               Unit-systems Printer BinaryOut
*** <ILS >
                                  t-series Engl Metr Engl Metr
*** x - x
                                    in out
                                                                                        END PRINT-INFO
 11 361Urban
                                                  0 92
                                    1 1
                                             0
 END GEN-INFO
                                                                                        BINARY-INFO
 IWAT-PARM1
*** <ILS >
                Flags
                                                                                         1 300 3 4
*** x - x CSNO RTOP VRS VNN RTLI
                                                                                         END BINARY-INFO
Estimating the Un-Gaged Inflows in the
Little Manatee River Basin, Florida
```

ST.SITE NSIIR RETSC (in) 0.0068 0.05 0.1 0.0046 0.05 0.1 0.0068 0.05 0.1 0.0136 0.05 0.1 0.0056 0.05 0.1 0 0054 0.05 0 1 0.0097 0.05 0.1 0.0055 0.05 0.1 2.38E-06 0.05 0.1 0.0076 0.05 0.1 0.0063 0.05 0.1 0.0078 0.05 0.1 0.0059 0.05 0.1 0.0063 0.05 0.1 0.0104 0.05 0.1 0.012 0.05 0.1 0.0006 0.05 0.1 0.0078 0.05 0.1 0.0109 0.05 0.1 0.0111 0.05 0.1 0.0003 0.05 0.1 0.0079 0.05 0.1 0.046 0.05 0.1 0.0104 0.05 0.1 0.0176 0.05 0.1 0.0039 0.05 0.1 0.0214 0.05 0.1 0.0081 0.05 0.1 PETMIN (deg F) 35. *** <ILS > IWATER state variables (inches) SURS 0.01 *** RCHRES Active sections *** x - x HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG 1 300 1 0 0 0 0 0 0 0 0 *** RCHRES Printout level flags *** x - x HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR 1 300 4 4 4 4 4 4 4 4 4 1 12 *** RCHRES Binary Output level flags *** x - x HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR 4 4 4 4 4 4 4 1 12

March 2006

							12	0. 12.	1.	3.	3.2	0.5	0.01
GEN-INF	' O						13	0. 13.	1.	3.	3.2	0.5	0.01
***	Name	Nexits Un	it Systems Pr	inter			14	0. 14.	1.	3.	3.2	0.5	0.01
*** RCHRE	s		t-series Engl	Metr LKF	3		21	0. 21.	1.	3.	3.2	0.5	0.01
*** x -			in out					0. 22.	1.	3.	3.2	0.5	0.01
1	Reach 1	1	1 1 91	0 :		0		0. 23.	1.	3.	3.2	0.5	0.01
2	Reach 2	1	1 1 91		L 92	0		0. 24.	1.	3.	3.2	0.5	0.01
3	Reach 3	1	1 1 91		L 92	0		0. 25.	1.	3.	3.2	0.5	0.01
4 5	Reach 4 Reach 5	1 1	1 1 91 1 1 91		L 92 L 92	0	26 27	0. 26. 0. 27.	1. 1.	3. 3.	3.2 3.2	0.5 0.5	0.01 0.01
6	Reach 6	1	1 1 91		L 92	0		0. 27.	1.	3.	3.2	0.5	0.01
7	Reach 7	1	1 1 91	0 :		0		0. 29.	1.	3.	3.2	0.5	0.01
8	Reach 8	1	1 1 91	0 :		0		0. 30.	1.	3.	3.2	0.5	0.01
9	Reach 9	1	1 1 91	0 :		0		0. 31.	1.	3.	3.2	0.5	0.01
10	Reach 10	1	1 1 91	0 :	L 92	0	33	0. 33.	1.	3.	3.2	0.5	0.01
11	Reach 11	1	1 1 91	0 :	L 92	0	34	0. 34.	1.	3.	3.2	0.5	0.01
12	Reach 12	1	1 1 91	0 :	L 92	0		0. 35.	1.	3.	3.2	0.5	0.01
13	Reach 13	1	1 1 91	0 :		0		0. 36.	1.	3.	3.2	0.5	0.01
14	Reach 14	1	1 1 91	0 3		0		0. 201.	1.	3.	3.2	0.5	0.01
21	Reach 21	1	1 1 91		L 92	0		0. 202.	1.	3.	3.2	0.5	0.01
22	Reach 22	1	1 1 91		L 92	0		0. 203.	1.	3.	3.2	0.5	0.01
23	Reach 23	1	1 1 91		L 92	0		0. 204.	1.	3.	3.2	0.5	0.01
24	Reach 24	1	1 1 91	0 :		0		0. 205.	1.	3.	3.2	0.5	0.01
25	Reach 25	1	1 1 91 1 1 91		L 92	0		0. 206.	1.	3.	3.2	0.5	0.01
26 27	Reach 26 Reach 27	1 1	1 1 91 1 1 91	0 1	L 92 L 92	0		0. 207. 0. 208.	1. 1.	3. 3.	3.2 3.2	0.5 0.5	0.01 0.01
28	Reach 28	1	1 1 91	0 :		0		0. 300.	1.	3.	3.2	0.5	0.01
29	Reach 29	1	1 1 91	0 :		0	END HYDR-PA			٥.	3.2	0.5	0.01
30	Reach 30	1	1 1 91		92	0							
31	Reach 31	1	1 1 91	0 :		0	HYDR-INIT						
33	Reach 33	1	1 1 91		L 92	0		Initial c	onditions for	HYDR sect	ion		
34	Reach 34	1	1 1 91	0 :	L 92	0	***RC HRES	VOL	CAT Initial v	alue of	COLIND	initial	value of OUTDGT
35	Reach 35	1	1 1 91	0 :	L 92	0	*** x - x	ac-ft	for each	possible	exit fo	r each pos	ssible exit,ft3
36	Reach 36	1	1 1 91	0 :		0	1 20	20.00	4.2 4.5	4.5 4.	5 4.2	2.1 1	.2 0.5 1.2 1.8
201	Reach 201	1	1 1 91	0 (0	21 21	200.00	4.2 4.5				.2 0.5 1.2 1.8
202	Reach 202	1	1 1 91	0 (0	22 300	20.00	4.2 4.5	4.5 4.	5 4.2	2.1 1	.2 0.5 1.2 1.8
203	Reach 203	1	1 1 91	0 (0	END HYDR-IN	TIV					
204	Reach 204	1	1 1 91	0 (, ,_	0							
205 206	Reach 205 Reach 206	2	1 1 91 1 1 91) 92) 92	0	END RCHRES						
206	Reach 206	1 1	1 1 91	0 (0	FTABLES						
208	Reach 208	1	1 1 91		92	0	*****						
300	Reach 300	1	1 1 91	-	92	0	FTABLE	1					
END GEN		-			, , , ,		ROWS COLS***	_					
							13 4						
HYDR-PA	RM1						*** DEPTH	AREA	VOLUME D	ISCH FLO)-THRU ***		
***	Flags for HYDR						*** (FT) ((ACRES)	(AC-FT) (CFS)	(MIN) ***		
*** RCHRE						for each		.932E+02	0	0			
	x FG FG FG FG po		*** possible	exit		e exit			3.731E+01 5.42				
1 20		4 0 0 0 0				1 1 1			7.463E+01 7.03				
205 20		4 0 0 0 0				1 1 1			1.119E+02 2.60				
206 30 END HYD		4 0 0 0 0	0 0 0	0 0	1 1	1 1 1			1.493E+02 4.24 1.866E+02 6.24				
END HIL	R-PARMI								2.239E+02 8.58				
HYDR-PA	рм2								2.799E+02 1.18				
	S FTBW FTBU	LEN DELTH	STCOR	KS	DB50				3.545E+02 1.61				
*** x -		les) (ft)			(in)				4.478E+02 2.11				
1	0. 1.	1. 3.		0.5	0.01				5.659E+02 2.69				
2	0. 2.	1. 3.		0.5	0.01				6.903E+02 2.96				
3	0. 3.	1. 3.	3.2	0.5	0.01		9.081E+00 1.	.932E+02	4.555E+03 5.92	1E+02			
4	0. 4.	1. 3.		0.5	0.01		END FTABLE	1					
5	0. 5.	1. 3.		0.5	0.01		*****						
6	0. 6.	1. 3.		0.5	0.01		FTABLE	2					
7	0. 7.	1. 3.		0.5	0.01		ROWS COLS***	*					
8	0. 8.	1. 3.		0.5	0.01		13 4		1101 1111 = =				
9	0. 9.	1. 3.		0.5	0.01		*** DEPTH *** (FT) (AREA)-THRU ***		
10 11	0. 10. 0. 11.	1. 3. 1. 3.		0.5 0.5	0.01 0.01		(/ ((ACRES)	(AC-FT) (CFS)	(MIN) ***		
11	0. 11.	1. 3.	3.2	0.5	0.01		0 3.) + L + U Z	U	U			


```
1.019E+00 3.494E+02 1.068E+02 1.167E+00
 2.037E+00 3.494E+02 2.136E+02 1.511E+01
3.056E+00 3.494E+02 3.203E+02 5.587E+01
 4.074E+00 3.494E+02 4.271E+02 9.124E+01
 5.093E+00 3.494E+02 5.339E+02 1.342E+02
 6.112E+00 3.494E+02 6.407E+02 1.845E+02
 7.130E+00 3.494E+02 8.008E+02 2.553E+02
 8.149E+00 3.494E+02 1.014E+03 3.468E+02
9.167E+00 3.494E+02 1.281E+03 4.542E+02
1.019E+01 3.494E+02 1.619E+03 5.783E+02
 1.120E+01 3.494E+02 1.975E+03 6.362E+02
1.320E+01 3.494E+02 8.964E+03 1.272E+03
  END FTABLE 2
  *****
 FTABLE
 ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
      (FT) (ACRES)
                      (AC-FT)
                                  (CFS)
                                            (MTN) ***
        0 1.522E+02
4.127E-01 1.522E+02 1.884E+01 2.589E-01
 8.255E-01 1.522E+02 3.769E+01 3.352E+00
 1.238E+00 1.522E+02 5.653E+01 1.240E+01
1.651E+00 1.522E+02 7.537E+01 2.025E+01
 2.064E+00 1.522E+02 9.422E+01 2.977E+01
 2.476E+00 1.522E+02 1.131E+02 4.093E+01
2.889E+00 1.522E+02 1.413E+02 5.665E+01
 3.302E+00 1.522E+02 1.790E+02 7.695E+01
 3.715E+00 1.522E+02 2.261E+02 1.008E+02
 4.127E+00 1.522E+02 2.858E+02 1.283E+02
 4.540E+00 1.522E+02 3.486E+02 1.412E+02
 6.540E+00 1.522E+02 3.392E+03 2.823E+02
 END FTABLE 3
  *****
 FTABLE
 ROWS COLS***
  13
       4
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
    (FT) (ACRES)
                                            (MIN) ***
                                 (CFS)
                     (AC-FT)
        0 5.174E+02
 7.272E-01 5.174E+02 1.129E+02 6.652E-01
1.454E+00 5.174E+02 2.258E+02 8.614E+00
 2.182E+00 5.174E+02 3.386E+02 3.186E+01
 2.909E+00 5.174E+02 4.515E+02 5.203E+01
3.636E+00 5.174E+02 5.644E+02 7.650E+01
 4.363E+00 5.174E+02 6.773E+02 1.052E+02
 5.090E+00 5.174E+02 8.466E+02 1.456E+02
 5.817E+00 5.174E+02 1.072E+03 1.977E+02
 6.545E+00 5.174E+02 1.355E+03 2.590E+02
 7.272E+00 5.174E+02 1.712E+03 3.298E+02
7.999E+00 5.174E+02 2.088E+03 3.628E+02
 9.999E+00 5.174E+02 1.244E+04 7.256E+02
  END FTABLE 4
 FTARLE
 ROWS COLS***
  13
                                 DISCH FLO-THRU ***
*** DEPTH
              AREA
                      VOLUME
***
     (FT) (ACRES)
                                            (MIN) ***
                      (AC-FT)
                                  (CFS)
        0 2.600E+03
1.025E+00 2.600E+03 7.991E+02 6.746E-01
 2.049E+00 2.600E+03 1.598E+03 1.081E+01
3.074E+00 2.600E+03 2.397E+03 4.347E+01
 4.098E+00 2.600E+03 3.196E+03 7.142E+01
 5.123E+00 2.600E+03 3.995E+03 1.102E+02
 6.148E+00 2.600E+03 4.794E+03 2.192E+02
 7.172E+00 2.600E+03 5.993E+03 4.918E+02
 8.197E+00 2.600E+03 7.591E+03 9.919E+02
Estimating the Un-Gaged Inflows in the
```

Little Manatee River Basin, Florida

March 2006

```
9.221E+00 2.600E+03 9.589E+03 1.841E+03
1.025E+01 2.600E+03 1.212E+04 3.198E+03
1.127E+01 2.600E+03 1.478E+04 3.518E+03
1.327E+01 2.600E+03 6.677E+04 7.036E+03
 END FTABLE 5
 FTARLE
ROWS COLS***
  13 4
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                           (MIN) ***
        0 5.575E+00
3.046E-01 5.575E+00 5.094E-01 1.560E-01
6.092E-01 5.575E+00 1.019E+00 2.020E+00
9.137E-01 5.575E+00 1.528E+00 7.470E+00
1.218E+00 5.575E+00 2.038E+00 1.220E+01
1.523E+00 5.575E+00 2.547E+00 1.794E+01
1.827E+00 5.575E+00 3.057E+00 2.466E+01
2.132E+00 5.575E+00 3.821E+00 3.414E+01
2.437E+00 5.575E+00 4.840E+00 4.637E+01
2.741E+00 5.575E+00 6.113E+00 6.073E+01
3.046E+00 5.575E+00 7.726E+00 7.733E+01
3.350E+00 5.575E+00 9.425E+00 8.506E+01
5.350E+00 5.575E+00 1.125E+03 1.701E+02
 END FTABLE 6
 *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
                                 DISCH FLO-THRU ***
              AREA
                      VOLUME
***
     (FT)
           (ACRES)
                     (AC-FT)
                                  (CFS)
                                           (MIN) ***
        0 8.950E+01
5.444E-01 8.950E+01 1.462E+01 4.107E-01
1.089E+00 8.950E+01 2.924E+01 5.318E+00
1.633E+00 8.950E+01 4.386E+01 1.967E+01
2.178E+00 8.950E+01 5.848E+01 3.212E+01
2.722E+00 8.950E+01 7.310E+01 4.723E+01
3.267E+00 8.950E+01 8.771E+01 6.494E+01
3.811E+00 8.950E+01 1.096E+02 8.988E+01
4.356E+00 8.950E+01 1.389E+02 1.221E+02
4.900E+00 8.950E+01 1.754E+02 1.599E+02
5.444E+00 8.950E+01 2.217E+02 2.036E+02
5.989E+00 8.950E+01 2.705E+02 2.240E+02
7.989E+00 8.950E+01 2.061E+03 4.479E+02
 END FTABLE 7
 *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH
                                        FLO-THRU ***
     (FT) (ACRES)
                                           (MTN) ***
                     (AC-FT)
                                 (CFS)
        0 1.079E+02
5.056E-01 1.079E+02 1.636E+01 3.630E-01
1.011E+00 1.079E+02 3.273E+01 4.700E+00
1.517E+00 1.079E+02 4.909E+01 1.739E+01
2.022E+00 1.079E+02 6.546E+01 2.839E+01
2.528E+00 1.079E+02 8.182E+01 4.175E+01
3.034E+00 1.079E+02 9.819E+01 5.740E+01
3.539E+00 1.079E+02 1.227E+02 7.944E+01
4.045E+00 1.079E+02 1.555E+02 1.079E+02
4.550E+00 1.079E+02 1.964E+02 1.413E+02
 5.056E+00 1.079E+02 2.482E+02 1.800E+02
5.561E+00 1.079E+02 3.027E+02 1.980E+02
7.561E+00 1.079E+02 2.461E+03 3.959E+02
 END FTABLE 8
 *****
 FTARLE
ROWS COLS***
```


13						
***	DEPTH	AREA (ACRES)	VOLUME (AC-FT)	DISCH (CEC)	FLO-THRU (MIN)	
		3.447E+01	(AC-F1)	(CF5)	(MIN)	
			2.814E+00			
			5.628E+00			
			8.442E+00 1.126E+01			
			1.407E+01			
1 63	3F+00	3 447E+01	1 688F±01	2 044E+01		
1.90	5E+00	3.447E+01	2.110E+01 2.673E+01 3.377E+01 4.268E+01	2.829E+01		
2.17	7E+00	3.447E+01	2.673E+01	3.843E+01		
2.44	9E+00	3.447E+01	3.377E+01	5.034E+01		
2 9 9	3E+00	3.44/E+01	5.206E+01	7 0508+01		
			7.414E+02			
END	FTAB					

	BLE	10				
ROWS	COLS	***				
	DEPTH		VOLUME	DISCH	FLO-THRU	***
***	(FT)	(ACRES)	(AC-FT)	(CFS)	(MIN)	
	0	2.769E+01	0	0		
6.02	1E-01	2.769E+01	5.001E+00 1.000E+01	4.857E-01		
1.20	4E+00	2.769E+01	1.000E+01	6.289E+00		
			1.500E+01 2.000E+01			
			2.500E+01			
			3.001E+01			
			3.751E+01			
4.81	7E+00	2.769E+01	4.751E+01	1.444E+02		
5.41	9E+00	2.769E+01	6.001E+01 7.585E+01	1.891E+02		
6.02	1E+00	2.769E+01	7.585E+01	2.408E+02		
6.62	3E+00	2.769E+01	9.252E+01	2.649E+02		
	FTAB		5.630E+03	3.29/E+UZ		

	BLE	11				
	COLS	***				
13						
***	4 DEDTU		NOT TIME	DICCH	EIO TUDII	
***	DEPTH	AREA	VOLUME	DISCH	FLO-THRU	
	DEPTH (FT)	AREA	VOLUME (AC-FT)	(CFS)	FLO-THRU (MIN)	
***	DEPTH (FT) 0	AREA (ACRES) 1.409E+03	•	•		
*** 9.30 1.86	DEPTH (FT) 0 1E-01 0E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02	1.003E+00 1.298E+01		
*** 9.30 1.86 2.79	DEPTH (FT) 0 1E-01 0E+00 0E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03	1.003E+00 1.298E+01 4.801E+01		
*** 9.30 1.86 2.79 3.72	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01		
*** 9.30 1.86 2.79 3.72 4.65	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02		
*** 9.30 1.86 2.79 3.72 4.65 5.58	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 1.585E+02		
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 2.949E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 1.585E+02 2.194E+02		
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 2.949E+03 2.949E+03 3.735E+03 4.718E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02		
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 5.963E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02		
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 5.963E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02		
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00 3E+01 3E+01	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 2.949E+03 2.949E+03 3.735E+03 4.718E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02		
9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 1.22	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 5.963E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02		
9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 1.22 ENL	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00 1E+00 3E+01 3E+01 FTAB	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 5.963E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02		
9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 END ***	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00 1E+00 1E+00 3E+01 3E+01 FTAB	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 5.963E+03	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02		
9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 END *** FTA ROWS 13	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+01 1E+00 1E+01 3E+01 FTAB: *** BLE COLS:	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 5.963E+03 7.273E+03 3.545E+04	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02 1.093E+03	(MIN)	***
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 END *** FTA ROWS 13	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+01 1E+00 1E+00 1E+01 3E+01 3E+01 FTAB: *** BLE COLS: 4 DEPTH	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 2.359E+03 4.718E+03 5.963E+03 7.273E+03 3.545E+04	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.194E+02 2.980E+02 4.970E+02 5.467E+02 1.093E+03	(MIN)	***
9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 END *** FTA ROWS 13	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 1E+00 1E+00 3E+01 FTAB: *** BLE COLS: 4 DEPTH (FT)	AREA (ACRES) 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.949E+03 3.735E+03 4.718E+03 7.273E+03 3.545E+04 VOLUME (AC-FT)	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.194E+02 3.903E+02 4.970E+02 1.093E+03	(MIN)	***
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 1.02 END *** FTA ROWS 13 ***	DEPTH (FT) 0 1E-01 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00 1E+00 3E+01 3E+01 FTAB: *** BCOLS: 4 DEPTH (FT) 0	AREA (ACRES) 1.409E+03	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 7.273E+03 3.545E+04 VOLUME (AC-FT)	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 1.585E+02 2.194E+02 2.980E+02 3.903E+02 3.903E+02 1.093E+03 DISCH (CFS) 0	(MIN)	***
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 ENIL *** FTA ROWS 13 *** 4.54	DEPTH (FT) 0 1E-011 0E+00 0E+00 0E+00 0E+00 0E+00 1E+00 3E+01 3E+01 \$**** BLE COLS 4 DEPTH (FT) 0 7E-01	AREA (ACRES) 1.409E+03 1.4	3.931E+02 7.863E+02 1.179E+03 1.573E+03 1.949E+03 3.735E+03 4.718E+03 7.273E+03 3.545E+04 VOLUME (AC-FT)	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 2.194E+02 2.194E+02 2.980E+02 4.970E+02 5.467E+02 1.093E+03 DISCH (CFS) 0 3.041E-01	(MIN)	***
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 1.22 ENE *** FTA ROWS 13 *** 4.54 9.09	DEPTH (FT) (FT) (FT) (FT) (FT) (FT) (FT) (FT)	AREA (ACRES) 1.409E+03 1.4	3.931E+02 7.863E+02 7.863E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 7.273E+03 3.545E+04 VOLUME (AC-FT) 0 5.666E+00 1.133E+01 1.700E+01	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 1.585E+02 2.194E+02 2.980E+02 3.903E+02 3.903E+02 1.093E+03 DISCH (CFS) 0 3.041E-01 1.938E+00 1.457E+01	(MIN)	***
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 1.22 ENE *** FTA ROWS 13 *** 4.54 9.09	DEPTH (FT) (FT) (FT) (FT) (FT) (FT) (FT) (FT)	AREA (ACRES) 1.409E+03 1.4	3.931E+02 7.863E+02 7.863E+02 1.179E+03 1.573E+03 1.966E+03 2.949E+03 3.735E+03 4.718E+03 7.273E+03 3.545E+04 VOLUME (AC-FT) 0 5.666E+00 1.133E+01	1.003E+00 1.298E+01 4.801E+01 7.841E+01 1.153E+02 1.585E+02 2.194E+02 2.980E+02 3.903E+02 3.903E+02 1.093E+03 DISCH (CFS) 0 3.041E-01 1.938E+00 1.457E+01	(MIN)	***
*** 9.30 1.86 2.79 3.72 4.65 5.58 6.51 7.44 8.37 9.30 1.02 1.02 END *** FTA ROWS 13 *** 4.54 9.09 1.36 1.81	DEPTH (FT) 0 0 1E-01 0E-00 0E+00 0E+	AREA (ACRES) 1.409E+03 1.4	3.931E+02 7.863E+02 7.863E+03 1.573E+03 1.966E+03 2.359E+03 3.735E+03 4.718E+03 7.273E+03 3.545E+04 VOLUME (AC-FT) 0 5.666E+00 1.133E+01 1.700E+01	1.003E+00 1.298E+01 1.841E+01 1.153E+02 1.585E+02 2.194E+02 2.980E+02 3.903E+02 4.970E+02 5.467E+02 1.093E+03 DISCH (CFS) 0 3.041E-01 3.938E+00 1.457E+01 2.379E+01	(MIN)	***

```
2.273E+00 4.154E+01 2.833E+01 3.498E+01
2.728E+00 4.154E+01 3.400E+01 4.809E+01
3.183E+00 4.154E+01 4.250E+01 6.656E+01
3.637E+00 4.154E+01 5.383E+01 9.041E+01
4.092E+00 4.154E+01 6.800E+01 1.184E+02
4.547E+00 4.154E+01 8.594E+01 1.508E+02
5.001E+00 4.154E+01 1.048E+02 1.659E+02
7.001E+00 4.154E+01 9.357E+02 3.317E+02
 END FTABLE 12
 *****
 FTABLE
           13
ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
*** (FT) (ACRES)
                                           (MIN) ***
                     (AC-FT)
                                 (CFS)
        0 1.512E+03
1.277E+00 1.512E+03 5.794E+02 1.701E+00
2.554E+00 1.512E+03 1.159E+03 2.202E+01
3.832E+00 1.512E+03 1.738E+03 8.146E+01
5.109E+00 1.512E+03 2.317E+03 1.330E+02
6.386E+00 1.512E+03 2.897E+03 1.956E+02
7.663E+00 1.512E+03 3.476E+03 2.689E+02
8.940E+00 1.512E+03 4.345E+03 3.722E+02
1.022E+01 1.512E+03 5.504E+03 5.056E+02
1.149E+01 1.512E+03 6.952E+03 6.623E+02
1.277E+01 1.512E+03 8.787E+03 8.432E+02
1.405E+01 1.512E+03 1.072E+04 9.276E+02
1.605E+01 1.512E+03 4.096E+04 1.855E+03
 END FTABLE 13
 FTABLE
 ROWS COLS***
  13 4
*** DEPTH
                                 DISCH FLO-THRU ***
              AREA
                      VOLUME
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                           (MIN) ***
        0 2.274E+02
                           Ω
4.481E-01 2.274E+02 3.057E+01 2.969E-01
8.962E-01 2.274E+02 6.113E+01 3.844E+00
1.344E+00 2.274E+02 9.170E+01 1.422E+01
1.792E+00 2.274E+02 1.223E+02 2.322E+01
2.241E+00 2.274E+02 1.528E+02 3.414E+01
2.689E+00 2.274E+02 1.834E+02 4.694E+01
3.137E+00 2.274E+02 2.292E+02 6.497E+01
3.585E+00 2.274E+02 2.904E+02 8.824E+01
4.033E+00 2.274E+02 3.668E+02 1.156E+02
4.481E+00 2.274E+02 4.636E+02 1.472E+02
 4.929E+00 2.274E+02 5.655E+02 1.619E+02
6.929E+00 2.274E+02 5.113E+03 3.238E+02
 END FTABLE 14
 *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
                      VOLUME
                                 DISCH FLO-THRU ***
              AREA
***
     (FT) (ACRES)
                                           (MIN) ***
                     (AC-FT)
                                 (CFS)
        0 2.532E+03
1.140E+00 2.532E+03 8.659E+02 8.059E-01
2.280E+00 2.532E+03 1.732E+03 1.291E+01
3.420E+00 2.532E+03 2.598E+03 5.193E+01
4.560E+00 2.532E+03 3.464E+03 8.532E+01
5.700E+00 2.532E+03 4.329E+03 1.316E+02
 6.840E+00 2.532E+03 5.195E+03 2.618E+02
7.980E+00 2.532E+03 6.494E+03 5.876E+02
9.120E+00 2.532E+03 8.226E+03 1.185E+03
1.026E+01 2.532E+03 1.039E+04 2.199E+03
1.140E+01 2.532E+03 1.313E+04 3.821E+03
1.254E+01 2.532E+03 1.602E+04 4.203E+03
1.454E+01 2.532E+03 6.666E+04 8.406E+03
```


END FTAB	LE 21				
FTABLE	22				
ROWS COLS					
13 4 *** DEPTH		VOLUME	DISCH	FLO-THRU	***
*** (FT)	(ACRES)	(AC-FT)	(CFS)	(MIN)	
	2.096E+03		0		
1.392E+00	2.096E+03 2.096E+03	8.750E+02	1.124E+00		
4.175E+00	2.096E+03	2.625E+03	7.242E+01		
5.567E+00	2.096E+03	3.500E+03	1.190E+02		
	2.096E+03				
	2.096E+03 2.096E+03				
1.113E+01	2.096E+03	8.313E+03	1.652E+03		
1.253E+01	2.096E+03	1.050E+04	3.067E+03		
	2.096E+03				
	2.096E+03 2.096E+03				
END FTAB		3.0101.01	111/20.01		

FTABLE ROWS COLS	23				
13 4					
*** DEPTH		VOLUME	DISCH	FLO-THRU	
*** (FT)		(AC-FI)	(CFS)	(MIN)	***
	2.009E+02 2.009E+02				
	2.009E+02				
1.427E+00	2.009E+02	8.603E+01	1.210E+01		
1.903E+00	2.009E+02 2.009E+02	1.147E+02	1.988E+01		
2.379E+00	2.009E+02	1.434E+02	3.067E+01		
2.854E+00	2.009E+02	1.721E+02	6.101E+01		
	2.009E+02				
	2.009E+02				
4.282E+00	2.009E+02	3.441E+02	5.125E+02		
4.757E+00	2.009E+02	4.349E+02	8.904E+02		
5.233E+00	2.009E+02	5.305E+02	9.795E+02		
7.233E+00	2.009E+02	4.549E+03	1.959E+03		
END FTAB	LE 23				
FTABLE	24				
ROWS COLS					
13 4					
*** DEPTH		VOLUME		FLO-THRU	
(FI)	7.921E+02	(AC-FT)	(CFS)	(MIN)	***
5.933E-01	7.921E+02	1.410E+02			
1.187E+00	7.921E+02	2.820E+02	4.347E+00		
1.780E+00	7.921E+02	4.230E+02	1.749E+01		
	7.921E+02				
2.966E+00	7.921E+02	7.049E+02	4.431E+01		
	7.921E+02				
8.526E+00 END FTAB	7.921E+02	1.845E+04	2.830E+03		
END FTAB	LE 24				
FTABLE	25				
ROWS COLS					
13 4		1101 111-	DT GG**	mr 0 mrr	
*** DEPTH *** (FT)		VOLUME (AC-FT)	(CFS)	FLO-THRU (MIN)	
	6.219E+02	(AC-FT)	(CFS)	(MIN)	
·		•	•		

```
6.590E-01 6.219E+02 1.229E+02 3.232E-01
1.318E+00 6.219E+02 2.459E+02 5.179E+00
1.977E+00 6.219E+02 3.688E+02 2.083E+01
2.636E+00 6.219E+02 4.918E+02 3.422E+01
3.295E+00 6.219E+02 6.147E+02 5.279E+01
3.954E+00 6.219E+02 7.377E+02 1.050E+02
4.613E+00 6.219E+02 9.221E+02 2.357E+02
5.272E+00 6.219E+02 1.168E+03 4.753E+02
5.931E+00 6.219E+02 1.475E+03 8.822E+02
6.590E+00 6.219E+02 1.865E+03 1.533E+03
7.249E+00 6.219E+02 2.274E+03 1.686E+03
9.249E+00 6.219E+02 1.471E+04 3.372E+03
 END FTABLE 25
 *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
                                 DISCH FLO-THRU ***
              AREA
                      VOLUME
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                           (MIN) ***
        0 1.676E+03
9.455E-01 1.676E+03 4.754E+02 5.901E-01
1.891E+00 1.676E+03 9.508E+02 9.453E+00
2.837E+00 1.676E+03 1.426E+03 3.803E+01
3.782E+00 1.676E+03 1.902E+03 6.247E+01
4.728E+00 1.676E+03 2.377E+03 9.636E+01
5.673E+00 1.676E+03 2.852E+03 1.917E+02
6.619E+00 1.676E+03 3.566E+03 4.302E+02
7.564E+00 1.676E+03 4.516E+03 8.676E+02
8.510E+00 1.676E+03 5.705E+03 1.610E+03
9.455E+00 1.676E+03 7.210E+03 2.798E+03
1.040E+01 1.676E+03 8.795E+03 3.077E+03
1.240E+01 1.676E+03 4.231E+04 6.155E+03
 END FTABLE 26
 *****
 FTABLE
           27
ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
*** (FT) (ACRES)
                                           (MIN) ***
                     (AC-FT)
                                 (CFS)
        0 7.884E+01
                           Ω
2.688E-01 7.884E+01 6.357E+00 7.250E-02
5.375E-01 7.884E+01 1.271E+01 1.162E+00
8.063E-01 7.884E+01 1.907E+01 4.672E+00
1.075E+00 7.884E+01 2.543E+01 7.676E+00
1.344E+00 7.884E+01 3.178E+01 1.184E+01
1.613E+00 7.884E+01 3.814E+01 2.355E+01
1.881E+00 7.884E+01 4.767E+01 5.286E+01
2.150E+00 7.884E+01 6.039E+01 1.066E+02
2.419E+00 7.884E+01 7.628E+01 1.979E+02
2.688E+00 7.884E+01 9.641E+01 3.438E+02
2.956E+00 7.884E+01 1.176E+02 3.781E+02
4.956E+00 7.884E+01 1.694E+03 7.563E+02
 END FTABLE 27
 FTABLE
ROWS COLS***
  13 4
*** DEPTH
              AREA
                                 DISCH FLO-THRU ***
                      VOLUME
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                           (MIN) ***
        0 2.914E+02
3.290E-01 2.914E+02 2.876E+01 1.016E-01
6.580E-01 2.914E+02 5.752E+01 1.627E+00
9.870E-01 2.914E+02 8.628E+01 6.545E+00
1.316E+00 2.914E+02 1.150E+02 1.075E+01
1.645E+00 2.914E+02 1.438E+02 1.659E+01
1.974E+00 2.914E+02 1.726E+02 3.300E+01
2.303E+00 2.914E+02 2.157E+02 7.406E+01
2.632E+00 2.914E+02 2.732E+02 1.494E+02
```



```
2.961E+00 2.914E+02 3.451E+02 2.772E+02
 3.290E+00 2.914E+02 4.362E+02 4.816E+02
3.619E+00 2.914E+02 5.321E+02 5.297E+02
 5.619E+00 2.914E+02 6.360E+03 1.059E+03
  END FTABLE 28
 FTARLE
 ROWS COLS***
  13 4
*** DEPTH
              AREA
                      VOLUME
                                  DISCH FLO-THRU ***
     (FT) (ACRES)
                      (AC-FT)
                                  (CFS)
                                            (MIN) ***
        0 3.498E+02
 4.022E-01 3.498E+02 4.221E+01 1.420E-01
 8.045E-01 3.498E+02 8.441E+01 2.275E+00
1.207E+00 3.498E+02 1.266E+02 9.150E+00
 1.609E+00 3.498E+02 1.688E+02 1.503E+01
 2.011E+00 3.498E+02 2.110E+02 2.319E+01
2.413E+00 3.498E+02 2.532E+02 4.613E+01
 2.816E+00 3.498E+02 3.166E+02 1.035E+02
 3.218E+00 3.498E+02 4.010E+02 2.088E+02
3.620E+00 3.498E+02 5.065E+02 3.875E+02
 4.022E+00 3.498E+02 6.401E+02 6.732E+02
 4.425E+00 3.498E+02 7.808E+02 7.405E+02
 6.425E+00 3.498E+02 7.776E+03 1.481E+03
 END FTABLE 29
 *****
 FTABLE
 ROWS COLS***
  13
*** DEPTH
                                  DISCH FLO-THRU ***
              AREA
                      VOLUME
      (FT)
           (ACRES)
                      (AC-FT)
                                  (CFS)
                                            (MIN) ***
        0 3.858E+03
2.790E-01 3.858E+03 3.228E+02 7.715E-02
 5.579E-01 3.858E+03 6.457E+02 1.236E+00
 8.369E-01 3.858E+03 9.685E+02 4.972E+00
1.116E+00 3.858E+03 1.291E+03 8.168E+00
1.395E+00 3.858E+03 1.614E+03 1.260E+01
 1.674E+00 3.858E+03 1.937E+03 2.506E+01
1.953E+00 3.858E+03 2.421E+03 5.625E+01
 2.232E+00 3.858E+03 3.067E+03 1.134E+02
 2.511E+00 3.858E+03 3.874E+03 2.106E+02
2.790E+00 3.858E+03 4.896E+03 3.658E+02
 3.069E+00 3.858E+03 5.972E+03 4.024E+02
 5.069E+00 3.858E+03 8.313E+04 8.047E+02
 END FTABLE 30
  *****
 FTABLE
            31
 ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH
                                        FLO-THRU ***
     (FT) (ACRES)
                                            (MTN) ***
                     (AC-FT)
                                  (CFS)
        0 3.663E+02
 5.726E-01 3.663E+02 6.292E+01 2.558E-01
1.145E+00 3.663E+02 1.258E+02 4.098E+00
1.718E+00 3.663E+02 1.887E+02 1.648E+01
 2.290E+00 3.663E+02 2.517E+02 2.708E+01
2.863E+00 3.663E+02 3.146E+02 4.177E+01
 3.436E+00 3.663E+02 3.775E+02 8.310E+01
 4.008E+00 3.663E+02 4.719E+02 1.865E+02
 4.581E+00 3.663E+02 5.977E+02 3.761E+02
 5.153E+00 3.663E+02 7.550E+02 6.980E+02
 5.726E+00 3.663E+02 9.542E+02 1.213E+03
 6.299E+00 3.663E+02 1.164E+03 1.334E+03
 8.299E+00 3.663E+02 8.489E+03 2.668E+03
  END FTABLE 31
 FTARLE
 ROWS COLS***
```

```
13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
     (FT) (ACRES)
                                            (MTN) ***
                     (AC-FT)
                                  (CFS)
        0 1.727E+02
5.135E-01 1.727E+02 2.661E+01 2.133E-01
1.027E+00 1.727E+02 5.322E+01 3.417E+00
1.540E+00 1.727E+02 7.983E+01 1.374E+01
2.054E+00 1.727E+02 1.064E+02 2.258E+01
2.567E+00 1.727E+02 1.331E+02 3.483E+01
3.081E+00 1.727E+02 1.597E+02 6.929E+01
 3.594E+00 1.727E+02 1.996E+02 1.555E+02
4.108E+00 1.727E+02 2.528E+02 3.136E+02
 4.621E+00 1.727E+02 3.193E+02 5.821E+02
 5.135E+00 1.727E+02 4.036E+02 1.011E+03
5.648E+00 1.727E+02 4.923E+02 1.112E+03
7.648E+00 1.727E+02 3.947E+03 2.225E+03
 END FTABLE 33
 FTABLE
 ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
     (FT) (ACRES)
                     (AC-FT)
                                  (CFS)
                                            (MTN) ***
        0 2.317E+02
2.554E-01 2.317E+02 1.775E+01 6.658E-02
5.107E-01 2.317E+02 3.551E+01 1.067E+00
7.661E-01 2.317E+02 5.326E+01 4.290E+00
1.021E+00 2.317E+02 7.101E+01 7.049E+00
 1.277E+00 2.317E+02 8.877E+01 1.087E+01
1.532E+00 2.317E+02 1.065E+02 2.163E+01
1.787E+00 2.317E+02 1.332E+02 4.854E+01
 2.043E+00 2.317E+02 1.687E+02 9.790E+01
2.298E+00 2.317E+02 2.130E+02 1.817E+02
2.554E+00 2.317E+02 2.693E+02 3.157E+02
2.809E+00 2.317E+02 3.284E+02 3.472E+02
4.809E+00 2.317E+02 4.963E+03 6.945E+02
 END FTABLE 34
 *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
***
           (ACRES)
                                            (MIN) ***
                      (AC-FT)
                                  (CFS)
        0 5.386E+01
3.448E-01 5.386E+01 5.571E+00 1.098E-01
 6.895E-01 5.386E+01 1.114E+01 1.759E+00
 1.034E+00 5.386E+01 1.671E+01 7.076E+00
1.379E+00 5.386E+01 2.228E+01 1.163E+01
1.724E+00 5.386E+01 2.785E+01 1.793E+01
 2.069E+00 5.386E+01 3.342E+01 3.567E+01
2.413E+00 5.386E+01 4.178E+01 8.006E+01
2.758E+00 5.386E+01 5.292E+01 1.615E+02
3.103E+00 5.386E+01 6.685E+01 2.997E+02
3.448E+00 5.386E+01 8.449E+01 5.206E+02
3.792E+00 5.386E+01 1.031E+02 5.727E+02
 5.792E+00 5.386E+01 1.088E+04 1.145E+03
 END FTABLE 35
  *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
    (FT) (ACRES)
                     (AC-FT)
                                  (CFS)
                                            (MIN) ***
        0 4.779E+02
 6.149E-01 4.779E+02 8.815E+01 2.880E-01
1.230E+00 4.779E+02 1.763E+02 4.614E+00
1.845E+00 4.779E+02 2.644E+02 1.856E+01
2.459E+00 4.779E+02 3.526E+02 3.049E+01
```



```
3.074E+00 4.779E+02 4.407E+02 4.703E+01
 3.689E+00 4.779E+02 5.289E+02 9.357E+01
4.304E+00 4.779E+02 6.611E+02 2.100E+02
4.919E+00 4.779E+02 8.374E+02 4.235E+02
 5.534E+00 4.779E+02 1.058E+03 7.860E+02
6.149E+00 4.779E+02 1.337E+03 1.366E+03
 6.764E+00 4.779E+02 1.631E+03 1.502E+03
 8.764E+00 4.779E+02 1.119E+04 3.004E+03
 END FTABLE 36
  *****
 FTABLE
           201
ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                            (MIN) ***
        0 9.878E+02
2.148E+00 9.878E+02 2.122E+01 7.893E+01
4.296E+00 9.878E+02 2.334E+02 2.566E+02
6.444E+00 9.878E+02 4.880E+02 4.772E+02
 8.592E+00 9.878E+02 8.062E+02 7.588E+02
1.074E+01 9.878E+02 1.231E+03 1.099E+03
1.289E+01 9.878E+02 1.867E+03 1.561E+03
1.504E+01 9.878E+02 2.822E+03 2.830E+03
1.718E+01 9.878E+02 4.095E+03 5.432E+03
1.933E+01 9.878E+02 5.686E+03 9.695E+03
2.148E+01 9.878E+02 7.702E+03 1.633E+04
2.363E+01 9.878E+02 9.823E+03 1.796E+04
2.563E+01 9.878E+02 2.958E+04 3.593E+04
 END FTABLE201
 FTABLE
 ROWS COLS***
  13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                            (MTN) ***
        0 6.014E+02
                            Ω
                                      n
1.938E+00 6.014E+02 1.166E+01 6.651E+01
3.876E+00 6.014E+02 1.282E+02 2.162E+02
5.815E+00 6.014E+02 2.681E+02 4.021E+02
7.753E+00 6.014E+02 4.429E+02 6.394E+02
9.691E+00 6.014E+02 6.760E+02 9.262E+02
1.163E+01 6.014E+02 1.026E+03 1.316E+03
1.357E+01 6.014E+02 1.550E+03 2.385E+03
1.551E+01 6.014E+02 2.250E+03 4.577E+03
1.744E+01 6.014E+02 3.124E+03 8.169E+03
1.938E+01 6.014E+02 4.231E+03 1.376E+04
 2.132E+01 6.014E+02 5.397E+03 1.514E+04
2.332E+01 6.014E+02 1.742E+04 3.027E+04
 END FTABLE202
 *****
 FTABLE
          203
ROWS COLS***
 13
*** DEPTH
              AREA
                      VOLUME
                                 DISCH FLO-THRU ***
     (FT) (ACRES)
                     (AC-FT)
                                  (CFS)
                                            (MIN) ***
        0 7.754E+02
1.887E+00 7.754E+02 1.463E+01 6.363E+01
3.775E+00 7.754E+02 1.610E+02 2.068E+02
5.662E+00 7.754E+02 3.366E+02 3.847E+02
7.549E+00 7.754E+02 5.561E+02 6.117E+02
 9.437E+00 7.754E+02 8.487E+02 8.860E+02
1.132E+01 7.754E+02 1.288E+03 1.259E+03
1.321E+01 7.754E+02 1.946E+03 2.281E+03
1.510E+01 7.754E+02 2.824E+03 4.378E+03
 1.699E+01 7.754E+02 3.922E+03 7.815E+03
1.887E+01 7.754E+02 5.312E+03 1.316E+04
2.076E+01 7.754E+02 6.775E+03 1.448E+04
2.276E+01 7.754E+02 2.228E+04 2.896E+04
```

2.276E+01 7.754E+02 2.228E+04 2.8961

Estimating the Un-Gaged Inflows in the
Little Manatee River Basin, Florida

March 2006

```
END FTABLE203
 .....
 FTABLE
ROWS COLS***
  13
*** DEPTH
                                 DISCH FLO-THRU ***
              AREA
                      VOLUME
***
     (FT) (ACRES)
                     (AC-FT)
                                  (CFS)
                                           (MIN) ***
        0 5.999E+02
1.804E+00 5.999E+02 1.082E+01 5.899E+01
3.607E+00 5.999E+02 1.190E+02 1.917E+02
5.411E+00 5.999E+02 2.488E+02 3.567E+02
7.214E+00 5.999E+02 4.111E+02 5.671E+02
9.018E+00 5.999E+02 6.275E+02 8.214E+02
1.082E+01 5.999E+02 9.521E+02 1.167E+03
1.262E+01 5.999E+02 1.439E+03 2.115E+03
1.443E+01 5.999E+02 2.088E+03 4.059E+03
1.623E+01 5.999E+02 2.900E+03 7.245E+03
1.804E+01 5.999E+02 3.927E+03 1.220E+04
1.984E+01 5.999E+02 5.009E+03 1.342E+04
2.184E+01 5.999E+02 1.701E+04 2.685E+04
 END FTABLE204
 *****
 FTABLE
           205
ROWS COLS***
  13
*** DEPTH
                                 DISCH FLO-THRU ***
              AREA
                      VOLUME
   (FT) (ACRES)
                                           (MIN) ***
                                 (CFS)
                     (AC-FT)
        0 5.685E+02
1.646E+00 5.685E+02 9.356E+00 5.064E+01
3.291E+00 5.685E+02 1.029E+02 1.646E+02
4.937E+00 5.685E+02 2.152E+02 3.062E+02
6.583E+00 5.685E+02 3.555E+02 4.868E+02
8.228E+00 5.685E+02 5.426E+02 7.051E+02
9.874E+00 5.685E+02 8.233E+02 1.002E+03
1.152E+01 5.685E+02 1.244E+03 1.815E+03
1.317E+01 5.685E+02 1.806E+03 3.485E+03
1.481E+01 5.685E+02 2.507E+03 6.220E+03
1.646E+01 5.685E+02 3.396E+03 1.048E+04
1.810E+01 5.685E+02 4.332E+03 1.152E+04
2.010E+01 5.685E+02 1.570E+04 2.305E+04
 END FTABLE205
 FTABLE
 ROWS COLS***
  13
*** DEPTH
                      VOLUME
                                  DISCH FLO-THRU ***
              AREA
                                           (MIN) ***
     (FT) (ACRES)
                     (AC-FT)
                                  (CFS)
        0 9.011E+02
1.527E+00 9.011E+02 1.376E+01 1.312E+01
3.054E+00 9.011E+02 1.514E+02 4.203E+01
4.581E+00 9.011E+02 3.165E+02 8.452E+01
6.108E+00 9.011E+02 5.229E+02 1.389E+02
7.635E+00 9.011E+02 7.981E+02 2.142E+02
9.162E+00 9.011E+02 1.211E+03 4.261E+02
1.069E+01 9.011E+02 1.830E+03 9.563E+02
1.222E+01 9.011E+02 2.656E+03 1.929E+03
1.374E+01 9.011E+02 3.688E+03 3.580E+03
1.527E+01 9.011E+02 4.995E+03 6.219E+03
1.680E+01 9.011E+02 6.371E+03 6.841E+03
1.880E+01 9.011E+02 2.439E+04 1.368E+04
 END FTABLE206
 *****
 FTABLE
ROWS COLS***
  13
*** DEPTH
                                 DISCH FLO-THRU ***
                      VOLUME
              AREA
     (FT) (ACRES)
                      (AC-FT)
                                  (CFS)
                                           (MIN) ***
        0 2.917E+02
```



```
2.304E+00 2.917E+02 6.720E+00 2.603E+01
 4.607E+00 2.917E+02 7.392E+01 8.340E+01
 6.911E+00 2.917E+02 1.546E+02 1.677E+02
 9.214E+00 2.917E+02 2.554E+02 2.756E+02
 1.152E+01 2.917E+02 3.898E+02 4.250E+02
1.382E+01 2.917E+02 5.914E+02 8.456E+02
 1.613E+01 2.917E+02 8.938E+02 1.898E+03
 1.843E+01 2.917E+02 1.297E+03 3.827E+03
 2.073E+01 2.917E+02 1.801E+03 7.104E+03
 2.304E+01 2.917E+02 2.439E+03 1.234E+04
 2.534E+01 2.917E+02 3.111E+03 1.358E+04
 2.734E+01 2.917E+02 8.946E+03 2.715E+04
 END FTABLE207
  *****
 FTABLE
 ROWS COLS***
  13 4
*** DEPTH
                                 DISCH FLO-THRU ***
              AREA
                      VOLUME
     (FT) (ACRES)
                     (AC-FT)
                                 (CFS)
                                           (MIN) ***
        0 4.908E+02
1.940E+00 4.908E+02 9.524E+00 1.955E+01
 3.881E+00 4.908E+02 1.048E+02 6.265E+01
 5.821E+00 4.908E+02 2.190E+02 1.260E+02
 7.761E+00 4.908E+02 3.619E+02 2.070E+02
 9.702E+00 4.908E+02 5.524E+02 3.193E+02
 1.164E+01 4.908E+02 8.381E+02 6.352E+02
 1.358E+01 4.908E+02 1.267E+03 1.426E+03
 1.552E+01 4.908E+02 1.838E+03 2.875E+03
 1.746E+01 4.908E+02 2.552E+03 5.336E+03
 1.940E+01 4.908E+02 3.457E+03 9.271E+03
 2.134E+01 4.908E+02 4.410E+03 1.020E+04
 2.334E+01 4.908E+02 1.423E+04 2.040E+04
 END FTABLE208
  *****
 FTABLE
 rows cols
   13
     depth
                area
                        volume outflow1 ***
                10.
                          0 -
                                     ٥.
       ο.
     1.65
                10.
                         1.60
                                    58.
     3.29
                         1.81
                                   189.
                10.
     4.94
                10.
                         3.79
                                   352.
      6.58
                10.
                         6.25
                                   561.
      8.23
                10.
                         9.54
                                   813.
     9.87
                10.
                        14.48
                                  1155.
     11.52
                10.
                        21.89
                                  2093.
     13.17
                10.
                        31.76
                                  4020.
    14.81
                                  7175.
                10.
                         44.1
     16.46
                10.
                        59.74
                                 12080.
     18.1
                10.
                        76.19
                                 13290.
     20.1
                10.
                       276.19
                                 26580.
  END FTABLE300
END FTABLES
COPY
 TIMESERIES
 Copy-opn***
*** x - x NPT NMN
  END TIMESERIES
END COPY
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
```

March 2006

<name></name>	x <name> x</name>	tem strg<-	Eactor->strg	<name></name>	x	x		<name> x x *</name>
*** Met	t Seg LITTLE,	PI:PETINP=0	. 7					
WDM2	106 PREC	ENGL	SAME	PERLND	11	367	EXTNL	PREC
WDM2	113 PEVT	ENGL	0.7DIV	PERLND	11	367	EXTNL	PETINP
*** Met	t Seg LITTLE,	PI:PETINP=0	. 7					
WDM2	106 PREC	ENGL	SAME	IMPLND	11	361	EXTNL	PREC
WDM2	113 PEVT	ENGL	0.7DIV	IMPLND	11	361	EXTNL	PETINP
*** Met	t Seg LITTLE,	PI:PETINP=0						
WDM2	106 PREC	ENGL	SAME	RCHRES	1	300	EXTNL	PREC
WDM2	113 PEVT	ENGL	0.7DIV	RCHRES	1	300	EXTNL	POTEV
	rigation (usi:			PERLNDs	573	- 63	L3)	
	TB PERLND 613							
WDM2	1 IRRIG	ENGL	0.90506DIV	PERLND	12		EXTNL	SURLI
WDM2	1 IRRIG	ENGL	0.09494DIV	PERLND	12		EXTNL	IRRINP
WDM2	2 IRRIG	ENGL	0.90506DIV	PERLND	22		EXTNL	SURLI
WDM2	2 IRRIG	ENGL	0.09494DIV	PERLND	22		EXTNL	IRRINP
WDM2	3 IRRIG	ENGL	0.90506DIV	PERLND	32		EXTNL	SURLI
WDM2	3 IRRIG	ENGL	0.09494DIV	PERLND	32		EXTNL	IRRINP
WDM2	4 IRRIG	ENGL	0.90506DIV	PERLND	42		EXTNL	SURLI
WDM2	4 IRRIG	ENGL	0.09494DIV	PERLND	42		EXTNL	IRRINP
WDM2	5 IRRIG	ENGL	0.90506DIV	PERLND	52		EXTNL	SURLI
WDM2	5 IRRIG	ENGL	0.09494DIV	PERLND	52		EXTNL	IRRINP
WDM2	6 IRRIG	ENGL	0.90506DIV	PERLND	62		EXTNL	SURLI
WDM2	6 IRRIG	ENGL	0.09494DIV	PERLND	62		EXTNL	IRRINP
WDM2	7 IRRIG	ENGL	0.90506DIV	PERLND	72		EXTNL	SURLI
WDM2	7 IRRIG	ENGL	0.09494DIV	PERLND	72		EXTNL	IRRINP
WDM2	8 IRRIG	ENGL	0.90506DIV	PERLND	82		EXTNL	SURLI
WDM2	8 IRRIG	ENGL	0.09494DIV	PERLND	82		EXTNL	IRRINP
***WDM2	2 9 IRRIG	ENGL	0.90506D	IV PERI	LND	92	EXT	NL SURLI
***WDM2	2 9 IRRIG	ENGL	0.09494D	IV PERI	LND	92	EXT	NL IRRINP
WDM2	10 IRRIG	ENGL	0.90506DIV	PERLND	102		EXTNL	SURLI
WDM2	10 IRRIG	ENGL	0.09494DIV	PERLND	102		EXTNL	IRRINP
WDM2	11 IRRIG	ENGL	0.90506DIV	PERLND	112		EXTNL	SURLI
WDM2	11 IRRIG	ENGL	0.09494DIV	PERLND	112		EXTNL	IRRINP
***WDM2	2 12 IRRIG	ENGL	0.90506D	IV PERI	LND :	L22	EXT	NL SURLI
***WDM2		ENGL	0.09494D	IV PERI	LND :	L22	EXT	NL IRRINP
WDM2	13 IRRIG	ENGL	0.90506DIV	PERLND	132		EXTNL	SURLI
WDM2	13 IRRIG	ENGL	0.09494DIV	PERLND	132		EXTNL	IRRINP
WDM2	14 IRRIG	ENGL	0.90506DIV	PERLND			EXTNL	SURLI
WDM2	14 IRRIG	ENGL	0.09494DIV	PERLND	142		EXTNL	IRRINP
*** IN	TB PERLND 573	> PERLND						
WDM2	21 IRRIG	ENGL	0.95455DIV	PERLND			EXTNL	SURLI
WDM2	21 IRRIG	ENGL	0.04545DIV	PERLND	212		EXTNL	IRRINP
	TB PERLND 593							
WDM2	22 IRRIG	ENGL	0.81609DIV	PERLND			EXTNL	SURLI
WDM2	22 IRRIG	ENGL	0.18391DIV	PERLND			EXTNL	IRRINP
	TB PERLND 583							
WDM2	23 IRRIG	ENGL	0.82353DIV	PERLND			EXTNL	SURLI
WDM2	23 IRRIG	ENGL	0.17647DIV	PERLND			EXTNL	IRRINP
WDM2	24 IRRIG	ENGL	0.82353DIV	PERLND			EXTNL	SURLI
WDM2	24 IRRIG	ENGL	0.17647DIV	PERLND	242		EXTNL	IRRINP
WDM2	25 IRRIG	ENGL	0.82353DIV	PERLND	252		EXTNL	SURLI
WDM2 WDM2	25 IRRIG 25 IRRIG	ENGL	0.82353DIV 0.17647DIV	PERLND PERLND	252 252		EXTNL	IRRINP
WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG	ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV	PERLND PERLND PERLND	252 252 262		EXTNL EXTNL	IRRINP SURLI
WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG	ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV	PERLND PERLND PERLND PERLND	252 252 262 262		EXTNL EXTNL EXTNL	IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG	ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND PERLND PERLND PERLND PERLND	252 252 262 262 272		EXTNL EXTNL EXTNL EXTNL	IRRINP SURLI IRRINP SURLI
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG	ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV	PERLND PERLND PERLND PERLND PERLND PERLND	252 252 262 262 272 272		EXTNL EXTNL EXTNL EXTNL EXTNL	IRRINP SURLI IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG	ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND PERLND PERLND PERLND PERLND PERLND PERLND	252 252 262 262 272 272 292		EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	IRRINP SURLI IRRINP SURLI IRRINP SURLI
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 29 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	252 252 262 262 272 272 292 292		EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 29 IRRIG 35 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	252 252 262 262 272 272 292 292 352		EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.82353DIV	PERLND	252 252 262 262 272 272 292 292 352 352		EXTNL	IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG 36 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND	252 252 262 262 272 272 292 292 352 352 362		EXTNL	IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG 36 IRRIG 36 IRRIG 36 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV	PERLND	252 252 262 262 272 272 292 292 352 352 362		EXTNL	IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG 36 IRRIG 36 IRRIG 37 IRRIG 38 IRRIG 38 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND	252 252 262 272 272 292 292 352 352 362 362		EXTNL	IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG 36 IRRIG 36 IRRIG 37 IRRIG 38 IRRIG 38 IRRIG 38 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND	252 252 262 272 272 292 352 352 362 362		EXTNL	IRRINP SURLI SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG 36 IRRIG 36 IRRIG 37 IRRIG 38 IRRIG 38 IRRIG 38 IRRIG 38 IRRIG 39 IRRIG 39 IRRIG 30 IRRIG 30 IRRIG 31 IRRIG 32 IRRIG 33 IRRIG 34 IRRIG 35 IRRIG 36 IRRIG 37 IRRIG 38 IRRIG 38 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.282353DIV 0.17647DIV 0.282353DIV 0.17647DIV 0.0000DIV	PERLND 2 PERLND PERLND	252 252 262 272 272 292 352 352 362 362 282		EXTNL	IRRINP SURLI IRRINP
WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	25 IRRIG 25 IRRIG 26 IRRIG 26 IRRIG 27 IRRIG 27 IRRIG 29 IRRIG 35 IRRIG 35 IRRIG 36 IRRIG 36 IRRIG 37 IRRIG 38 IRRIG 38 IRRIG 38 IRRIG	ENGL ENGL ENGL ENGL ENGL ENGL ENGL ENGL	0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV 0.17647DIV 0.82353DIV	PERLND 2 PERLND PERLND	252 252 262 272 272 292 352 352 362 362 282		EXTNL	IRRINP SURLI SURLI IRRINP

WDM2	30 IRRIG	ENGL	0.0000DIV	PERLND 30	2 EXTNL	IRRINP	PERLND	101 236.9	6 RCHRES	10	2
WDM2	31 IRRIG	ENGL	1.00000DIV	PERLND 31:	2 EXTNL	SURLI	PERLND			10	2
WDM2	31 IRRIG	ENGL	0.0000DIV	PERLND 31:	2 EXTNL	IRRINP	PERLND	103 505.0	5 RCHRES	10	2
WDM2	32 IRRIG	ENGL	1.00000DIV	PERLND 32	2 EXTNL	SURLI	PERLND	104 486.5	4 RCHRES	10	2
WDM2	32 IRRIG	ENGL	0.0000DIV	PERLND 32	2 EXTNL	IRRINP	PERLND			10	2
WDM2	33 IRRIG	ENGL	1.00000DIV	PERLND 33		SURLI	IMPLND			10	1
WDM2	33 IRRIG	ENGL	0.00000DIV	PERLND 33		IRRINP	PERLND			11	2
	00 114110	21102	0.00000221	12112112 001			PERLND			11	2
*** Wit	hdrawal from	m RCH205	for nearby rese	rvoir - mf	act converts	MGD to cfs				11	2
WDM2	206 OFLOW	ENGL	1.5477 SAME			OUTDGT 2	PERLND			11	2
HDIIZ	200 01 100	шиоп	1.51// Dimin	KCIIKED 20.	, min	OUIDGI Z	PERLND			11	2
ייעים רואים	SOURCES						IMPLND			11	1
END EV	SOURCES						PERLND			12	2
SCHEMA	TTC						PERLIND			12	2
<-Volum			< 1man >	<-Volume-	> <ml#> ***</ml#>	<sb></sb>				12	2
<name></name>	x		<area/> <-factor->	<name></name>		X X				12	2
			307.21		-	х 2				12	2
PERLND							PERLND			12	
PERLND			594.55	RCHRES :			IMPLND				1
PERLND	13		329.72		L 2		PERLND			13	2
PERLND	14		115.1		L 2		PERLND			13	2
PERLND	17		437.16		L 2		PERLND			13	2
IMPLND	11		52.1		L 1		PERLND			13	2
PERLND	21		1249.92		2 2		PERLND			13	2
PERLND	22		847.81		2 2		IMPLND			13	1
PERLND	23		1147.33		2 2		PERLND			14	2
PERLND	24		293.8		2 2		PERLND			14	2
PERLND	27		107.03	RCHRES	_		PERLND			14	2
IMPLND	21		298.93	RCHRES	2 1		PERLND			14	2
PERLND	31		135.2	RCHRES			IMPLND			14	1
PERLND	32		248.48	RCHRES			PERLND			21	2
PERLND	33		284.22	RCHRES			PERLND			21	2
PERLND	34		172.81	RCHRES			PERLND			21	2
PERLND	37		3.32	RCHRES			PERLND			21	2
IMPLND	31		31.3	RCHRES :	3 1		PERLND	217 3728.1	6 RCHRES	21	2
PERLND	41		105.46	RCHRES	4 2		IMPLND	211 10.9	3 RCHRES	21	1
PERLND	42		1091.75	RCHRES	4 2		PERLND	221 137.0	1 RCHRES	22	2
PERLND	43		925.41	RCHRES	4 2		PERLND	222 6574.5	9 RCHRES	22	2
PERLND	44		112.31	RCHRES	1 2		PERLND	223 8549.3	8 RCHRES	22	2
IMPLND	41		14.65	RCHRES	4 1		PERLND	224 3410.9	9 RCHRES	22	2
PERLND	51		742.91	RCHRES	5 2		PERLND	227 99.3	9 RCHRES	22	2
PERLND	52		4638.65	RCHRES	5 2		IMPLND	221 19.5	7 RCHRES	22	1
PERLND	53		4587.15	RCHRES	5 2		PERLND	231 13.7	7 RCHRES	23	2
PERLND	54		1149.41		5 2		PERLND	232 332.6	1 RCHRES	23	2
PERLND	57		26.04	RCHRES	5 2		PERLND			23	2
IMPLND	51		135.24	RCHRES	5 1		PERLND	234 361.1	4 RCHRES	23	2
PERLND	61		220.74	RCHRES	5 2		PERLND	237 20.3	1 RCHRES	23	2
PERLND	62		37.75	RCHRES			IMPLND			23	1
PERLND	63		109.08	RCHRES	5 2		PERLND			24	2
PERLND	64		65.46	RCHRES	5 2		PERLND			24	2
PERLND	67		63.75	RCHRES			PERLND			24	2
IMPLND	61		30.67	RCHRES	5 1		PERLND	244 313.5	5 RCHRES	24	2
PERLND	71		364.54	RCHRES '	7 2		PERLND	247 85.9		24	2
PERLND	72		273.96	RCHRES '	7 2		IMPLND			24	1
PERLND	73		477.61	RCHRES '	7 2		PERLND			25	2
PERLND	74		162.46	RCHRES '	7 2		PERLND			25	2
PERLND	77		20.19	RCHRES '			PERLND			25	2
IMPLND	71		90	RCHRES '			PERLND			25	2
PERLND	81		257.9	RCHRES			PERLND			25	2
PERLND	82		274.73	RCHRES			IMPLND			25	1
PERLND	83		311.94	RCHRES			PERLND			26	2
PERLND	84		135.22	RCHRES			PERLND			26	2
PERLND	87		224.69	RCHRES			PERLIND			26	2
IMPLND	81		23.04	RCHRES			PERLIND			26	2
PERLND	91		193.09	RCHRES			PERLIND			26	2
PERLND	92		26.79	RCHRES			IMPLND			26	1
PERLND	93		142.81	RCHRES :			PERLND			26	2
PERLND	94		33.25	RCHRES !			PERLND			27	2
IMPLND	94 91		41.24	RCHRES			PERLND			27	2
THEFIND	21		71.27	KCHKED !			PERLIND	2/3 /35.5	- KCHKES	47	4

PERLND 274	174.34	RCHRES 27	2	RCHRES 8		RCHRES	203	3
IMPLND 271	0.15	RCHRES 27	1	RCHRES 9		RCHRES		3
PERLND 281	130.17	RCHRES 28	2	RCHRES 10		RCHRES		3
PERLND 282	611.28	RCHRES 28	2	RCHRES 11		RCHRES		3
PERLND 283 PERLND 284	621.45 309.7	RCHRES 28 RCHRES 28	2	RCHRES 204 RCHRES 4		RCHRES		3
IMPLND 281	25.72	RCHRES 28	1	RCHRES 4 RCHRES 6		RCHRES		3
PERLND 292	490.68	RCHRES 29	2	RCHRES 7		RCHRES		3
PERLND 293	1633.75	RCHRES 29	2	RCHRES 203		RCHRES		3
PERLND 294	154.42	RCHRES 29	2	RCHRES 1		RCHRES		3
PERLND 297	95.33	RCHRES 29	2	RCHRES 2		RCHRES	201	3
PERLND 301	28.88	RCHRES 30	2	RCHRES 3		RCHRES		3
PERLND 302	780.39	RCHRES 30	2	RCHRES 5		RCHRES		3
PERLND 303	439.38	RCHRES 30	2	RCHRES 202		RCHRES		3
PERLND 304	28.32	RCHRES 30	2	PERLND 211	60.49 1533.54	COPY	1	90
IMPLND 301 PERLND 311	13.04 636.28	RCHRES 30 RCHRES 31	1 2	PERLND 212 PERLND 213	7314.26	COPY	1 1	90 90
PERLND 311 PERLND 312	1442.12	RCHRES 31	2	PERLIND 213 PERLIND 214	827.74	COPY	1	90
PERLND 313	1200.95	RCHRES 31	2	PERLIND 217	3728.16	COPY	1	90
PERLND 314	713.6	RCHRES 31	2	IMPLND 211	10.93	COPY	1	91
PERLND 317	194.5	RCHRES 31	2	PERLND 311	636.28	COPY	2	90
IMPLND 311	89.24	RCHRES 31	1	PERLND 312	1442.12	COPY	2	90
PERLND 331	171.67	RCHRES 33	2	PERLND 313	1200.95	COPY	2	90
PERLND 332	712.74	RCHRES 33	2	PERLND 314	713.6	COPY	2	90
PERLND 333	1453.77	RCHRES 33	2	PERLND 317	194.5	COPY	2	90
PERLND 334	1121.97	RCHRES 33	2	IMPLND 311	89.24	COPY	2	91
PERLND 337	59.99	RCHRES 33	2	PERLND 281	130.17	COPY	2	90
IMPLND 331	46.18	RCHRES 33	1	PERLND 282	611.28	COPY	2	90 90
PERLND 341 PERLND 342	9.21 528.48	RCHRES 34 RCHRES 34	2 2	PERLND 283 PERLND 284	621.45 309.7	COPY	2 2	90
PERLND 342 PERLND 343	376.21	RCHRES 34	2	IMPLND 281	25.72	COPY	2	91
PERLND 344	151.12	RCHRES 34	2	PERLND 301	28.88	COPY	2	90
PERLND 347	36.85	RCHRES 34	2	PERLND 302	780.39	COPY	2	90
IMPLND 341	11.4	RCHRES 34	1	PERLND 303	439.38	COPY	2	90
PERLND 351	2.99	RCHRES 35	2	PERLND 304	28.32	COPY	2	90
PERLND 352	796.26	RCHRES 35	2	IMPLND 301	13.04	COPY	2	91
PERLND 353	904.95	RCHRES 35	2	PERLND 331	171.67	COPY	2	90
PERLND 354	131.73	RCHRES 35	2	PERLND 332	712.74	COPY	2	90
IMPLND 351	0.16	RCHRES 35	1	PERLND 333	1453.77	COPY	2	90
PERLND 361	124.83	RCHRES 36	2	PERLND 334	1121.97	COPY	2	90
PERLND 362 PERLND 363	1115.47 2960.7	RCHRES 36 RCHRES 36	2 2	PERLND 337 IMPLND 331	59.99 46.18	COPY	2	90 91
PERLND 364	476.33	RCHRES 36	2	PERLND 341	9.21	COPY	2	90
PERLND 367	124.72	RCHRES 36	2	PERLIND 341 PERLIND 342	528.48	COPY	2	90
IMPLND 361	13.72	RCHRES 36	1	PERLND 343	376.21	COPY	2	90
RCHRES 22		RCHRES 206	3	PERLND 344	151.12	COPY	2	90
RCHRES 23		RCHRES 206	3	PERLND 347	36.85	COPY	2	90
RCHRES 21		RCHRES 208	3	IMPLND 341	11.4	COPY	2	91
RCHRES 24		RCHRES 208	3	PERLND 221	137.01	COPY	2	90
RCHRES 26		RCHRES 208	3	PERLND 222	6574.59	COPY	2	90
RCHRES 36		RCHRES 208	3	PERLND 223	8549.38	COPY	2	90
RCHRES 25		RCHRES 207	3	PERLND 224	3410.99	COPY	2	90
RCHRES 27		RCHRES 207	3	PERLND 227	99.39	COPY	2	90
RCHRES 29 RCHRES 35		RCHRES 207 RCHRES 207	3 3	IMPLND 221 PERLND 231	19.57 13.77	COPY	2 2	91 90
RCHRES 208		RCHRES 207	3	PERLIND 231 PERLIND 232	332.61	COPY	2	90
RCHRES 28		RCHRES 205	3	PERLND 233	2411.68	COPY	2	90
RCHRES 30		RCHRES 205	3	PERLND 234	361.14	COPY	2	90
RCHRES 33		RCHRES 205	3	PERLND 237	20.31	COPY	2	90
RCHRES 34		RCHRES 205	3	IMPLND 231	0.72	COPY	2	91
RCHRES 206		RCHRES 205	3	PERLND 251	182.83	COPY	2	90
RCHRES 207		RCHRES 205	3	PERLND 252	3213.86	COPY	2	90
RCHRES 31		RCHRES 300	3	PERLND 253	1795.68	COPY	2	90
RCHRES 205		RCHRES 300	4	PERLND 254	112.37	COPY	2	90
RCHRES 12		RCHRES 204	3	PERLND 257	77.87	COPY	2	90
RCHRES 13		RCHRES 204	3 3	IMPLND 251 PERLND 271	22.37	COPY	2	91 90
RCHRES 14 RCHRES 300		RCHRES 204 RCHRES 204	3	PERLND 271 PERLND 272	0.28 301.99	COPY	2	90
KCHKES 300		ACRES 204	3	FERLIND 2/2	301.39	COPI	4	50

PERLND 273 735.53 COPY 2 90	RCHRES 30 HYDR RO 1 1 AVER WDM1 2030 FLOW 1 ENGL AGGR REPL
PERLND 274 174.34 COPY 2 90	RCHRES 31 HYDR RO 1 1 AVER WDM1 2031 FLOW 1 ENGL AGGR REPL
IMPLND 271 0.15 COPY 2 91	RCHRES 33 HYDR RO 1 1 AVER WDM1 2033 FLOW 1 ENGL AGGR REPL
PERLND 292 490.68 COPY 2 90	RCHRES 34 HYDR RO 1 1 AVER WDM1 2034 FLOW 1 ENGL AGGR REPL
PERLND 293 1633.75 COPY 2 90	RCHRES 35 HYDR RO 1 1 AVER WDM1 2035 FLOW 1 ENGL AGGR REPL
PERLND 294 154.42 COPY 2 90	RCHRES 36 HYDR RO 1 1 AVER WDM1 2036 FLOW 1 ENGL AGGR REPL
PERLND 297 95.33 COPY 2 90	RCHRES 206 HYDR RO 1 1 AVER WDM1 2206 FLOW 1 ENGL AGGR REPL
PERLND 351 2.99 COPY 2 90	RCHRES 208 HYDR RO 1 1 AVER WDM1 2208 FLOW 1 ENGL AGGR REPL
PERLND 352 796.26 COPY 2 90	RCHRES 207 HYDR RO 1 1 AVER WDM1 2207 FLOW 1 ENGL AGGR REPL
PERLND 353 904.95 COPY 2 90 PERLND 354 131.73 COPY 2 90	RCHRES 205 HYDR RO 1 1 AVER WDM1 2205 FLOW 1 ENGL AGGR REPL
1217.0 001 2 30	*** commented out area term is sum of PERLND,IMPLND,RCHRES areas (93448.6 ac) *** RCHRES 300 ROFLOW ROVOL 1 1 1.2841e-4 WDM 2511 SIMQ 1 ENGL AGGR REPL
IMPLND 351 0.16 COPY 2 91 PERLND 211 60.49 COPY 2 90	*** this area term is reported by the USGS gage as 95360 ac
PERLIND 212 1533.54 COPY 2 90	RCHRES 300 ROFLOW ROVOL 1 1 1.2584e-4 WDM 2511 SIMQ 1 ENGL AGGR REPL
PERLIND 213 7314.26 COPY 2 90	RCHRES 300 HYDR RO 1 1 AVER WDM 2300 FLOW 1 ENGL AGGR REFL
PERLIND 214 827.74 COPY 2 90	RCHRES 204 HYDR RO 1 1 AVER WDM1 2204 FLOW 1 ENGL AGGR REPL
PERLND 217 3728.16 COPY 2 90	RCHRES 203 HYDR RO 1 1 AVER WDM1 2203 FLOW 1 ENGL AGGR REPL
IMPLND 211 10.93 COPY 2 91	RCHRES 202 HYDR RO 1 1 AVER WDM1 2202 FLOW 1 ENGL AGGR REPL
PERLND 241 110.07 COPY 2 90	RCHRES 201 HYDR RO 1 1 AVER WDM1 2201 FLOW 1 ENGL AGGR REPL
PERLND 242 1895.11 COPY 2 90	*** these area terms are based on the sum of the PERLND and IMPLND areas (13475
PERLND 243 2126.64 COPY 2 90	ac)
PERLND 244 313.55 COPY 2 90	COPY 1 OUTPUT MEAN 1 1 7.4211e-5 WDM 2502 SURO 1 ENGL AGGR REPL
PERLND 247 85.97 COPY 2 90	COPY 1 OUTPUT MEAN 2 1 7.4211e-5 WDM 2503 IFWO 1 ENGL AGGR REPL
IMPLND 241 5.79 COPY 2 91	COPY 1 OUTPUT MEAN 3 1 7.4211e-5 WDM 2504 AGWO 1 ENGL AGGR REPL
PERLND 261 86.54 COPY 2 90	COPY 1 OUTPUT MEAN 4 1 7.4211e-5 WDM 2505 PETX 1 ENGL AGGR REPL
PERLND 262 1651.06 COPY 2 90	COPY 1 OUTPUT MEAN 5 1 7.4211e-5 WDM 2506 SAET 1 ENGL AGGR REPL
PERLND 263 7410.22 COPY 2 90	COPY 1 OUTPUT MEAN 6 1 7.4211e-5AVER WDM 2507 UZSX 1 ENGL AGGR REPL
PERLND 264 527.96 COPY 2 90	COPY 1 OUTPUT MEAN 7 1 7.4211e-5AVER WDM 2508 LZSX 1 ENGL AGGR REPL
PERLND 267 186.06 COPY 2 90	*** these area terms are based on the sum of the PERLND and IMPLND areas (77397.7
IMPLND 261 4.55 COPY 2 91 PERLND 361 124.83 COPY 2 90	ac) COPY 2 OUTPUT MEAN 1 1 1.292E-05 WDM 2512 SURO 1 ENGL AGGR REPL
PERLND 361 124.83 COPY 2 90 PERLND 362 1115.47 COPY 2 90	COPY 2 OUTPUT MEAN 1 1 1.292E-05 WDM 2512 SURO 1 ENGL AGGR REPL COPY 2 OUTPUT MEAN 2 1 1.292E-05 WDM 2513 IFWO 1 ENGL AGGR REPL
PERLIND 362 1115.47 COP1 2 90 PERLIND 363 2960.7 COPY 2 90	COPY 2 OUTPUT MEAN 2 1 1.292E-05 WDM 2513 1FWO 1 ENGL AGGR REFL
PERIND 364 476.33 COPY 2 90	COPY 2 OUTPUT MEAN 4 1 1.292E-05 WDM 2515 PETX 1 ENGL AGGR REPL
PERLIND 367 124.72 COPY 2 90	COPY 2 OUTPUT MEAN 5 1 1.292E-05 WDM 2516 SAET 1 ENGL AGGR REPL
IMPLID 361 13.72 COPY 2 91	COPY 2 OUTPUT MEAN 6 1 1.292E-05AVER WDM 2517 UZSX 1 ENGL AGGR REFL
END SCHEMATIC	COPY 2 OUTPUT MEAN 7 1 1.292E-05AVER WDM 2518 LZSX 1 ENGL AGGR REPL
	RCHRES 206 HYDR AVVEL 1 1 AVER WDM1 2306 AVEL 1 ENGL AGGR REPL
EXT TARGETS	RCHRES 208 HYDR AVVEL 1 1 AVER WDM1 2308 AVEL 1 ENGL AGGR REPL
<-Volume-> <-Grp> <-Member-> <mult>Tran <-Volume-> <member> Tsys Aggr Amd ***</member></mult>	RCHRES 207 HYDR AVVEL 1 1 AVER WDM1 2307 AVEL 1 ENGL AGGR REPL
<pre><name> x <name> x x<-factor->strg <name> x <name>qf tem strg strg***</name></name></name></name></pre>	RCHRES 205 HYDR AVVEL 1 1 AVER WDM1 2305 AVEL 1 ENGL AGGR REPL
RCHRES 1 HYDR RO 1 1 AVER WDM1 2001 FLOW 1 ENGL AGGR REPL	RCHRES 300 HYDR AVVEL 1 1 AVER WDM1 2400 AVEL 1 ENGL AGGR REPL
RCHRES 2 HYDR RO 1 1 AVER WDM1 2002 FLOW 1 ENGL AGGR REPL	RCHRES 21 HYDR AVVEL 1 1 AVER WDM1 2121 AVEL 1 ENGL AGGR REPL
RCHRES 3 HYDR RO 1 1 AVER WDM1 2003 FLOW 1 ENGL AGGR REPL	RCHRES 22 HYDR AVVEL 1 1 AVER WDM1 2122 AVEL 1 ENGL AGGR REPL
RCHRES 4 HYDR RO 1 1 AVER WDM1 2004 FLOW 1 ENGL AGGR REPL	END EXT TARGETS
RCHRES 5 HYDR RO 1 1 AVER WDM1 2005 FLOW 1 ENGL AGGR REPL	
RCHRES 6 HYDR RO 1 1 AVER WDM1 2006 FLOW 1 ENGL AGGR REPL RCHRES 7 HYDR RO 1 1 AVER WDM1 2007 FLOW 1 ENGL AGGR REPL	MASS-LINK
RCHRES 7 HYDR RO 1 1 AVER WDM1 2007 FLOW 1 ENGL AGGR REPL RCHRES 8 HYDR RO 1 1 AVER WDM1 2008 FLOW 1 ENGL AGGR REPL	MASS-LINK 2
RCHRES 9 HYDR RO 1 1 AVER WDM1 2009 FLOW 1 ENGL AGGR REFL	<pre><-Washing // Column <- Column <</pre>
RCHRES 10 HYDR RO 1 1 AVER WDM1 2010 FLOW 1 ENGL AGGR REFL	<pre><name></name></pre>
RCHRES 11 HYDR RO 1 1 AVER WDM1 2011 FLOW 1 ENGL AGGR REPL	PERIND PWATER PERO 0.0833333 RCHRES INFLOW IVOL
RCHEES 12 HYDR RO 1 1 AVER WDM1 2012 FLOW 1 ENGL AGGR REPL	PERLND PWTGAS PODOXM RCHRES INFLOW OXIF 1
RCHRES 13 HYDR RO 1 1 AVER WDM1 2013 FLOW 1 ENGL AGGR REPL	PERLND PWTGAS POHT RCHRES INFLOW IHEAT 1
RCHRES 14 HYDR RO 1 1 AVER WDM1 2014 FLOW 1 ENGL AGGR REPL	PERLND PQUAL POQUAL 1 RCHRES INFLOW IDQAL 1
RCHRES 21 HYDR RO 1 1 AVER WDM1 2021 FLOW 1 ENGL AGGR REPL	PERLND PEST POPST 1 RCHRES INFLOW IDQAL 1
*** commented out area term is sum of PERLND,IMPLND,RCHRES areas (16006 ac)	PERLND PEST SOSDPS 1 RCHRES INFLOW ISQAL 1 1
*** RCHRES 21 ROFLOW ROVOL 1 1 7.4967e-4 WDM 501 SIMQ 1 ENGL AGGR REPL	PERLND PEST SOSDPS 1 RCHRES INFLOW ISQAL 2 1
*** this area term is reported by the USGS gage as 20096 ac	PERLND PEST SOSDPS 1 RCHRES INFLOW ISQAL 3 1
RCHRES 21 ROFLOW ROVOL 1 1 5.9713e-4 WDM 2501 SIMQ 1 ENGL AGGR REPL	PERLND SEDMNT SOSED 1 0.05 RCHRES INFLOW ISED 1
RCHRES 22 HYDR RO 1 1 AVER WDM1 2022 FLOW 1 ENGL AGGR REPL	PERIND SEDMNT SOSED 1 0.55 RCHRES INFLOW ISED 2
RCHRES 23 HYDR RO 1 1 AVER WDM1 2023 FLOW 1 ENGL AGGR REPL	PERLND SEDMNT SOSED 1 0.4 RCHRES INFLOW ISED 3
RCHRES 24 HYDR RO 1 1 AVER WDM1 2024 FLOW 1 ENGL AGGR REFL	END MASS-LINK 2
RCHRES 25 HYDR RO 1 1 AVER WDM1 2025 FLOW 1 ENGL AGGR REPL RCHRES 26 HYDR RO 1 1 AVER WDM1 2026 FLOW 1 ENGL AGGR REPL	MASS-LINK 1
RCHRES 26 HYDR RO 1 1 AVER WDM1 2026 FLOW 1 ENGL AGGR REPL RCHRES 27 HYDR RO 1 1 AVER WDM1 2027 FLOW 1 ENGL AGGR REPL	MASS-LINK I <-Volume-> <-Grp> <-Member-><-Mult> <-Target vols> <-Grp> <-Member-> ***
RCHRES 27 HIDR RO 1 1 AVER WDM1 2027 FLOW 1 ENGL AGGR REPL RCHRES 28 HYDR RO 1 1 AVER WDM1 2028 FLOW 1 ENGL AGGR REPL	<pre><-volume-> <-Grp> <-member-><-mult> <-larget vols> <-Grp> <-member-></pre>
RCHRES 28 HIDR RO 1 1 AVER WDM1 2028 FLOW 1 ENGL AGGR REPL RCHRES 29 HYDR RO 1 1 AVER WDM1 2029 FLOW 1 ENGL AGGR REPL	IMPLND IWATER SURO 0.0833333 RCHRES INFLOW IVOL
TOTAL TO THE ROLL EVEN FROM I ENGLINGER REFL	THE TOTAL THE TOTAL TOTAL THE TABLE THE TABLE THE TABLE
Estimating the Un-Gaged Inflows in the	
	INCERA
Little Manatee River Basin, Florida	IIILETA
March 2006	

44

March 2006

IMPLND	IWTGAS	SODOXM			RCHRES		INFLOW	OXIF	1	
IMPLND	IWTGAS				RCHRES		INFLOW	IHEAT	1	
IMPLND	IQUAL	SOQUAL	1		RCHRES		INFLOW	IDQAL	1	
IMPLND	SOLIDS	SOSLD	1	0.05	RCHRES		INFLOW	ISED	1	
IMPLND	SOLIDS	SOSLD	1	0.55	RCHRES		INFLOW	ISED	2	
IMPLND	SOLIDS	SOSLD	1	0.4	RCHRES		INFLOW	ISED	3	
END MASS	-LINK	1								
MASS-LIN		3								
<-Volume->	<-Grp>	<-Membe	er-> <mul< td=""><td>Lt></td><td><-Target</td><td>vols></td><td><-Grp></td><td><-Member</td><td>er-></td><td>***</td></mul<>	Lt>	<-Target	vols>	<-Grp>	<-Member	er->	***
<name></name>		<name></name>	x x<-fact	cor->	<name></name>			<name></name>	хх	***
RCHRES	ROFLOW				RCHRES		INFLOW			
END MASS	-LINK	3								
MASS-LIN		4								
<-Volume->	<-Grp>				<-Target	vols>	<-Grp>			***
<name></name>			x x<-fact	cor->	<name></name>			<name></name>	хх	***
RCHRES	OFLOW		1		RCHRES		INFLOW	IVOL		
END MASS	-LINK	4								
MASS-LIN		90	_			_		_		
<-Volume->		<-Membe			<-Target	vols>	<-Grp>			***
<-Volume-> <name></name>	<-Grp>	<-Membe	er-> <mul< td=""><td></td><td><name></name></td><td>vols></td><td>•</td><td><name></name></td><td>хх</td><td>***</td></mul<>		<name></name>	vols>	•	<name></name>	хх	***
<-Volume-> <name> PERLND</name>	<-Grp>	<-Membe <name></name>			<name></name>	vols>	INPUT	<name></name>	х х 1	
<-Volume-> <name> PERLND PERLND</name>	<-Grp> PWATER PWATER	<-Membe <name> SURO IFWO</name>			<name> COPY COPY</name>	vols>	INPUT INPUT	<name> MEAN MEAN</name>	x x 1 2	
<-Volume-> <name> PERLND PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER	<-Membe <name> SURO IFWO AGWO</name>			<name> COPY COPY COPY</name>	vols>	INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN</name>	x x 1 2 3	
<-Volume-> <name> PERLND PERLND PERLND PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER PWATER	<-Membe <name> SURO IFWO AGWO PET</name>			<name> COPY COPY COPY COPY</name>	vols>	INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4	
<-Volume-> <name> PERLND PERLND PERLND PERLND PERLND PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER PWATER PWATER	<-Membe <name> SURO IFWO AGWO PET TAET</name>			<name> COPY COPY COPY COPY COPY</name>	vols>	INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5	
<-Volume-> <name> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER	<-Membe <name> SURO IFWO AGWO PET TAET UZS</name>			<name> COPY COPY COPY COPY COPY COPY COPY</name>	vols>	INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5	
<-Volume-> <name> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER PWATER	<-Membe <name> SURO IFWO AGWO PET TAET UZS LZS</name>			<name> COPY COPY COPY COPY COPY</name>	vols>	INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5	
<-Volume-> <name> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER PWATER	<-Membe <name> SURO IFWO AGWO PET TAET UZS</name>			<name> COPY COPY COPY COPY COPY COPY COPY</name>	vols>	INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5	
<-Volume-> <name> PERLND PERLND</name>	<-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER PWATER -LINK	<-Membe <name> SURO IFWO AGWO PET TAET UZS LZS 90</name>			<name> COPY COPY COPY COPY COPY COPY COPY</name>	vols>	INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5	
<-Volume-> <name> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND MASS MASS-LIN</name>	<-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER PWATER -LINK K	<-Membe <name> SURO IFWO AGWO PET TAET UZS LZS 90</name>	x x<-fact	cor->	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***
<pre><-Volume-> <name> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND END MASS MASS-LIN <-Volume-></name></pre>	<-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER PWATER -LINK K	<-Membe <name> SURO IFWO AGWO PET TAET UZS LZS 90 91 <-Membe</name>	x x<-fact	cor-> Lt>	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***
<-Volume-> PERLIND PERLIND PERLIND PERLIND PERLIND PERLIND PERLIND PERLIND END MASS -LIN <-Volume-> Name>	<pre><-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER -LINK K <-Grp></pre>	<-Membe <name> SURO IFWO AGWO PET TAET UZS LZS 90 91 <-Membe <name></name></name>	x x<-fact	cor-> Lt>	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***
<-Volume-> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND END MASS MASS-LIN <-Volume-> IMPLND IMP	<pre><-GIP> PWATER PWATER PWATER PWATER PWATER PWATER -LINK K <-GIP> IWATER</pre>	<-Membeconsultance <name> <name> SURO IFWO AGWO AGWO TAET UZS LZS 90 91 <-Membeconsultance <name> SURO</name></name></name>	x x<-fact	cor-> Lt>	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***
<-Volume-> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND END MASS MASS-LIN <-Volume-> IMPLND IMPLND	<pre><-Grp> PWATER PWATER PWATER PWATER PWATER PWATER PWATER CLINK K <-Grp> IWATER IWATER</pre>	<-Membe<	x x<-fact	cor-> Lt>	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***
<-Volume-> <\ame> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND END MASS MASS-LIN <-Volume-> <\ame> IMPLND IMPLND IMPLND IMPLND	<pre><-GIP> PWATER PWATER PWATER PWATER PWATER PWATER -LINK K <-GIP> IWATER IWATER IWATER</pre>	<-Membe <name> SURO IFWO AGWO PET TAET UZS LZS 90 91 <-Membe <name> SURO PET IMPEV</name></name>	x x<-fact	cor-> Lt>	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***
<-Volume-> PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND END MASS MASS-LIN <-Volume-> IMPLND IMPLND	<pre><-Grp> PWATER PWATER PWATER PWATER PWATER PWATER -LINK <-Grp> IWATER IWATER IWATER -LINK</pre>	<-Membe<	x x<-fact	cor-> Lt>	<name> COPY COPY COPY COPY COPY COPY COPY COPY</name>		INPUT	<name> MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN</name>	x x 1 2 3 4 5 6 7	***

END RUN

APPENDIX C Calibration/Verification Simulation Results

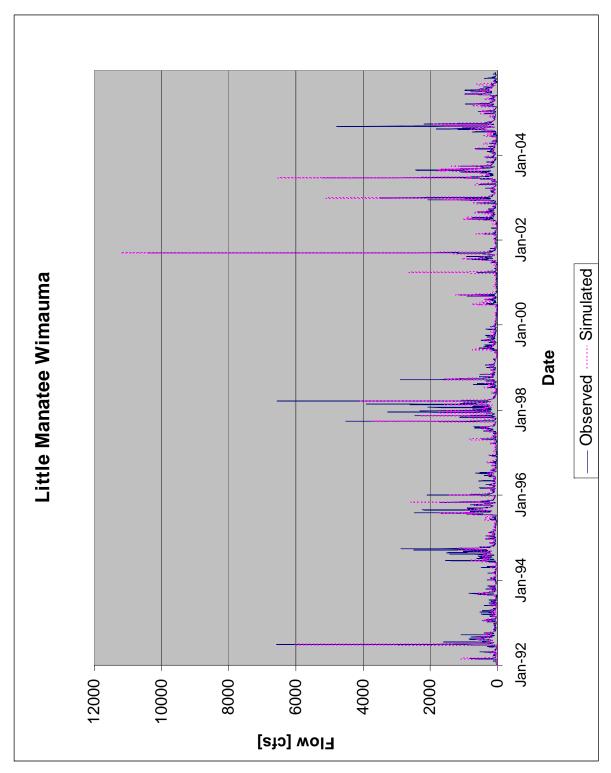


Figure 10 Little Manatee Wimauma Hydrograph

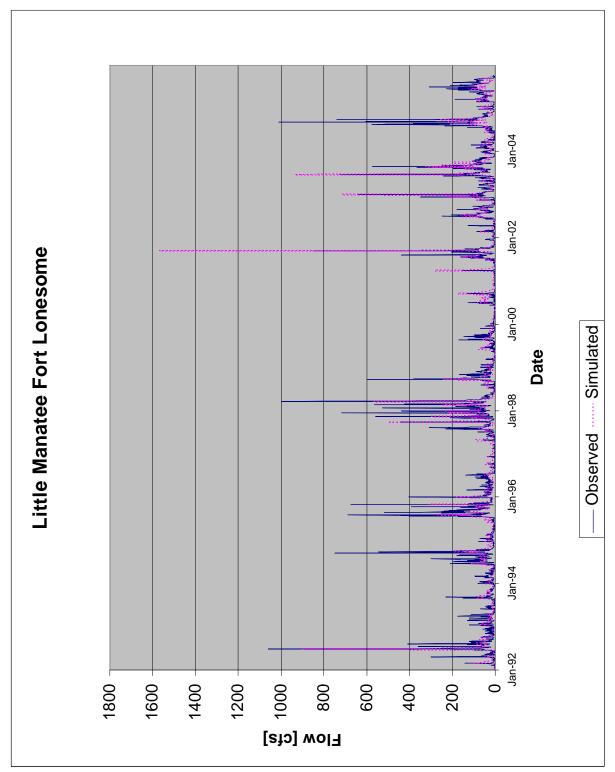


Figure 11 Little Manatee Fort Lonesome Hydrograph

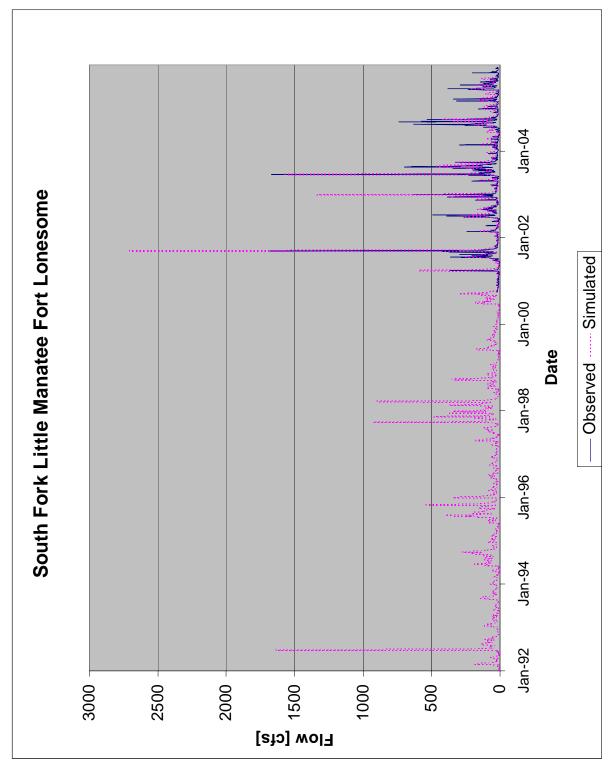


Figure 12 South Fork Little Manatee Fort Lonesome Hydrograph

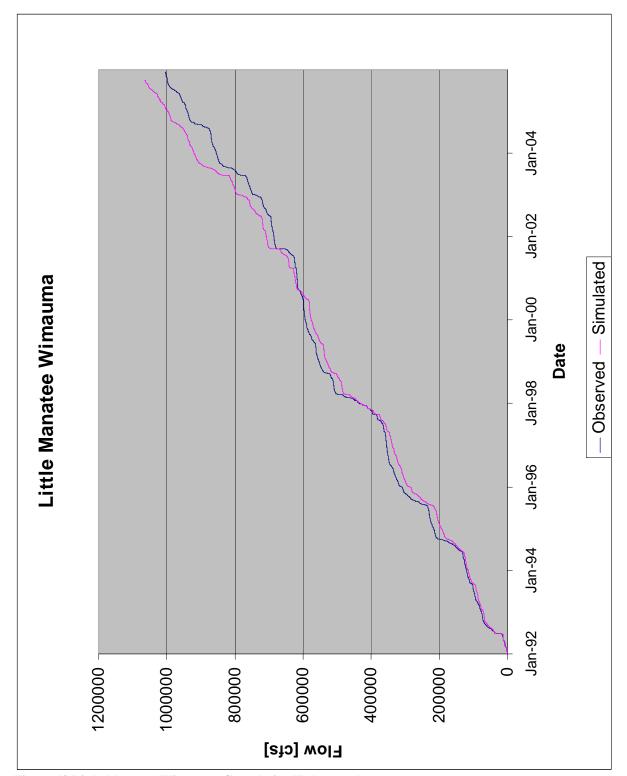


Figure 13 Little Manatee Wimauma Cumulative Hydrograph

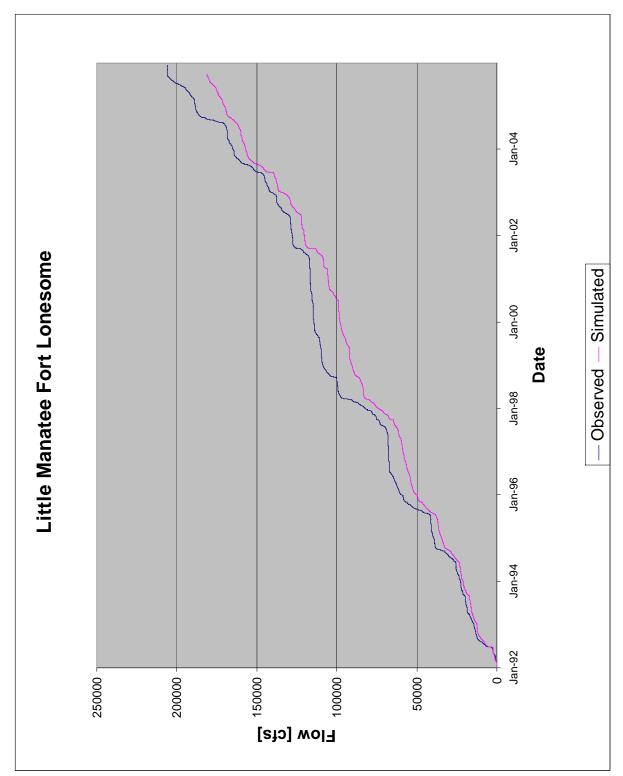


Figure 14 Little Manatee Fort Lonesome Cumulative Hydrograph

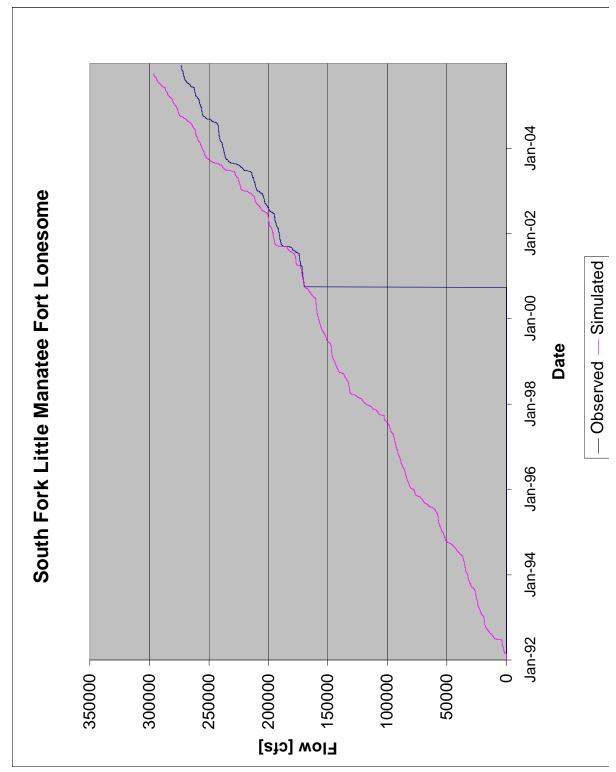


Figure 15 South Fork Little Manatee Fort Lonesome Cumulative Hydrograph

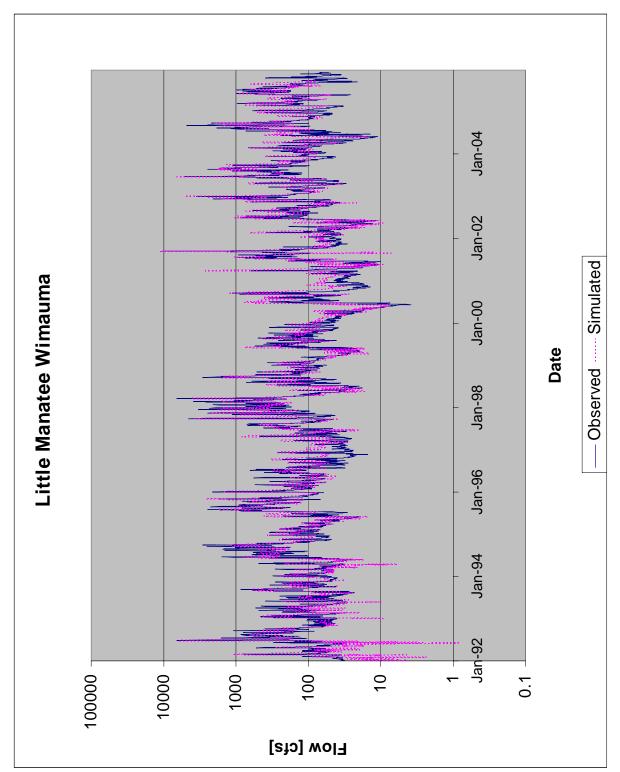


Figure 16 Little Manatee Wimauma Log Hydrograph

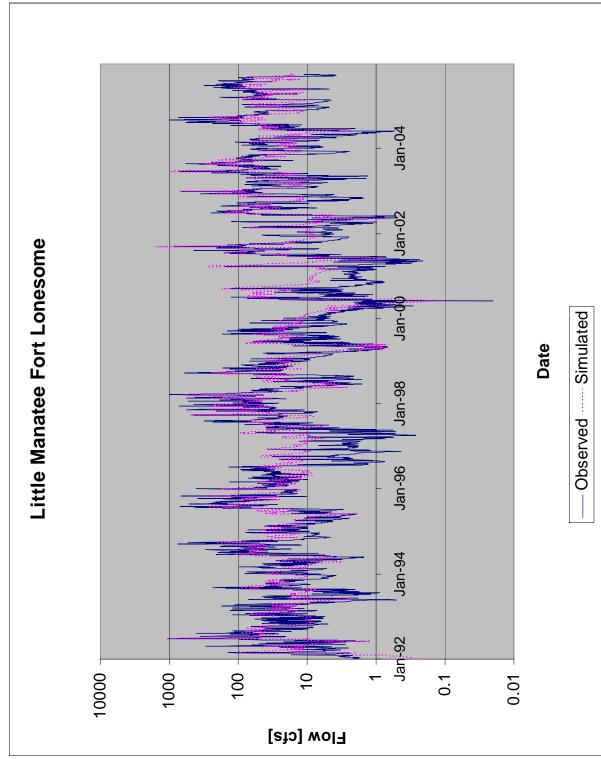


Figure 17 Little Manatee Fort Lonesome Log Hydrograph

Figure 18 South Fork Little Manatee Fort Lonesome Log Hydrograph

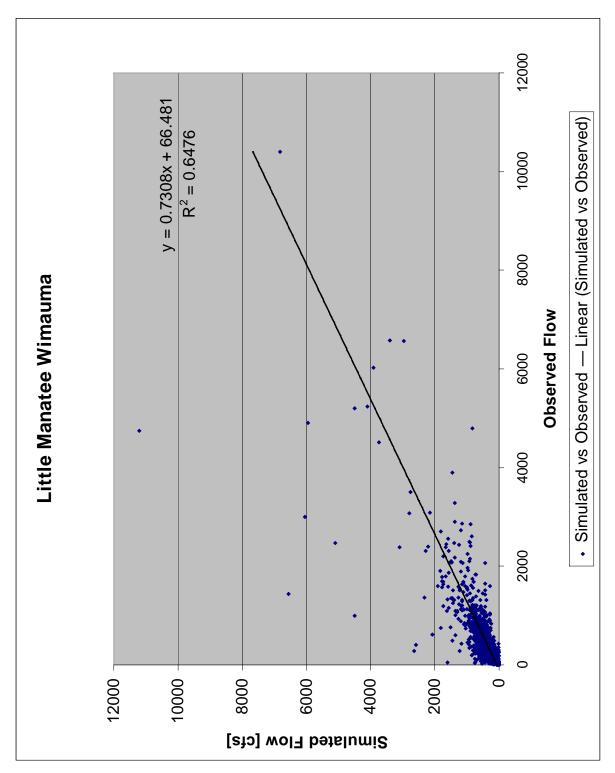


Figure 19 Little Manatee Wimauma Simulated vs Observed Flows

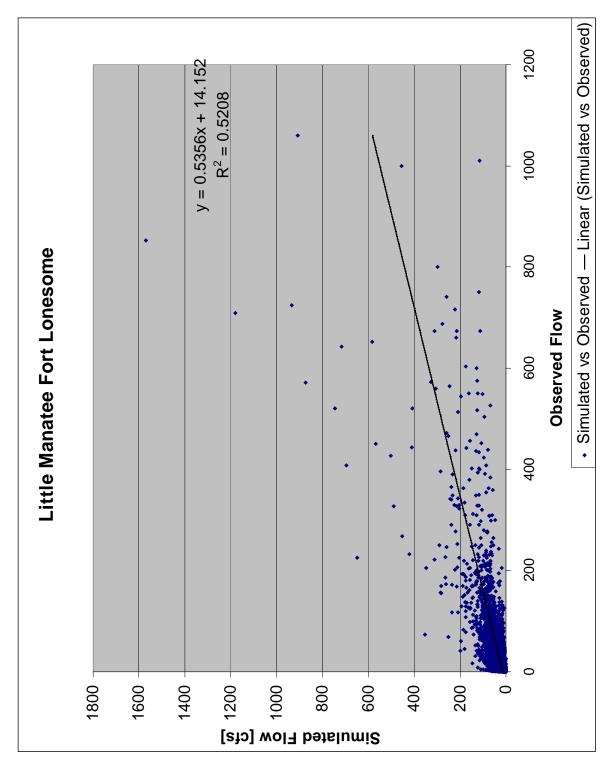


Figure 20 Little ManateeFort Lonesome Simulated vs Observed Flows

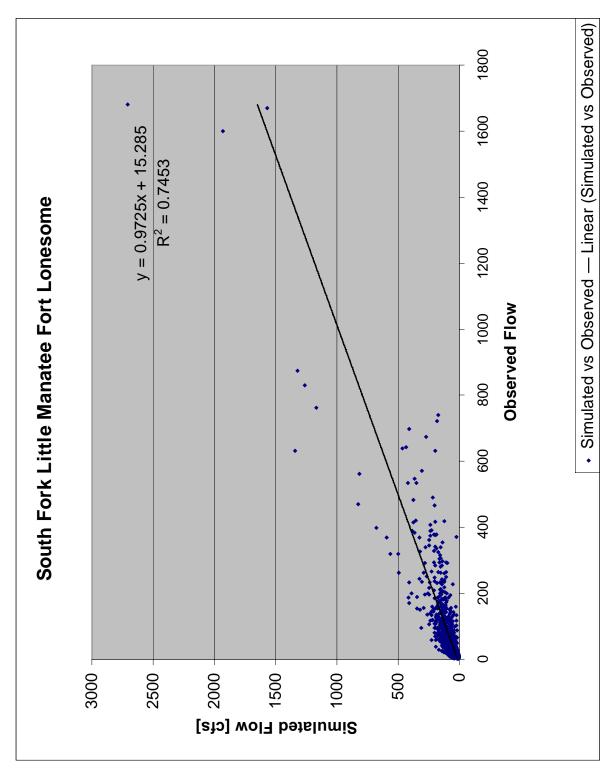
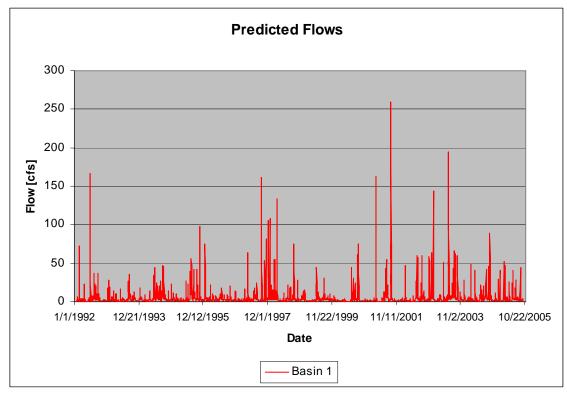
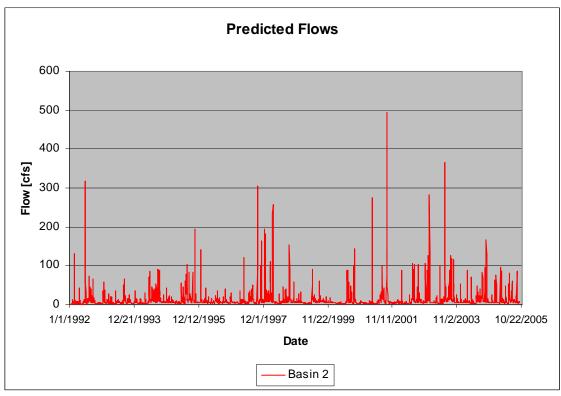
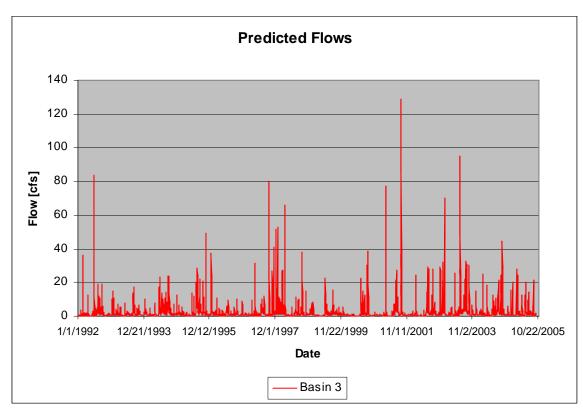
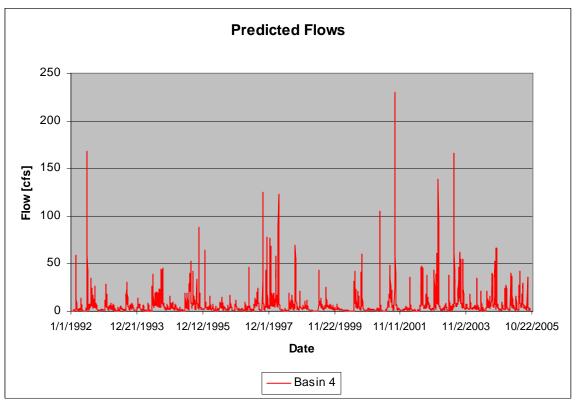
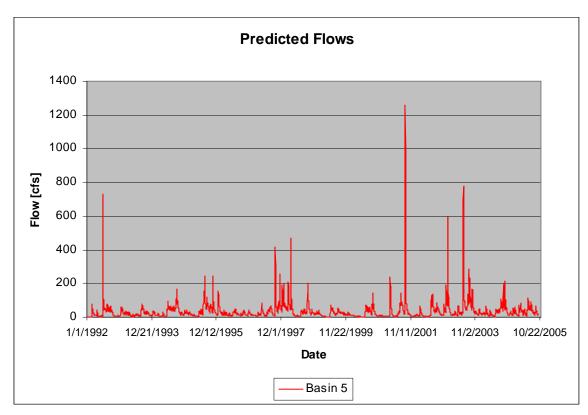
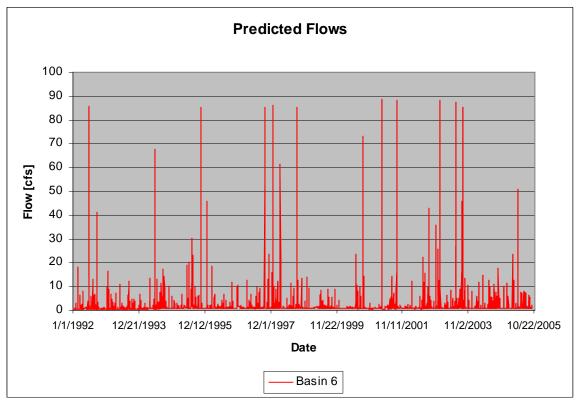




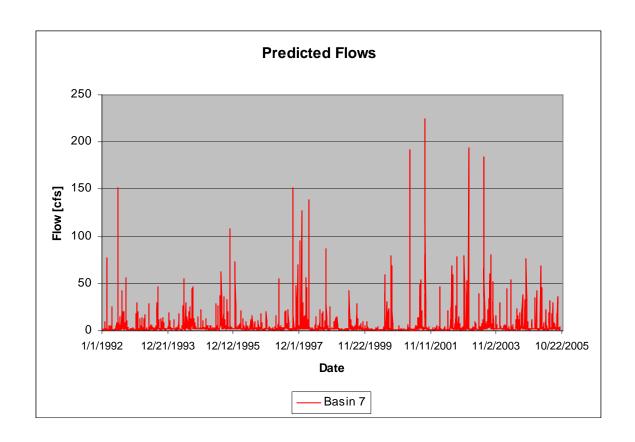
Figure 21 South Fork Little Manatee Fort Lonesome Simulated vs Observed Flows

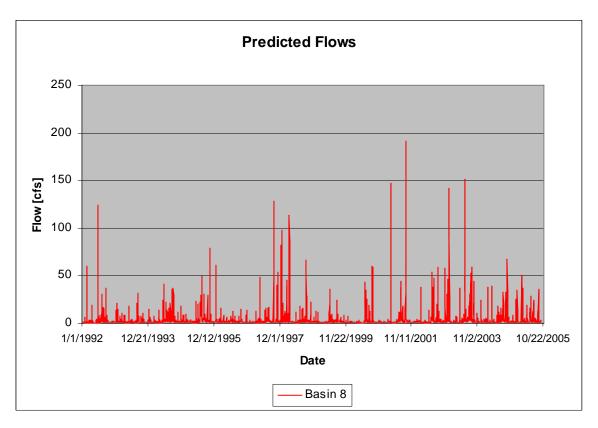


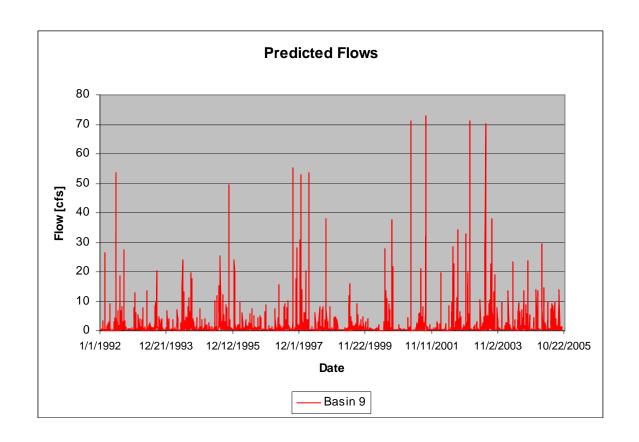

APPENDIX D Predictive Simulation Results

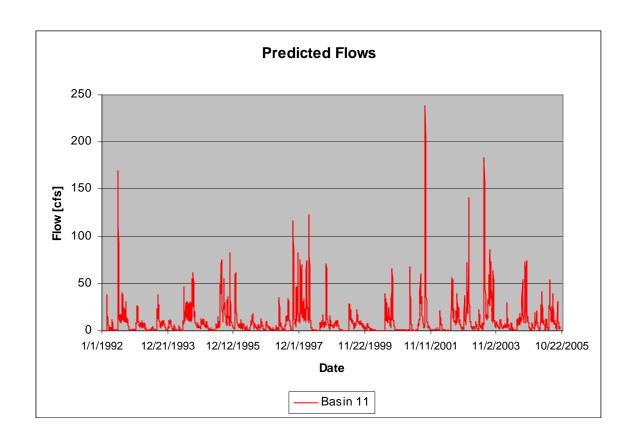


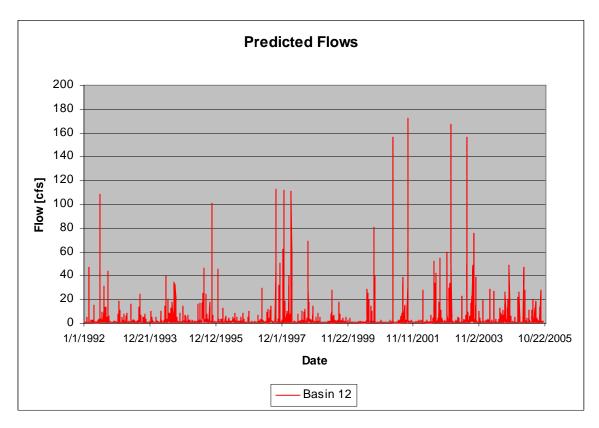


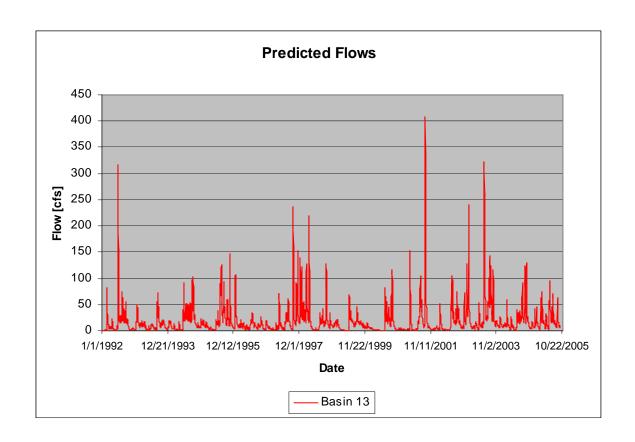


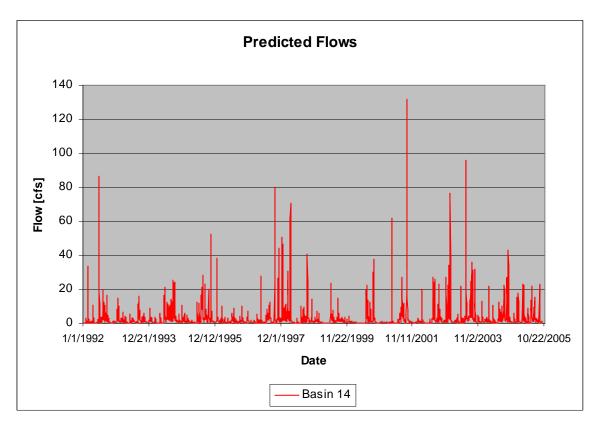












APPENDIX E Land Segment Area in Acres by Landuse

		Land Segmer	nt Area in Acres by Land Use				
BasinID	1 - Urban	2 - Irrigated	3 - Pasture	4 - Forested	7 - Other		
1	359.3	594.6	329.7	115.1	437.2		
2	1548.9	847.8	1147.3	293.8	107.0		
3	166.5	248.5	284.2	172.8	3.3		
4	120.1	1091.7	925.4	112.3			
5	878.1	4638.6	4587.1	1149.4	26.0		
6	251.4	37.7	109.1	65.5	63.8		
7	454.5	274.0	477.6	162.5	20.2		
8	280.9	274.7	311.9	135.2	224.7		
9	234.3	26.8	142.8	33.2			
10	282.4	316.8	505.0	486.5	51.5		
11	363.6	555.0	1604.0	847.7	19.8		
12	61.8	14.7	276.5	662.8	12.7		
13	2746.1	1261.8	1256.8	484.5	2.5		
14	286.8	51.2	358.7	307.1			
21	71.4	1533.5	7314.3	827.7	3728.2		
22	156.6	6574.6	8549.4	3411.0	99.4		
23	14.5	332.6	2411.7	361.1	20.3		
24	115.9	1895.1	2126.6	313.6	86.0		
25	205.2	3213.9	1795.7	112.4	77.9		
26	91.1	1651.1	7410.2	528.0	186.1		
27	0.4	302.0	735.5	174.3			
28	155.9	611.3	621.5	309.7			
29		490.7	1633.7	154.4	95.3		
30	41.9	780.4	439.4	28.3			
31	725.5	1442.1	1200.9	713.6	194.5		
33	217.9	712.7	1453.8	1122.0	60.0		
34	20.6	528.5	376.2	151.1	36.8		
35	3.1	796.3	905.0	131.7			
36	138.5	1115.5	2960.7	476.3	124.7		

Appendix F Response to Comments from the District

INTERA Incorporated

1541 North Dale Mabry Highway, Suite202

Lutz, Florida 33548

ph: 813 600 5737 fax: 813 600 3761

Fax: 813 354 4698

Mike Heyl Southwest Florida Water Management District 7601 Highway 301 North Tampa, Florida 33637

Mike,

Below is a compiled list of the report comments that I received from District. In some cases the reviewer asked a simple question and therefore it was easier to compile this reply. In other cases the reviewer asked for specific report modifications. A revised final copy of the report will be submitted to the District. The page numbers listed below referred to the original text. This letter will be included as an addition appendix to the final report.

Sincerely,

Patrick Tara

Senior Engineer

INTERA Incorporated

Sid Flannery's comments:

page 4. What does DEM stand for? In this and other instances, please spell out the complete term when an acronym is first introduced.

The report was modified explaining the many acronyms.

page 5 and 6. The term potential evaporation is used on page 5, while page 6 states that pan evaporation were multiplied by 0.7 to yield potential ET (evapotranspiration) of the region. It is my understanding that pan evaporation * 0.7 is the evaporation from an open water surface, so I suppose this could be potential ET since water is not limiting. However, how was this term applied to different land covers? Was pan evap * 0.7 applied to the entire watershed area - that is what the sentence implies, or was it modified for different land covers in the watershed.

The model requires potential ET as an external time series. One potential ET time series was generated and applied to all land uses and water bodies within the model. The pan ET rate is elevated above natural systems ET for a number of reasons (local effect of wind caused by the pan itself, heat transfer through the pan material, etc). For these reasons potential ET is assumed to be pan factored by a pan ET coefficient. For the Little Manatee River application .7 was used to scale pan ET to open water ET. Open water ET was assumed as potential ET from the natural system. It is up to the model and the model conceptualization to limit the available water that satisfies that potential. Open water obviously would easily satisfy the potential (therefore actual ET is equal to the potential) On the other hand pasture would limit the available water and other model parameters (as determined from the land use calibration) and would therefore have a simulated actual ET which is much less than the potential.

P 13 and pages 55-56. From what time periods are the data shown in the scatter plots on pages 55 - 56. Is this for the entire period of simulation for each gage, including 2004 and 2005, or for some sub-set of the simulation period? Also, over what time steps are the flow data shown in these figures aggregated - are these average daily flows? Please specify in the text.

The total simulation period is from 1/1/1992 to 9/30/2005. This period was mainly dictated by the Districts estimated water use database. At the time the model was completed 2003, 2004, and 2005 were not available. These years were populated using representative years based on similar precipitation records.

P 13. In the calibration procedure and the plots of simulated vs observed flows for the Little Manatee River at Wimauma, did you add withdrawals from the river by Florida Power and Light back into the flow record?

Yes. Monthly data was obtained for the FPL water use. These records were utilized in the calibration as a withdrawal evenly distributed across the month.

P 13. In general, there should be some more write-up of the calibration and verification results. Are there any likely reasons that certain outliers occurred (such as variability in rain coverage). Of all the gages, the agreement of observed and simulated flows was the best for the South Fork. Is there any likely reason for that?

Outliers will always be present in any model whether statistical or numerical. There are many reasons that can be blamed for their presence. As you suggested the variability in rainfall is probably the number one reason (since it is the most significant water balance term). The good agreement for the South Fork is purely happenstance. The South Fork data was not even used for calibration. The period of record was too short for utility in the calibration process. It was used in the model verification task. The reasons for this are varied as well but rainfall, landuse, ditching, soils, depth to water, regional discharge all play a role in introducing variability from subbasin to subbasin.

P 13. What was the exact ending date of the simulation period in 2005. The graphs make it look like it was near Oct 22, 2005 - can the exact date be stated in the text.

The total simulation period is from 1/1/1992 to 9/30/2005. The ending dates for all graphs is 9/30/2005.

Importantly, we would like to know the areas for the 14 ungaged sub-basins. Also, could you provide a table of the area-normalized runoff in inches for these 14 ungaged basins and the three gaged sub-basins for the period of simulation, which should be 1989 -2005 for LMR at Wimauma and Ft. Lonesome, and October 2000 - 2005 for the South Fork.

This data was included with the transmittal of the ungaged basin flows. They are again included here for completeness.

Basin	Area Sq Miles
1	2.87
2	6.16
3	1.37
4	3.51
5	17.62
6	0.82
7	2.17
8	1.92
9	0.68
10	2.57
11	5.30
12	1.61
13	8.99
14	1.57
21	21.05

Mike Heyl's comments:

Page 1 - Patrick - The "Un-Gaged" legend washes out on the printed copy. Can you put an outline on it please?

The GIS graphic was updated.

Page 3 - A table in the appendix with acres of land use by sub-basin would be useful.

A table will be added with this information.

Page 4 – Where did you get the DEM data? Can you elaborate?

The DEM data is readily available from the USGS (http://seamless.usgs.gov).

Page 5 – Two formatting issues here. The Table spans the page and the outer boundaries of the theissen polygons are missing.

The table will be corrected. As for the Theissen polygons the outer boundaries were truncated, they actually extend much further. A frame was placed around the graphic.

Page 5 - Can you elaborate? What were the problems with the other data sets? Can you specify by source?

The hydrologic model requires a clean and continuous time series. Data gaps need to be filled. If the gap is small a simple interpolation will suffice. Large gaps must be filled using more complicated techniques. If the data gaps are large and numerous, the data can be deemed too problematic for useful application to a numerical model.

Page 6 - What is the basis for this number ? Mark Ross used it too, but he ignored my review comment asking for justification. I think it is the correction from pan to lake evaporation. I gotta believe that when you add transpiration to the evaporation this value will change. Do you have any peer-review citations for this.

The adjustment factor of .7 modifies the pan ET rate to a potential ET rate for natural systems. The Class A pans are small in size, shallow, wind effects induced pan, thermal heat transfer through pan material, etc. These effects cause the pan ET rate to exceed the natural systems and therefore a coefficient is used to adjust the measurements. The Class A pan, the most commonly used pan in the US, has ranges in the coefficient from .64-.82. An average coefficient of .7 is well adopted in literature to represent average conditions (Bras 1990).

Page 6 - Figure 6 shows A LOT of wells that are not surrounded by Ag or Rec land uses. How/where these assigned?

Many of the wells Ag and Rec wells are associated with an Ag or Rec polygon. A small number are not directly associated with the appropriate land use. These can be caused by changing landuse conditions, or poor location of wells in the original database. These wells that are not directly associated with the appropriate irrigated landuse were lumped with into the other irrigation and applied to the irrigated land segment within the model.

Page 8 - Need to mention adjustments for FPL.

Agreed. A section will be added for the FPL data.

Page 10 - I don't follow these comments. Are you saying that the impervious area of a residential neighborhood is greater downstream than the impervious area of a residential area upstream? I thought the whole concept of this project was to characterize the landuses in the gaged watershed and then apply those parameters to the SAME landuses in the ungaged area. Granted the

characteristics of the undeveloped areas may change, but I don't follow the comment to developed areas.

The report was stating the fact that the relative areas of development change as you move closer to the bay (for example 10% of the basin is developed in eastern half of the basin yet 30% of the basin is developed close to Tampa Bay). This changing landuse condition forces to use of landuse based calibration (which is what was performed for the Little Manatee Application). Expanding on this is the changes in the density of the development. The density of the development to the east of the basin is much less than the density of the development to the west. The change in the densities of the development is the uncertainty that the report was alluding to. The model was calibrated to the less dense eastern half yet the predictions were made using the same model parameters on the western denser half of the basin. Since there is no data to calibrate the denser land use conditions the uncertainty in the predictions is the best available data.

Page 12 - How significant are these areas to contributing area? I understand the significance in terms of storage and the timing of runoff, but what percentage of the contributing area are the wetlands? Perhaps a table of F-table area compared to the sub-basin area?

The wetlands in West Central Florida are a significant component of the landscape. In this particular Little Manatee River domain the wetlands and lakes represent about 20 percent of the basin. The uplands sum to 156 thousand acres and water bodies sum to 30 thousand acres.

Page 12 - I think this should exceed lake evaporation rates since you have both unlimited evaporation coupled with unlimited transpiration.

Potential ET is the limit due to the atmosphere inability of removing more water.

Page 12 - I'm not following any of this. A dry reach will: a) over estimate evaporation b) over estimate inflow but the over-estimation will be reduced the excess rainfall will go into vadose zone soil storage. Doesn't that always happen - up to the capacity and infiltration rate? What is different?

In the physical landscape the wetland areas change dramatically. In the model the area of the reaches are held constant. Holding the reach areas constant for all stages cause the model to produce errors. At high stage the model should be representing the large area with potential ET. Since the model is using the fixed area it will under estimate the ET when the wetland is under high stage conditions. Conversely, when the physical system is extremely dry the area should be small. Again the model area is held constant at the wetland area as represented with normal pool

stages. During dry conditions the model will over estimate the wetland ET. The report was stating the deficiency in the model's ability to represent the physical hydrologic cycle during extreme shifts in the wetland areas. These statements describe reasons for the scatter as mentioned in Sid Flannery's comments above.

Page 13 - Do the scatter plots really contain 4,328 points or are they a subset of the calibration /verification period.

They actually have 5022 points. Daily data from 1/1/1992 to 9/30/2005 inclusive.

XinJian Chen's comments

Page 4 - Not very clear on what was exactly done here. An equation or a figure may be helpful.

This averaging was performed using the area weighted approach. The areas were determined from the Thiessen polygons (if no data was available for the particular rain gage the area was excluded from the weighting). This averaging was performed for each day for the simulations period.

Page 4 - Not found in References. Did you mean (Hernandez, 2001)?

Yes

Page 5 - NOAA daily or 15-minute rain?

NOAA daily

Page 7 – Any references on this number? I would think 0.5" rain is not very tiny. If you get 0.49" everyday for many days, you don't need to turn on your irrigation system at all during these days.

This number has been used before in other studies (i.e., Southern District Model, Alafia model, INTB model). There is no scientific reason or determination for the threshold. The distribution of the monthly irrigation is prone to errors. Some farmers even irrigate during rain due to the nature of automatic irrigation systems. Some have automatic shut off there is a wide spectrum of irrigation practices.

Page 9 – small changes

Fixed

Page 11 - I don't see Reach 209 in Figure 2.

Typo supposed to be 208

Page 11 - Did you mean Sub-Basin (Storage) 31?

Each basin has an associated storage attenuation reach. The storage attenuation reaches are numbered the same as the basin. The text is correct in referring to reach 31.

Page 12 - Please reword. The term "low wetland stage rain event" makes no sense.

Reworded: In turn the inflow volume will be over-estimated for rain event during times of low wetland stage.

Page 12 - Is vadose zone soil storage included in the model?

In the reach conceptual model the vadose zone storage is included. The vadose zone storage allows the reaches to ET during extended dry periods. Obviously there is no accurate way to measure this storage as well as the above ground storage of wetlands. The storage becomes a calibration factor. The storage is adjusted to capture the small events that do not discharge as well as the attenuation of the large events that do discharge.

Page 12 - I don't understand this. You are not scaling the stage, do you? How do you determine this volume adjustment factor which is time-dependent as the stage is time-dependent?

The Ftable defines the stage storage discharge and area nonlinear relationship for each reach. The Ftable was developed from each reach from the GIS data as well as the USGS ratings. These ratings were scaled and extrapolated to better define the conditions for the water bodies. As the text states the areas for each reach were held constant for all stages. The stages and flows for the USGS rating were scaled based on the relative contributing area. The volumes were

calculated from the area and the scaled stages. An adjustment factor was also implemented in the conceptual model to allow calibration. The scale factor accounted for vadose zone storage as well as storage below the invert. The adjustment factor is stage dependant (allowing the modeler to adjust storage below the invert as well as above the invert). There is not temporal variability to the volume adjustment.

Page 13 - Please add figure numbers and captions to the figures in Appendix C.

Figure captions will be added.

Page 13 - Please add some discussions on comparing model results with measured data. Also, please provide a table showing the starting and ending River Kilometers of each un-gaged subbasins.

We would need the coverage of the river miles. The location of river mile 0.0 is fairly ambiguous (where does the bay stop and the river start). We can provide the District with the basins and hydrography coverages. From the GIS coverages the river miles can be determined.

Page 15 – minor changes

Corrected

