Crystal River/Kings Bay Shoreline Mapping

Madison Trowbridge, Ph.D. Springs Scientist Surface Water Improvement & Management Section

Why shoreline?

- Wetlands present before development
- Wetlands improve water quality & provide habitat
- Loss of natural treatment

2012

SWIM Plan Quantifiable Objectives

Water Quality	Target
Water clarity - bay wide	>20 feet
Water clarity – spring areas	>60 feet ¹
Total nitrogen concentration in the bay	<0.28 mg/L ²
Total phosphorus concentration in the bay	<0.032 mg/L ²
Chlorophyll concentration in the bay	<2.0 µg/L³
Water Quantity	
Minimum flows for the River and Bay system	TBD in 2017 ⁴
Natural Systems	
Coverage of desirable submerged aquatic vegetation in the bay	>65%5
Coverage of invasive aquatic vegetation in the bay (including filamentous algae)	<10%5
No net loss of shoreline in natural condition along the bay and river	No net loss
Increase of enhancement to disturbed shorelines for the bay and river	>20%

Methodology: Shoreline Mapped (2021)

Methodology overview

- 30 ft segments
- Identified shoreline type, vegetation
- Compared to previous (2010) mapping

Shoreline Types - 2021

Types of Shoreline Change

- Increase in human altered shoreline
- Increase in open water
- Changes in emergent aquatic vegetation

Increase in human altered shoreline

Increase in open water

2010

2021

Changes in EAV: Needle rush

Southwest Florida Water Management District

Changes in EAV: Red mangroves

Southwest Florida Water Management District

Conclusions

- Shoreline types (2021)
 - Crystal River: 81% is natural
 - Kings Bay: 48% is seawall
- Increase in human altered shoreline
- Climate change present in Crystal River/Kings Bay
 - Red mangroves & black needle rush
- Manatee grazing impacts shoreline

Questions?

Madison Trowbridge, Ph.D.

Surface Water Improvement and Management Natural Systems and Restoration Bureau <u>madison.trowbridge@swfwmd.state.fl.us</u>

