Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida

February 2020 Draft

Environmental Flows and Assessments Section Natural Systems and Restoration Bureau Resource Manamgment Division

Southwest Florida Water Management District

Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida

February 2020 Draft

Lei Yang, PhD, PE, Chief Professional Engineer Doug Leeper, MFLs Program Lead Yonas Ghile, PhD, Lead Hydrologist

Environmental Flows and Assessments Section Natural Systems and Restoration Bureau Resource Management Division Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34604-6899

SWFWMD does not discriminate on the basis of disability. This nondiscrimination policy involves every aspect of SWFWMD'S functions, including access to and participation in SWFWMD's programs and activities. SWFWMD designates the Human Resources Office Chief as the Americans with Disabilities Act (ADA) Compliance Coordinator. Anyone requiring reasonable accommodation as provided for in the ADA should contact SWFWMD'S Human Resources Office, 2379 Broad Street, Brooksville, Florida 34604-6899; telephone 352-796-7211, ext. 4706 or 1-800-423-1476 (FL only), ext. 4706; TDD 1-800-231-6103 (FL only); or email to ADACoordinator@WaterMatters.org.

TABLE OF CONTENTS

AC	KNO	WLEDGEMENTS	v	
EX	ECU	TIVE SUMMARY	vi	
1.	PURPOSE AND BACKGROUND			
	1.1	Purpose: Lake Hancock Reservation	1	
	1.2	Background: Peace River Minimum Flows and Minimum Flow Recovery	2	
2.	LAKE HANCOCK RESERVATION ANALYSIS			
	2.1	Daily Water Budget Model	7	
	2.2	Data, Regression and Information	9	
		2.2.1 P-11 Control Structure	9	
		2.2.2 Analysis Period	15	
		2.2.3 Lake Hancock Surface Water Elevation	15	
		2.2.4 Relevant USGS Streamilow and Established Minimum Flows	1 <i>۲</i> ۱۹	
		2.2.6 P-11 Structure Weir Equation	20	
		2.2.7 Lake Surface Area and Volume versus Lake Stage	20	
		2.2.8 City of Lakeland Wastewater Treatment Effluent	23	
		2.2.9 Sink Loss	23	
	2.3	Water Budget Model Development and Routing	24	
		2.3.1 Model Scenarios	25	
		2.3.2 Adjustments for Historical Baseline Condition	26	
		2.3.4 Adjustments for Daily Minimum Flow Requirement	27	
		2.3.5 Adjustments for Sink Loss Between Bartow and Fort Meade	27	
		2.3.6 Adjustments for Operation Schedule	28	
		2.3.7 Lake Hancock Water Budget Routing	29	
3.	SIM	ULATIONS, RESULTS AND DISCUSSION	30	
	3.1	Lake Hancock Outflow	30	
	3.2 Flow Adjustments for Removal of Historical Wastewater Effluent and		ure	
		Operation	31	
	3.3	3 Lake Hancock Minimum Levels		
	3.4	Minimum Flow Recovery in the Upper Peace River		
	3.5	Impacts to Minimum Flows in the Middle and Lower Peace River		
	3.6	impacts to Existing Water Users3		
	3.7	Impacts to the Charlotte Harbor Esturary	40	
4.	SUN	IMARY AND CONCLUSIONS	41	
5.	REF	ERENCES	44	

LIST OF FIGURES

Figure 1	Lake Hancock, Peace River and Peace River watershed5
Figure 2	Karst features and sink locations between Bartow and Fort Meade (figure reproduced from Metz and Lewelling, 2009)
Figure 3	Schematic diagram of Lake Hancock water budget components7
Figure 4	Downstream side of the former P-11 control structure showing two metal radial gates and the concrete-capped, sheet-pile wall10
Figure 5	Downstream side of the Lake Hancock's P-11 control structure showing two weir gates in the westernmost bay on the left (one is partially open and the other is closed) and roller gates in the other two bays12
Figure 6	Example of effect of structure P-11 operation on meeting the minimum flow in the UPR at Fort Meade for a selected period from April 23, 2016 to May 10, 201614
Figure 7	Locations of Lake Hancock stage data collection sites and primary tributaries for surface water inflows to Lake Hancock
Figure 8	Lake Hancock stage duration curve for the period from January 1975 through December 2012
Figure 9	Recorded and regressed P-11 control structure flow versus Lake Hancock stage
Figure 10	Contour map of lake bathymetry for Lake Hancock
Figure 11	Lake Hancock water surface area versus lake stage21
Figure 12	Lake Hancock volume versus surface water elevation22
Figure 13	Flow difference between Fort Meade and Bartow versus flow less than 30- cfs at Fort Meade for the 1975 through 2012 period used for this study; note negative differences are not shown
Figure 14	Changes in the average outflow and average outflow by seasonal block (Blocks 1, 2 and 3) through the Lake Hancock P-11 control structure for three modeled scenarios relative to the flows simulated for the Baseline scenario for the period 1975 through 2012
Figure 15	Lake Hancock stage duration curves associated with structure P-11 operating scearios and adopted lake minimum levels
Figure 16	Adopted minimum levels for Lake Hancock and simulated water levels for the Baseline and ECL+MFLs+SL scenarios for the period from 1975 through 2012
Figure 17	Changes in the average Peace River flows at the Arcadia gage and average flows by seasonal block (Blocks 1, 2 and 3) for three modeled scenarios relative to the flows simulated for the Baseline scenario for the period 1975 through 2012
Figure 18	Changes in the combined daily flow in the Peace River at Arcadia Horse

Figure 18 Changes in the combined daily flow in the Peace River at Arcadia, Horse Creek near Arcadia and Joshua Creek at Nocatee for three modeled

LIST OF TABLES

Table 1	Relevant USGS gaging stations on Lower Saddle Creek and the Peace
	River and associations with the Upper, Middle and Lower Peace River
	minimum flows18

- Table 2
 Summary of piecewise regression equations for estimation of P-11 control structure flows (Q in cfs) using Lake Hancock stage (S in ft-NGVD) 19
- Table 4Average flow adjustments at the USGS gage site on the Peace River due
to removal of the City of Lakeland Wastewater Treatment Facility effluent
simulated for four scenarios for the period from 1975 through 2012...... 32

- Table 7PRMRWSA surface water diversion limits from the Peace River included
in Individual Water Use Permit No. 20 010420.010 issued to the
PRMRWSA for combined flows in the Peace River at Arcadia, Joshua
Creek and Horse Creek38

LIST OF APPENDIXES

Appendix A Excerpts from the Florida Statutes and Florida Administrative Code associated with establishment and implementation of water reservations

- Appendix B Excerpts from the Florida Statutes and Florida Administrative Code associated with establishment and implementation of minimum flows and levels
- Appendix C Excerpts from the Florida Administrative Code associated with minimum flows established for the Peace River
- Appendix D Relevant data and model files for the water budget model and model scenario applications, and PRMRWSA's Water Use Permit analysis
- Appendix E Final independent, scientific peer review report

ACKNOWLEDGEMENTS

The authors would like to thank Eric DeHaven, Randy Smith, and Adrienne Vining of the Southwest Florida Water Management District for their guidance and advice throughout the process of preparation of the report. We also would like to thank the peer reviewer panel, including Dr. Ken Watson (HSW Engineering, Inc.) and Mr. Harry Downing (Applied Sciences Consulting, Inc.), for their independent, scientific peer review (see Appendix E) and constructive comments on previous versions of this report.

EXECUTIVE SUMMARY

The District has completed the Lake Hancock Lake Level Modification and Ecosystem Restoration Project as part of the Southern Water Use Caution Area (SWUCA) Recovery Strategy (SWFWMD 2006 and 2013) for meeting minimum flows established for the Upper Peace River (UPR) and improving water quality within the Peace River to protect the Charlotte Harbor Estuary. To support minimum flow recovery in the UPR, a reservation rule is needed to reserve water stored in Lake Hancock at and below water elevation of 100 feet above the National Geodetic Vertical Datum of 1929 (ft-NGVD) and released from Lake Hancock to Lower Saddle Creek for UPR recovery. This reservation, referred to in this document as the Lake Hancock Reservation or LHR, will protect water in the lake and that released to the creek for minimum flow recovery purposes from use by permit applicants.

Reservations are adopted for the protection of fish and wildlife, for example by supporting minimum flow recovery, or for protection of the public health and safety. With regard to reservations, the Florida Statutes and Water Resource Implementation Rule stipulate that all presently existing legal water users should be protected as long as their use is not contrary to the public interest.

To evaluate effects of raising the operating level of Lake Hancock, and in support of the adoption of a LHR rule, the District developed a water budget model to estimate Lake Hancock water levels and outflows through the P-11 control structure in Lower Saddle Creek near the lake outlet, flow rates at the U.S. Geological Survey (USGS) Peace River at Bartow (No. 02294650), Fort Meade (No. 02294898), Zolfo Springs (No. 02295637) and Arcadia (No. 02296750) streamflow gaging stations. The model also incorporated estimated sink losses from the river between the Bartow and Fort Meade stations. The LHR analysis included assessment of the number of days minimum flow thresholds of 17 cfs, 27 cfs and 45 cfs would be achieved and number of years that 95% exceedance flows associated with the minimum flows can potentially be recovered in the UPR at the Bartow, Fort Meade, and Zolfo Springs stations, respectively. In addition, potential effects of raising the operating level of Lake Hancock on adopted minimum levels for the lake, established minimum flows for the Middle and Lower Peace River, permitted surface water withdrawals from the Lower Peace River by the Peace River Manasota Regional Water Supply Authority (PRMRWSA) and flows to the Charlotte Harbor Estuary were assessed.

Hydrologic data from Lake Hancock and Peace River at Bartow, Fort Meade, Zolfo Springs and Arcadia, as well as flows measured at the USGS Horse Creek near Arcadia, FL (No. 02297310) and Joshua Creek at Nocatee, FL (No. 02297100) streamflow gaging stations for a 38-year period from January 01, 1975 to December 31, 2012 were used in the water budget model. Model scenarios were developed to compare effects associated with the change in the operating level of the lake from 98.5 ft-NGVD to 100 ft-NGVD.

The simulations indicate that the LHR causes no change in the long-term average flow quantity through the P-11 structure; however, the temporal distribution of the outflow is

altered as a result of the seasonal storage of water in Lake Hancock for subsequent release to promote minimum flow recovery in the UPR. This storage and release of water associated with the LHR supports recovery of minimum flows in the UPR and continued achievement of minimum levels in the lake. The LHR will also not adversely affect minimum flows established for the Middle and Lower Peace River, flows to the Charlotte Harbor Estuary, or existing permitted withdrawals by the PRMRWSA from the Peace River.

These findings and field-observations associated with recent operation of the P-11 structure support the District's planned reservation of water stored in Lake Hancock at and below 100.0 ft-NGVD and released from the lake to Lower Saddle Creek when flow thresholds of 17 cfs, 27 cfs and 45 cfs at the Bartow, Fort Meade and Zolfo Springs gage sites are not met.

1. PURPOSE AND BACKGROUND

1.1 PURPOSE: LAKE HANCOCK RESERVATION

The Florida Statutes and Water Resource Implementation Rule provide a legal framework for establishing and implementing reservations. A reservation is a rule that sets aside a defined quantity of water from consumptive use (i.e., from being included in a permitted withdrawal). Section 373.223(4), Florida Statutes and Rules 62-40.410(3) and 62-40.474, Florida Administrative Code (F.A.C.) (see Appendix A) authorize the state water management district Governing Boards or Department of Environmental Protection to reserve water from use by permit applicants as in its judgment may be required for the protection of fish and wildlife, or the public health and safety.

Rule 62-40.474, F.A.C., which provides specific guidelines concerning reservations, indicates that reservations may be used to aid in a recovery or prevention strategy for a water resource with an established minimum flow or level. The rule also requires that reservations, shall to the extent practical, clearly describe the location, quantity, timing and distribution of the reserved water. Both the Florida Statutes and the Water Resource Implementation Rule dictate that reservations are subject to periodic review and revision with respects to changed conditions, with the rule specifying that reservations are subject to review at least every five years. The statutes and the rule stipulate that all presently existing legal uses of water shall be protected so long as such use is not contrary to the public interest.

The District has prospectively adopted a reservation rule for recovery and protection of minimum flows and minimum water levels (MFLs) established for the SWUCA. Rule 40D-2.302(2), F.A.C. (see Appendix A) within the District's Consumptive Use of Water rules indicates reservations for this purpose will be adopted on a case-by-case basis to address water that is developed through water resource development projects designed to achieve and maintain MFLs. The adoption of a reservation of water stored in Lake Hancock and released to Lower Saddle Creek (hereafter referred to as the Lake Hancock Reservation or LHR) for recovery of minimum flows in the UPR that are not being met is currently prioritized for adoption into Rule 40D-2.302(2), F.A.C. in 2020.

The objectives of this investigation are to document analyses supporting adoption of the LHR, based on development and use of a daily water budget model. The model was developed to project current (i.e., post P-11 structure replacement at the Lake Hancock outlet) hydrologic conditions from historical (i.e., pre P-11 structure replacement) hydrologic conditions such that long-term hydrologic data records prior to the completion of the project could be used for various evaluations on the Peace River. The results from these evaluations were used to address the effects of the LHR on outflows from Lake Hancock, recovery of minimum flows in the UPR, minimum water levels in Lake Hancock, minimum flows established for the Middle Peace River (MPR) and Lower Peace River

(LPR), permitted water withdrawals from the LPR by the PRMRWSA, and flows to the Charlotte Harbor Estuary.

1.2 BACKGROUND: PEACE RIVER MINIMUM FLOWS AND MINIMUM FLOW RECOVERY

Sections 373.042 and 373.0421 of the Florida Statutes (see Appendix B) require the Department of Environmental Protection or the Governing Board of each state water management district to establish and implement minimum flows for surface watercourses within the state. A minimum flow is the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area. If the existing flow is below an applicable minimum flow, the statutes require adoption and implementation of a recovery strategy to achieve recovery to the established minimum flow as soon as practicable.

The District has adopted minimum flows that are applicable to the entire Peace River (see Appendix C). This protection is afforded to the river from its headwaters in Polk County, through Hardee, Desoto, and Charlotte Countries, to the river's terminus in the Charlotte Harbor Estuary (Figure 1). Major sub-basins of the watershed include Lake Hancock, Peace Creek, Peace River above Bartow, Peace River above Zolfo Springs, Peace River above Arcadia, Lower Peace River, Payne Creek, Charlie Creek, Horse Creek, Joshua Creek and Shell Creek.

For purposes of minimum flows establishment and implementation, the Peace River is divided into three river segments: the UPR, from the river's origin at the confluence of Lower Saddle Creek and the Peace Creek Canal in central Polk County, to Zolfo Springs in central Hardee County; the MPR, from Zolfo Springs to Arcadia in central DeSoto County; and the LPR, from Arcadia to Charlotte Harbor in Charlotte County.

Minimum flows have been established for the 37.9-mile long UPR (Rule 40D-8.041(7), F.A.C.) at three USGS streamflow gaging stations (Figure 1). The most upstream site, the Peace River at State Road 60 at Bartow, FL gage (No. 02294650) is located just downstream of the confluence of Lower Saddle Creek, which drains Lake Hancock and its watershed, and the Peace Creek Canal, which drains the Peace Creek watershed. The Peace River at Fort Meade, FL gage (No. 02294898), in south-central Polk County, is about 13.3 miles downstream from the Bartow gage. The Peace River at US 17 at Zolfo Springs, FL gage (No. 02295637) in Hardee County, is about 23.4 miles downstream of the Fort Meade gage. Bowlegs Creek and Payne Creek are two major tributaries flowing into the UPR between Fort Meade and Zolfo Springs.

Prior to the 1950s, the UPR was a gaining stream channel from Bartow to Fort Meade. Since that time, it has become a losing stream channel due to alterations associated with phosphate mining, changes in land use, and groundwater withdrawals. Streamflow is lost to the underlying groundwater system predominantly through karst features such as fractures, crevasses and sinkholes (Figure 2) as reported by Lewelling, et al. (1998), USGS (2004) and Metz and Lewelling (2009). Minimum flows for the UPR were developed in 2002 as minimum low flows based on fish passage and wetted perimeter criteria (SWFWMD 2002). The minimum flows were approved by the District Governing Board in 2006 and adopted as Rule 40D-8.041(7), F.A.C., that became effective in 2007. Minimum flows associated with medium and high flow ranges were not determined for the UPR at the time the minimum low flows were developed, due to limitations regarding confounding effects of withdrawals and structural alterations on the hydrologic regime of the river.

The adopted minimum flows for the UPR are defined as 95% annual exceedance flow rates of 17, 27 and 45 cubic feet per second (cfs), respectively, at the Bartow, Fort Meade and Zolfo Springs gage sites. The 95% annual exceedance for each minimum flow occurs when flows at the respective site exceed the corresponding flow rate at least 347 days (or 348 days for leap-years) during a calendar year. As specified in the compliance portion of the UPR minimum flows rule, each "Minimum Low Flow is achieved when the measured flow rate is at or above the Minimum Low Flow for three consecutive years. Once the Minimum Low Flow has been achieved for three consecutive years, the Minimum Low Flow is not met when the measured flow rate is below the Minimum Low Flow for two out of ten years commencing the year after achievement. If the two years below the minimum flow occur anytime before the ten-year period is complete, the upper Peace River is deemed below its Minimum Low Flow and the three consecutive years above the Minimum Low Flow is again required for compliance. Once the ten-year period is complete, the period will roll forward one year each year."

At the time of their adoption, the District determined the UPR minimum flows were not being met. Recent investigations of flows for a 44-year period from 1975 to 2018 indicate that the adopted UPR minimum flows were met 12 years at Bartow, 5 years at Fort Meade, and 31 years at Zolfo Springs. The SWUCA Recovery Strategy (Rule 40D-80.0.074, F.A.C., SWFWMD 2006 and 2013) was developed in March 2006 for all or part of eight counties in the southern portion of the District. One of its goals is to restore the UPR minimum flows by 2025 through the implementation of recovery projects. One of these projects is the Lake Hancock Lake Level Modification and Ecosystem Restoration Project, which consists of two initiatives: the Lake Hancock Lake Level Modification Project and Lake Hancock Outfall Treatment Project. In combination, these initiatives are critical for recovering minimum flows in the UPR, improving water quality in the Peace River, and protecting the Charlotte Harbor Estuary.

The goal of the Lake Hancock Lake Level Modification Project is to store additional water in Lake Hancock to meet minimum flow requirements in the UPR by raising the control elevation of the lake outflow structure (P-11) on Lower Saddle Creek from 98.5 to 100 ft-NGVD. The additional water storage is achieved by capturing inflows to the lake during wet season and releasing flows to the UPR through Lower Saddle Creek during dry season when flow conditions at the Bartow, Fort Meade and Zolfo Springs gages are below minimum flow thresholds. The Lake Hancock Outfall Treatment Project involved construction of treatment wetlands to improve water quality leaving the lake. The treated water will also be released to the UPR through an outfall structure to Lower Saddle Creek. Construction of a new P-11 structure for the Lake Hancock Lake Level Modification Project was completed in 2013. Following an approximate one-year period in which inflows were stored in the lake, operation of the P-11 structure to help achieve minimum flows in the UPR started in late 2015.

With the new P-11 control structure, an additional 1.5 ft of water storage can be captured and stored when Lake Hancock is at its full capacity. When lake stage exceeds 100 ft-NGVD, overflow occurs because the crest of the P-11 structure weir gates is at 100 ft-NGVD. When lake stage falls below 97.6 ft-NGVD no flow releases are made regardless of downstream flow needs due to the established minimum lake level for Lake Hancock (Rule 40D-8.624(12), F.A.C.), which was adopted and became effective in November 2016 (Leeper and Ellison 2017). The water storage between 97.6 and 100 ft-NGVD represents a maximum volume (approximately 4.359 billion gallons or 13,377 acre-feet) at a given time that can be achieved through the operation of the new, i.e., currently existing P-11 structure.

Other minimum flows and considerations relevant to the LHR analyses included minimum flows for the MPR that were adopted into District rules (specifically Rule 40D-8.041(5), F.A.C.) and became effective in 2006 (SWFWMD 2005), and minimum flows for the LPR (SWFWMD 2010) that were adopted by rule (specifically Rule 40D-8.041(8), F.A.C.) and became effective in 2010 (see Appendix C). The water use permit (Individual Permit No. 2001420.010) issued to the PRMRWSA by the District in February 2019 for withdrawals from the LPR was also integral to this LHR analysis, because the Florida Statutes and Water Resource Implementation Rule require that all presently existing legal uses of water shall be protected so long as such use is not contrary to the public interest.

Figure 1. Lake Hancock, Peace River and Peace River watershed

Figure 2. Karst features and sink locations between Bartow and Fort Meade (figure reproduced from Metz and Lewelling, 2009)

2. LAKE HANCOCK RESERVATION ANALYSIS

A daily water budget model was conceptualized for the LHR analysis, as described in Section 2.1. Requirements for the water budget model, including relevant hydrologic data, regression and information are summarized in Section 2.2. The water budget model was developed as an Excel spreadsheet, incorporating necessary adjustments, as discussed in Section 2.3. In addition, relevant data and model files for the water budget model and model scenario applications are included in Appendix D.

Using the spreadsheet model, available lake water storage, lake stage, P-11 outflows and change in outflows are projected from the historical condition for the simulation scenarios described in Section 2.3.1. The projected data reflect selected hydrologic conditions that

would be expected to have occurred as a result of various operation protocols of the current P-11 structure.

2.1 DAILY WATER BUDGET MODEL

Lake Hancock is the Largest freshwater lake in the Peace River Basin and the fourth largest in Polk County. The lake is approximately 4,500 acres in size with an average depth of less than 5 feet (Patton 1980, Harper et al. 1999) that was expected to be increased after the P-11 structure replacement. Potential inflows to the lake include surface runoff from Lake Hancock watershed, stream flows from primary tributaries, including Banana Creek, Upper Saddle Creek, Lake Lena Run, direct rainfall on the lake and groundwater baseflow. Potential outflows from the lake include evapotranspiration (ET) from the open water surface of the lake, groundwater seepage and recharge, and discharge through the P-11 control structure into Lower Saddle Creek, which in conjunction with the Peace Creek Canal, forms the UPR. Figure 3 illustrates the water budget components of Lake Hancock.

Figure 3. Schematic diagram of Lake Hancock water budget components

As discussed further in Section 2.2.2, the analysis period for the LHR analysis was defined as the period prior to the replacement of the previous P-11 control structure. However, through development and use of a water budget model, these available historical hydrologic data could be used to assess impacts of the LHR on current conditions in Lake Hancock and throughout the Peace River.

Assuming Lake Hancock can be considered as a level pool, a water budget for Lake Hancock can be simply expressed as shown below in Equation 1, where Δ S is the change in lake storage, which can be defined using a lake stage versus volume relationship as discussed in Section 2.2.7, I represents total inflow and O corresponds to total outflow.

$$\Delta S = I - O$$
 (Equation 1)

The total outflow term, O, can be further defined as individual losses to evaporation (O_{ET}), groundwater (O_{GW}), and for the historical (again, pre P-11 structure modification) record, discharge through control structure P-11 ($O_{p-11, historical}$) as indicted in Equation 2 below. Historical discharge ($O_{p-11, historical}$) was recorded at a former USGS gage (see Section 2.2.4).

$$\Delta S_{\text{historical}} = I - (O_{\text{ET}} + O_{\text{GW}} + O_{\text{p-11, historical}})$$
(Equation 2)

Merging the total inflow term with O_{ET} and O_{GW} in Equation 2, a new term named effective inflow, I_E (i.e., $I - O_{ET} - O_{GW}$), can be defined as a lumped quantity representing total inflow minus outflow terms except the historical discharge, $O_{p-11, historical}$. Development of the effective inflow term obviates the need for historical evapotranspiration and groundwater loss data that are not available.

Rearranging Equation 2 to Equation 3, yields the effective inflow that can be estimated using historical data, i.e., change in lake storage and discharge through the P-11 control structure.

$$I_{E} = \Delta S_{\text{historical}} + O_{p-11, \text{ historical}}$$
(Equation 3)

Determination of the effective inflow, I_{E} , into the lake is necessary to project hydrologic conditions under the operation of current P-11 structure. Underlying the development and use of the effective inflow for this purpose is the assumption that effective inflow would be the same regardless of differences between the configuration and operation protocols of the current and previous P-11 structures. This assumption is considered appropriate for the purpose of the LHR analysis.

Higher water levels in Lake Hancock associated with the lake level modification project were predicted to inundate about 300 acres that was previously dominated by uplands (BCI 2006c). These inundated uplands have become part of the lake, resulting in an increase in ET, equivalent to about 1 inch per year in the newly inundated area, accounting for approximately 0.6% of the lake inflow (BCI 2006b). This reduction in inflow due to increased ET is considered negligible.

According to Darcy's Law, the deep aquifer recharge in the area of Lake Hancock is a function of hydraulic conductivity, head gradient (i.e., difference of potentiometric surface elevation of the Upper Floridan aquifer and lake level over the distance of measurement points) and recharge area. BCI (2006b) notes that lake level modification that was planned, and which has now occurred, would result in about a 10% increase in head

gradient and about a 7% increase in recharge area, cumulatively resulting in up to a 17.7% increase in deep recharge from the lake, This translates to about a 4.4 inches loss from the lake to aquifer, which is equivalent to about 2.8% of lake inflow.

The increased ET and aquifer recharge sum to 3.4% of lake inflow, which is less than the generally accepted accuracy of 5% for USGS daily flow data. It is, therefore, reasonable to conclude potential errors in the ET and groundwater terms consolidated in the effective inflow due to elevated lake stages would be negligible and can be ignored. The water budget for the lake under the existing, i.e., current conditions can therefore be written as

$$\Delta S_{\text{existing}} = I_{\text{E}} - O_{\text{p-11, existing}}$$

(Equation 4)

Once the discharge, $O_{p-11, existing}$, via the existing P-11 structure, is estimated (see Sections 2.2.5 and 2.2.6). The change in lake storage, $\Delta S_{existing}$, under the existing structure condition can be estimated using Equation 4. Subsequently, the lake stage under the existing condition can be estimated using a stage versus volume relationship (see Equation 7 in Section 2.2.7). With this approach, the lake stage under the existing condition is simulated for the analysis period. Then, the change in outflow, i.e., the difference between historical and existing discharge is calculated.

A daily time step was adopted in the water budget model to be consistent with the hydrologic data frequency used for developing the minimum lake levels for Lake Hancock, and minimum flows for each segment of the Peace River.

2.2 DATA, REGRESSION AND INFORMATION

Details related to data acquisition and processing, regression development and use, and other information used in the daily water budget model and relevant to the LHR analysis are summarized in this section.

2.2.1 P-11 Control Structure

The original P-11 control structure at the outlet of Lake Hancock was a concrete and timber pile weir located approximately 0.7 miles downstream from the lake on Lower Saddle Creek (SWFWMD 1999 and 2003). This original structure was replaced with a concrete spillway and a steel sheet pile weir by the Peace River Valley Water Conservation and Drainage District in 1963 for regulating discharges into the Peace River for flood control purposes. The spillway/weir structure had two metal 7 ft high by 20 ft wide radial gates with an invert of 91.7 ft-NGVD and an overflow elevation of 98.7 ft-NGVD (SWFWMD 1999 and 2003; BCI 2006a; see Figure 4).

Figure 4. Downstream side of the former P-11 control structure showing two metal radial gates and the concrete-capped, sheet-pile wall

The District operated the spillway/weir P-11 according to an operation schedule and lake management levels that were adopted in September 1980 to provide guidance for management of seasonal lake level fluctuations. A maximum desirable level of 98.5 ft-NGVD, which was not adopted by rule, was also used as a guide to manage the lake to provide optimum aesthetic and recreational benefits, based on the then existing development on the shoreline and floodplain (BCI 2006a). When a flood was imminent or when the lake level approached or exceeded the maximum desirable level, water was released from the lake through structure P-11. As the lake continued to rise, structure P-11 would be overtopped at the elevation 98.7 ft-NGVD, surface water would begin to flow around the structure, and downstream conditions in Lower Saddle Creek would control discharge from the lake.

In 2003, the District began evaluating the feasibility of replacing the spillway/weir structure and raising the lake level, with the goal of storing additional water to help achieve minimum flow requirements for the UPR. BCI (2005) completed a preliminary evaluation of the potential benefits and impacts associated with raising Lake Hancock's operating levels from 98.5 ft-NGVD to 99.5 or 100.0 or 100.5 ft-NGVD. The normal operating level of 100 ft-NGVD was proposed because it was the approximate historical level of the lake before the area was mined for phosphate and the channelization (lowering) of the natural

lake outlet (SWFWMD 2010), and based on minimizing impacts to surrounding infrastructure and facilities.

In 2004, the District Governing Board authorized staff to proceed with the preliminary design and draft environmental resource permit application for the Lake Hancock Lake Level Modification Project. In January 2006, the Board authorized staff to submit a Conceptual Environmental Resource Permit (CERP) application (BCI 2006a) upon reaching agreement with Polk County. The CERP application was submitted to the Florida Department of Environmental Protection on August 30, 2006 and a permit was issued to the District on June 14, 2007 (BCI 2006a). In September 2007, the District Governing Board approved implementation of the Lake Hancock Lake Level Modification Project, including the final design, permitting, and construction. Replacement of the then existing P-11 structure with a new structure began in November 2011 and was completed in April 2013 (SWFWMD 2019).

The new, i.e., currently existing P-11 structure (Figure 5) is located on Lower Saddle Creek approximately 220 ft downstream of the former structure. It is designed to discharge up to 2,800 cfs for regulating water levels in Lake Hancock for water storage, recharge and recreation. However, the maximum discharge rate for the structure is limited by the channel capacity of Lower Saddle Creek and backwater effects at the creek's confluence with the Peace Creek Canal, where the UPR originates. The structure consists of an earthen embankment, a concrete spillway, and a three-bay concrete structure with sheet pile driven to hard lime rock (SWFWMD 2014). The central and easternmost structure bays include 20 ft wide by 10 ft tall roller (i.e., lift) gates with an invert elevation of 92.0 ft-NGVD. The third bay includes two 10-ft wide by 4 ft tall weir (i.e., drop) gates with an invert elevation at 96.0 ft-NGVD.

The two weir gates in the westernmost structure bay (Figure 5) were designed primarily for release of relatively small volumes of water at precise flow rates during the dry season to meet the UPR minimum flows and for routine operations. The two roller gates in the other two structure bays were designed primarily for moving large volumes of water during the wet season for flood protection purposes, when large flow releases are needed to lower lake levels. Because flows through the roller gates are released from the bottom of the bays and have the potential to erode the downstream stilling basin, the two large roller gates are infrequently operated during low and medium flow conditions.

Operation of the structure gates can be performed remotely through the District's Supervisory Control and Data Acquisition (SCADA) system or manually at the Programmable Logic Controller (PLC) in the on-site control building. A Verizon communication line is installed to the PLC to interface with the District's Sever for monitoring gated structure conditions and remote operation from the District's Brooksville office.

Figure 5. Downstream side of the Lake Hancock's P-11 control structure showing two weir gates in the westernmost bay on the left (one is partially open and the other is closed) and roller gates in the other two bays

Since late 2015, the P-11 structure has been operated to help achieve minimum flows in the UPR during the dry season, prevent floods during the wet season and replenish water storage. Current operational protocols for structure P-11 (SWFWMD 2014), developed based on a preliminary evaluation (BCI 2006b) conducted prior to the modification of P-11, include several considerations, as summarized below.

- A low operating level of 97.5 ft-NGVD, below which no releases are to be made regardless of downstream conditions.
- The maximum desirable level of 100 ft-NGVD, above which releases shall be made with any combination of gates to lower the lake without causing increased downstream flooding.
- A typical lake-level fluctuation range between 97.5 to 100 ft-NGVD, which corresponds with water stored and released for meeting UPR minimum flow requirements.
- An inflow capture rate of 100% when the lake is below the low operating level.

 An inflow capture rate of 60% when the lake is between the low operating level and the maximum desirable level. Forty percent of the inflows are released under these conditions through P-11 and/or the wetland treatment system. Adjustments to outflows during high inflow conditions shall be made if deemed necessary. Inflows shall be captured when flows at the downstream USGS gaging stations on the Peace River exceed their established minimum flow rates, i.e. 17 cfs at Bartow, 27 cfs at Fort Meade, and 45 cfs at Zolfo Springs.

The protocol provides general guidelines for routine operation of structure P-11. During the wet season, minimum flows established for the UPR at Bartow, Fort Meade and Zolfo Springs are likely being met and inflows to Lake Hancock may warrant discharge from P-11 to maintain lake levels around 100 ft-NGVD. During hurricane season, preemptive releases may occur in anticipation of large storm events to create flood attenuation storage. After storms, flows through P-11 are slowly released to avoid downstream flooding. At the end of wet season, lake levels are maintained around 100 ft-NGVD to ensure adequate storage for dry season minimum flow releases.

In day-to-day operations, flows in the Peace River at Bartow, Fort Meade and Zolfo Springs are monitored on a quasi-real-time basis (i.e., at 15-minute intervals) based on provisional data published by the USGS. Incoming flows from the primary tributaries to Lake Hancock are monitored on a daily basis and weather forecasts are monitored in real-time and on a weekly basis. These data are used to make predications regarding flow trends in the UPR and support structure operation decisions. For releases necessary to meet minimum flows in the UPR, water travel-times are also considered. For example, it takes about six hours for released flows at the P-11 structure to reach the Bartow gage. When the need for a supplemental flow quantity to meet the minimum flow threshold (i.e., 17 cfs) at Bartow is predicted, such a release should be made six hours in advance of the predicted need.

To support structure operation decisions and schedule development, District staff has recently developed status reporting and predictive tools to assist with lake storage and river flow projections. As an example, Figure 6 demonstrates the effect of P-11 operation on meeting the minimum flow threshold of 27 cfs at Fort Meade for a typical dry period from April 23, 2016 to May 10, 2016. As illustrated in the figure, the flows for the five days (labeled in red) during the selected period, which could have fallen below 27 cfs at Fort Meade, met the minimum flow threshold through the operation of the P-11 structure.

Recent status assessments indicate that 95% annual exceedance flows in the UPR at Bartow, Fort Meade and Zolfo Springs were, respectively, greater than the 17 cfs, 27 cfs and 45 cfs thresholds associated with the minimum flows established for the sites. This was not the case at any of the sites during 2017. For this recent period from 2016 through 2018, minimum flows compliance was achieved at only the Zolfo Springs gage, based on the flow threshold for site having been met for three consecutive years, from 2014 through 2016.

The District continues to assess operational protocols for structure P-11 in terms of efficiency in achieving UPR MFLs recovery and other relevant factors. For example, as noted above, the low operating level of the lake, below which no releases will be made through the P-11 structure regardless of the downstream conditions, has been identified at 97.5 ft-NGVD. This low operating level was developed prior to the adoption of the minimum lake level of 97.6 ft-NGVD for Lake Hancock in November 2016. Based on this adopted minimum level, an elevation of 97.6 ft-NGVD was used as the lower limit below which no releases would be allowed for the LHR analyses described in this report. Results from the analyses, along with continued monitoring of structure operations, water levels in Lake Hancock and flow conditions in the UPR are expected to be useful for future operation protocol refinements.

2.2.2 Analysis Period

After a thorough review of relevant hydrologic records for Lake Hancock and the Peace River, a 38-year period from January 1, 1975 through December 31, 2012 was selected for the LHR analysis period. In addition, a six-month period from June 1, 1974 through December 31, 1974 was used for model warmup.

The start date for the model warmup and analysis periods was based on availability of critical flow records. Among the three UPR gage sites where minimum flows are established, the Peace River at Fort Meade gage has the shortest continuous period of record. The continuous record for this site begins on June 1, 1974.

Additional considerations for selection of the analysis period were associated with the replacement of and availability of discharge data for the previous P-11 control structure. As described in Section 2.2.1, construction of the new P-11 structure was completed in April 2013 and demolition of the old structure occurred in May 2013. A former USGS gaging station, Saddle Creek at Structure P-11 near Bartow FL (No. 02294491), was located about 65 ft downstream of the former P-11 structure, and was used for recording continuous flow records from December 1, 1963 through October 7, 2014, and gage height records from October 1, 1973 through October 7, 2014. The USGS gage was discontinued after construction of the new P-11 structure and a replacement gage has not been established. Records from the site for the period from January 1, 2013 to October 7, 2014 were not included in the analysis period due to concerns related to the construction of P-11, and demolition and removal of the former P-11 structure. The end-date of December 31, 2012 used for the LHR analyses was therefore selected to minimize construction-related data uncertainties.

2.2.3 Lake Hancock Surface Water Elevation

Water levels on Lake Hancock have been monitored by the USGS and the District on a regular basis since August 1959. Lake Hancock's maximum level of record (101.88 ft-NGVD) occurred on September 16, 1960 after Hurricane Donna passed through the area. The lowest level record (93.98 ft-NGVD) occurred on May 23, 1968 as a result of a sinkhole that opened near the center of the Lake. Lake Hancock levels range between 94.95 ft-NGVD to 101.45 ft-NGVD with a mean of 97.8 ft-NGVD for the LHR analysis period.

For this investigation, daily lake stages from three surface water sites (District Site IDs: 24532, 24760 and 24759 as shown in Figure 7) in Lake Hancock were retrieved to produce a single composite dataset for the period from June 1, 1974 to December 31, 2012 because none of these sites has a continuous record for the entire analysis period. Site 24760, a former USGS site, located on the western shore of the lake has the most historical stage records. However, that site was discontinued after September 24, 2002. Site 24759, at the southern end of the lake near the P-11 control structure, was selected as the primary site because it has the most data values available in the analysis period.

Missing data for this site were infilled using linear interpolation, regression, or field measurements available for the other two sites.

Figure 7. Locations of Lake Hancock stage data collection sites and primary tributaries for surface water inflows to Lake Hancock

Using the composite stage dataset, a lake stage duration curve was prepared for Lake Hancock for the period from January 1975 through December 2012 (Figure 8). As observed, the 50% exceedance lake level is about 97.97 ft-NGVD, which is approximately 0.3 feet higher than the adopted Minimum Lake Level of 97.6 ft-NGVD that is a required 50% exceedance elevation. Factors that could be associated with the differing exceedance values include use of a much longer period of record for stage data (i.e., 1966 through 2014 per Leeper and Ellison, 2017) for the Lake Hancock minimum level analysis and differing techniques used for infilling data gaps in the historical lake stage records.

Figure 8. Lake Hancock stage duration curve for the period from January 1975 through December 2012

2.2.4 Relevant USGS Streamflow and Established Minimum Flows

Daily average flows at seven USGS gaging stations (Table 1; see Figure 1) were retrieved from the USGS National Water Information System through June 2019 for this study. The site at Saddle Creek at Structure P-11 near Bartow recorded historical flow associated with the former P-11 structure and this site was discontinued in 2014 as discussed in Section 2.2.2. The remaining six sites are all associated with minimum flows that have been established for different segments of the Peace River.

As discussed in Section 1.2, the UPR minimum flows include minimum low flow thresholds that have been established for the Peace River at Bartow, Fort Meade and Zolfo Springs gages and are applicable upstream of these sites. Minimum flows for the MPR have been established at the Peace River at Arcadia gage for the full hydrologic regime, i.e., for low, medium and high flow ranges or seasons, and are applicable from the Arcadia gage upstream to the Zolfo Springs gage. Minimum flows for the LPR, which extends downstream of the Peace River at Arcadia gage, have also been established for the full hydrologic regime of the river, and were developed and are implemented based on the combined flows at the Peace River at Arcadia gage and flows from two tributaries measured at the USGS Horse Creek near Arcadia, FL and Joshua Creek at Nocatee, FL gages. The combined flow at the Peace River at Arcadia, Horse Creek and Joshua Creek gages is also used for permitted withdrawals from the LPR by the PRMRWSA.

Based on the data available from the relevant USGS gaging stations, a 38-year continuous flow records from 1975 to 2012 was developed for the analyses used in this study.

Table 1. Relevant USGS gaging stations on Lower Saddle Creek and the Peace River and associations with the Upper, Middle and Lower Peace River minimum flows

USGS Site Name	Gaged River Reach/Creek and Associations with Peace River Minimum Flows		
	Lower Saddle Creek		
02294491 Saddle Creek at Structure P-11 near Bartow FL			
02294650 Peace River at Bartow FL	UPR		
02294898 Peace River at Fort Meade FL	Minimum		
02295637 Peace River at Zolfo Springs FL	Flows	MPR	
02296750 Peace River at Arcadia FL		Minimum Flows	LPR
02297310 Horse Creek near Arcadia FL			Minimum
02297100 Joshua Creek at Nocatee FL			FIOWS

2.2.5 P-11 Structure Discharge Rating Curve

Rating curves for predicting discharge from the P-11 control structure as a function of Lake Hancock stage recorded upstream of the structure were developed using historical flow records from the discontinued USGS gaging station Saddle Creek at Structure P-11 Near Bartow FL collected prior to July 2, 2013. The rating curves (Figure 9, Table 2) were developed to be used as a basis for comparing lake stage alternations and resulting flows.

An original piecewise linear regression (shown using blue triangle symbols in Figure 9), comprised of a three-part function representing varying relationships between flows and three ranges of lake stage, was developed in 2013 (Harry Downing, personal communication) using data collected prior to replacement of the current P-11 structure. This regression was developed to represent generated flood releases during the period when P-11 was not operated for minimum flow recovery in the UPR. The first part of this regression is simply a curve fit through the stage and discharge data from 98.5 ft-NGVD to an inflection in the relationship that occurs at 98.7 ft-NGVD, the elevation associated with the top of the former P-11 structure. The second part of the regression reflects the linear relationship between lake stage and P-11 flows that occurs for high flows at stages greater than 98.7 ft-NGVD but less than 101.2 ft-NGVD. The last part reflects the relationship for very high discharges that occur in association with lake stages greater than 101.2 ft-NGVD.

As illustrated in Figure 9, due to backwater effects and other hydrodynamic factors such as sediment and debris loads, varying stage conditions often exist for a given flow rate. In addition, District operation of the structure depended on both lake stage and perceived inflow rates and influenced the flow-stage relationship. For example, during the wet season when lake levels were high, the structure was typically opened to discharge at greater rates in response to heavy downpours versus light rainfall conditions. An underlying assumption for the original regression is that average daily outfall at the P-11 structure can be estimated using average daily lake stage, with consideration that Lake Hancock is a large lake and change in lake stage in a given day is expected to be small.

Figure 9. Recroded and regressed P-11 control structure flow versus Lake Hancock stage

Table 2. Summary of piecewise regression equations for estimation of P-11 control structure flows (Q in cfs) using Lake Hancock stage (S in ft-NGVD) *

Lake Stage	P-11 Flow Equations Associated with a P-11 Control Elevation of 98.5 Ft-NGVD	Lake Stage	P-11 Flow Equations Associated with a P-11 Control Elevation of 100.0 Ft-NGVD
S ≤ 98.7	Q = 2500*S - 246250	S ≤ 100.2	Q = 2500*S - 250000
98.7 < S ≤ 101.2	Q = 400*S - 38980	100.2 < S ≤ 102.7	Q = 400*S - 39580
101.2 < S ≤ 102.4	Q = 913.29*S - 90925	102.7 < S ≤ 103.9	Q = 913.29*S - 92295

* Equations fitted using lake stages and corresponding predicted flows provided by Harry Downing (July 2, 2013)

Based on the original regression, a second rating curve (shown using golden circle symbols in Figure 9) was developed by simply shifting lake stage values used in the original regression by 1.5 ft, to account for the 1.5-ft difference between structure control elevation of 98.5 and 100 ft-NGVD with anticipation that downstream releases beyond the control elevation would be similar to the previous operation of the structure and not to cause increased downstream flooding. The 100 ft-NGVD elevation was selected for the second regression to support analyses based on the 100 ft-NGVD control elevation associated with the current P-11 structure.

It should be emphasized that improvement of UPR flow conditions to support minimum flow achievement is an important driver for operation of the current P-11 structure. Structure operation when lake stages between 97.6 ft and 100 ft may therefore be expected during the dry season to assist in meeting projected downstream flow needs. Operation under such conditions is determined by a combination of downstream flow

demand and allowable lake storage that can be released through weir gates as discussed in Section 2.2.6.

2.2.6 P-11 Structure Weir Equation

There are two sets of gates, as described in Section 2.2.1, for the new, i.e., existing P-11 structure. One set, consisting of two weir gates in the westernmost of the three structure bays is designed primarily for routine use, for example for the purpose of UPR minimum flows recovery. The other set, comprised of the roller gates in the other two structure bays is designed primarily for flood protection purposes, when large flow releases are needed to lower lake levels. Because the two large roller gates are rarely used, releases for minimum flows were typically determined based on routine use of the two weir gates.

A sharp-crested weir equation (Equation 5) similar to the 1883 Francis' standard contracted rectangular weir equation, provided by Trihedral, Inc. (email communication on July 24, 2014), was applied in this investigation to estimate the weir flow through the weir gates or the gate heights for desired flow releases to meet downstream flow requirements.

Q = C*(L - 0.2*H) * H^{3/2}

(Equation 5)

where Q is the discharge in ft³/s, C is the weir coefficient with a constant value of 3.36, L the length or width of weir in feet and H is the hydraulic head on the weir in ft, which is the difference between the lake stage and current gate top elevation.

2.2.7 Lake Surface Area and Volume versus Lake Stage

As part of the Lake Hancock Lake Level Modification Project, Light Detection and Ranging Data (LiDAR) data were collected by EarthData International, LLC (2005) and surveyed spot elevation data were collected from inundated lake areas with a survey grade fathometer and digital global positioning system equipment (Pickett & Associates 2004), both datasets were combined to create a digital elevation model (DEM).

A 2-ft interval contour map with additional contour lines at 97.6 and 98.5 ft-NGVD was prepared using the DEM for the lake and its adjacent lakeshore area with surface elevations ranging from 92 to 120 ft-NGVD (Figure 10). Basin slopes are relatively steep along the western shore of the lake and more gradual along the northern and eastern shores. A 5-ft deep trough lies about 500 to 1,500 ft from the western shore, which is probably the submerged stream channel of Saddle Creek (Hammett et al. 1981). At the lake stage of 97.6 ft-NGVD associated with the adopted Minimum Lake Level and indicated by the black contour line in Figure 10, the lake covers a surface area about 4,508 acres (Figure 11). At the lake stage of 98.5 ft-NGVD, the lake surface expands mostly in the northwest and southeast directions and increases by about 10.6% or 478 acres (Figure 11). When the lake level rises to 100 ft-NGVD, the water surface area would increase significantly by about 47.5% or 2,142 acres relative to the surface area associated with the Minimum Lake Level (Figures 10 and 11). These areal increases

occur mostly in the northwestern shore along the Banana Creek, Upper Saddle Creek and along the eastern lakeshore (Figure 10).

Figure 10. Contour map of lake bathymetry for Lake Hancock

The increased shoreline and water surface areas resulted from lake level modification will alter the hydrologic regime of Lake Hancock and its fringe wetlands. BCI (2006a, c) assessed wetland function under pre- and post-lake level modification conditions in support of the District's application for a Conceptual Environmental Resource Permit to modify the lake levels and concluded that the water regime resulted from the lake level modification will enhance wetland function by providing high water level pulses and greater water level fluctuation that will seasonally interconnect various aquatic and wetland habitats to benefit a wide variety of wetland dependent wildlife.

To estimate lake water storage for a given lake surface water elevation, a relationship between lake volume and stage is required. Such a relationship was established for Lake Hancock using the DEM derived from LiDAR and bathymetry to calculate cumulative lake water volumes (cubic feet) corresponding to lake surface water elevations ranging from 94.5 to 107 ft-NGVD (see Figure 12) with the ArcHydro tool in ArcGIS, then using a quadratic regression equation to provide a strong fit between lake volume and lake surface water elevation with a coefficient of determination (R-squared) value close to 1. Based on the regression, lake volume, V, can be estimated using Equation 6 for any given lake stage, S, within the range from 94.5 to 107 ft-NGVD:

$$V = a^*S^2 + b^*S + c$$

(Equation 6)

where a, b and c are regression coefficients,

a = 12,929,666.6266327 b = - 2,308,522,086.09778, and c = 102,743,161,295.335 The change in lake storage can thus be estimated between two lake stages. By solving the quadratic Equation 6, lake stage can be estimated for a given lake volume using Equation 7:

 $S = (-b + (b^{2} - 4a^{*}(c - V))^{1/2})/(2^{*}a)$ (Equation 7)

2.2.8 City of Lakeland Wastewater Treatment Effluent

Several point source discharges currently contribute or have contributed a significant portion of the inflows into Lake Hancock. One significant source that has been discontinued is effluent from the City of Lakeland Wastewater Treatment Plant. From 1926 through April 1987, the City of Lakeland Wastewater Treatment Plant discharged effluent through Stahl Canal to Banana Lake, which drains through Banana Creek to Lake Hancock (see Figure 7) (Harper et al. 1999). The average discharge rate from January 1975 to April 1987 was nearly 10 cfs, accounting for about 20% of the average Lake Hancock outflow of about 52 cfs prior to April 1987.

Because this treated-wastewater effluent historically delivered to Lake Hancock represented a significant point source of flow, it was removed from the lake inflow records to better assess effects of the LHR on minimum flow recovery and Peace River flows and withdrawals under current conditions that do not include delivery of the effluent to the lake. Reported monthly averaged discharges from the City of Lakeland Wastewater Treatment Plant were removed on daily basis in the water budget model during the period of effluent discharge.

2.2.9 Sink Loss

Based on the additional 90-square mile drainage area that contributes flow to the Peace River between Bartow and Fort Meade, flows greater than those historically reported at the Fort Meade gage site may reasonably be expected. However, streamflow losses occur between these two locations (see Figure 2), predominantly through karst features found in the low-water channel and the floodplain (Lewelling, et al. 1998, USGS 2004, Metz and Lewelling 2009).

Basso (2004) concludes the 1% exceedance of streamflow loss between Bartow and Fort Meade is 25 cfs, based on evaluation of flow data from 1975 through 2003. BCI (2006b) evaluated flow difference between Bartow and Fort Meade for flows of less than 30 cfs at Fort Meade and concludes that 25 cfs is a reasonable estimate of typical sink losses for that portion of the UPR under relatively low-flow conditions. The USGS (2004) reports measured stream losses did not exceed 30 cfs during the dry seasons of late spring 2002 and 2003. Metz and Lewelling (2009) report the largest measured flow loss for all karst features between Bartow and Fort Meade during a five-year period (water years 2002 through 2007) was about 50 cfs on June 28, 2002.

A scatter plot of flow differences between Bartow and Fort Meade versus flows less than 30-cfs at Fort Meade for the analysis period used in this current investigation of LHR impacts shows most of the difference are 25 cfs or less (Figure 13). Streamflow loss for

the UPR can be expected to affect minimum flow recovery in the river segment and should be considered in the water budget to provide an accurate estimate of anticipated augmentation quantities necessary to overcome losses between Bartow and Fort Meade. Accordingly, based on observed and reported information, a 25-cfs flow rate was identified as a reasonable estimate of daily maximum sink loss in the Peace River between the Bartow and Fort Meade USGS gages.

Figure 13. Flow difference between Fort Meade and Bartow versus flow less than 30-cfs at Fort Meade for the 1975 through 2012 period used for this study; note negative differences are not shown

2.3 WATER BUDGET MODEL DEVELOPMENT AND ROUTING

Microsoft® Excel was used as a modeling environment to perform the water budget analysis. For a period from June 1, 1974 through December 31, 2012, historical, daily lake stages and discharges through the P-11 structure, and stream flows at downstream USGS gaging stations on the Peace River at Bartow, Fort Meade, Zolfo Springs and Arcadia were acquired and compiled into one spreadsheet. Data for the first half-year, from June 1, 1974 through December 31, 1974, were used primarily for model warm-up.

Selected progressive model scenarios developed in this investigation and relevant data and model setup are generally discussed in Section 2.3.1, followed by a detailed discussion of individual model setup or adjustment in Sections 2.3.2 through 2.3.6. Section 2.3.7 provides a description of a complete modeling process in a sequential manner.

2.3.1 Model Scenarios

Using the water budget model described in Section 2.1, four progressive model scenarios were selected and analyzed to gain insight on the effects of LHR under different operation schedules and with consideration of minimum flows recovery needs and sink loss. The four scenarios (bold font in parenthesis identify abbreviated scenario names used for presentation and discussion of model results), were:

- 1) Historical Baseline (**Baseline**), for which the operation schedule involved holding the P-11 control structure at 98.5 ft-NGVD. Releases occurred only when the lake level exceeded this elevation. This scenario was created to represent the structure condition prior to the P-11 structure replacement, as discussed in Section 2.3.2, for comparison with three post P-11 structure modification scenarios.
- 2) Existing Control Level (**ECL**), for which the operation schedule involved holding the P-11 control structure at 100 ft-NGVD. Releases occurred only when lake levels exceeded this elevation.
- 3) ECL with operation for meeting MFLs in the UPR (ECL+MFLs), for which the operation schedule involved releasing flow through P-11 when UPR minimum flows recovery was needed. If no downstream minimum flows were needed, the P-11 structure was held at 100 ft-NGVD and overflows would occur over the top of weirs when lake levels exceeded 100-ft NGVD.
- 4) ECL with operation for meeting MFLs and overcoming sink loss in the UPR (ECL+MFLs+SL), for which the operation schedule involved releasing flow through P-11 when downstream flow augmentation was needed for minimum flows recovery and to compensate for sink loss between Bartow and Fort Meade. If no downstream flows were needed, the P-11 structure was held at 100 ft-NGVD and overflows occurred when lake level exceeded 100-ft NGVD.

In particular, the last ECL+MFLs+SL scenario is considered representative of the District's current understanding of hydrologic conditions in the UPR and operational protocols for the P-11 structure. The first three scenarios are primarily used for understanding and demonstration of comparative conditions for lake releases and downstream hydrologic responses.

Historical data, including lake stages, discharges through P-11 and wastewater treatment effluent discharge are required to calculate the effective inflows with removal of the effluent discharge (or adjusted effective inflow), which are further used to estimate the P-11 outflow and change in outflow for the Baseline scenario as detailed in Section 2.3.2.

Once the Baseline scenario was developed, the effective inflows need to be recalculated to reflect the P-11 discharge in the Baseline scenario and used as the net inflows for the other three scenarios (i.e., for the ECL, ECL+MFLs and ECL+MFLs+SL scenarios).

Differences among the four scenarios are related to the effective inflow, rating curve and flow adjustments.

The P-11 discharge rating curve associated with the control elevation of 98.5 ft-NGVD was used for the Baseline scenario and the curve associated with the control elevation of 100 ft-NGVD was used for the other three scenarios. The use of rating curves is essential for estimating flow from the lake under high flow conditions, when lake stages exceed the normal operating level or crest of weir gates (i.e., 98.5 or 100 ft-NGVD).

However, for the two scenarios associated with MFLs and or sink loss, when lake stages fall below 100 ft-NGVD while still above the Minimum Lake Level of 97.6 ft-NGVD, flow releases were determined by assessing downstream flow needs and lake storage availability. The storage availability, expressed as a flow rate, is calculated using weir equation as a function of hydraulic head as discussed in Section 2.2.6. More specifically, the flow release is the minimum of downstream demand and lake storage availability.

2.3.2 Adjustments for Historical Baseline Condition

Initial hydrologic data adjustments included subtraction of the City of Lakeland Wastewater Treatment Plant daily discharges from the lake's effective inflow. This was achieved by first calculating the lake's effective inflow as a sum of the change in lake storage and the historical P-11 discharge, then subtracting the wastewater discharge. The resultant time series was considered the adjusted effective inflow to the lake.

Although the former P-11 structure had a crest elevation of 98.7 ft-NGVD and a normal operating level of 98.5 ft-NGVD, recorded flow releases occurred at various lake levels indicate the operating level was not always consistently adhered to. Considering that minimum flows and levels were adopted for the UPR and Lake Hancock in 2007 and 2017, respectively, and that the minimum levels adopted for the lake replaced formerly adopted lake guidance levels, it is reasonable to infer during most of the analysis period used for this LHR investigation the former P-11 structure was not operated to assist in meeting minimum flows established for the UPR.

Creating a historical Baseline condition associated with the former P-11 structure was, however, considered necessary for the LHR analyses. For this effort, the 98.5 ft-NGVD normal pool elevation developed to support adoption of minimum levels for Lake Hancock, was identified as a desired elevation to be maintained before the former P-11 structure was replaced. Assuming no flow was released when lake stage was below 98.5 ft-NGVD and releases only occurred when lake stage was above 98.5 ft-NGVD, a historical Baseline condition was established, with flow releases estimated using the rating curve associated with the 98.5 ft-NGVD control elevation presented in Figure 9 and Table 2 and discussed within Section 2.2.5. In addition, the lake storage for the current day could be calculated based on the lake storage for the previous day, the effective inflow and outflow for the current day, and the lake stage could be subsequently estimated using the relationship discussed in Section 2.2.7. The resultant historical Baseline

condition did not incorporate releases for UPR minimum flow recovery and was primarily developed to represent conditions prior to the P-11 structure replacement.

2.3.3 Adjustments for Minimum Lake Level

The adopted minimum lake level for Lake Hancock is 97.6 ft-NGVD (Leeper and Ellison, 2017). Flow releases through P-11 were terminated when the lake stage dropped to this elevation, regardless of the downstream flow augmentation needs. However, hydrologic processes, such as evapotranspiration and groundwater seepage from the lake could cause lake levels to fall below the adopted minimum level elevation. These conditions are considered acceptable and representative of the lake's natural hydrologic cycle.

2.3.4 Adjustments for Daily Minimum Flow Requirement

During dry season, daily P-11 flow releases were primarily driven by the largest flow deficit among the three UPR minimum flows sites (if not considering sink loss, as discussed in Section 2.3.5), i.e., the USGS gage sites at Bartow, Fort Meade and Zolfo Springs. The flow deficit was determined for each site as the difference between the established minimum low flow threshold and the adjusted observed daily average flow at the gage. If the deficit is less than zero, meaning the flow at the gage was greater than the minimum low flow threshold, no release was necessary for meeting the minimum flow at the site. If the deficits for all three UPR minimum flows sites were zero, then no flow release at P-11 was necessary. Otherwise, the largest of the three deficits, limited by lake storage, determined how much flow release should be made at P-11 to support minimum flow recovery.

If lake stage exceeded the P-11 structure control level, overflow would occur and was estimated using the rating curves described in Section 2.2.5. This situation typically occurred during the wet season when the lake was full and was not associated with minimum flow releases. Curve selection for outflow estimation was based on the P-11 control elevation appropriate for the simulation. Modeling associated with the Baseline condition included use of the piece-wise regression (i.e., rating curve) associated with a control elevation of 98.5 ft-NGVD. Model simulations involving conditions associated with the current P-11 structure involved use of the regression associated with a control elevation of 100.0 ft-NGVD.

2.3.5 Adjustments for Sink Loss between Bartow and Fort Meade

Sink losses were evaluated with assumption that up to 25 cfs will be lost to the karst features between Bartow and Fort Meade, which are used to determine how much of the sink loss deficit must be made up by the P-11 flow releases to assure downstream flow conditions. The sink loss deficit (Q_{deficit}) was estimated based on the adjusted flow at Bartow (B_{adj}) as indicated below.

$Q_{\text{deficit}} = 0$	if B _{adj} ≥ 25	(Equation 8; Bartow flow-
Q _{deficit} = 25 - B _{adj}	if B _{adj} < 25	specific equations)
If the adjusted flow at Bartow was 25 cfs or greater, flow in the river was considered adequate to meet the minimum low flow threshold of 17 cfs at Bartow and the sink loss between Bartow and Fort Meade. The flow release from Lake Hancock to overcome sink loss would then be zero. However, if the adjusted flow at Bartow was less than 25 cfs, then the release from the lake to address the sink loss deficit would be the difference between 25 cfs and the adjusted flow at Bartow. As an extreme example, at an adjusted flow of 0 cfs at Fort Meade, 52 cfs would need to be released from Lake Hancock to account for the 27 cfs flow threshold requirement at Fort Meade plus a 25-cfs sink loss deficit.

2.3.6 Adjutsments for Operation Schedule

Change in P-11 structure outflows to Lower Saddle Creek can affect flows at downstream locations on the Peace River, given that the river originates at the confluence of Lower Saddle Creek and the Peace Creek Canal. The difference between the observed P-11 discharge (O_{obs}) and projected (O_{pri}) was used to adjust the downstream flows in the river:

$$\Delta O = O_{obs} - O_{prj}$$
 (Equation 9)

where O_{obs} is historical P-11 discharge and O_{prj} is estimated using the rating curve associated with the 98.5 ft-NGVD control elevation for the Baseline scenario. The projected P-11 flow for the Baseline scenario is then used as O_{obs} for the other scenarios associated with the existing structure (i.e., ECL, ECL+MFLs and ECL+MFLs+SL). O_{prj} for these scenarios is estimated using the rating curve associated with the 100.0 ft-NGVD control elevation when lake stage exceeds 100 ft or, depending on model scenario under consideration, release driven by downstream flow needs and lake storage availability.

Flows at the downstream USGS Bartow (B), Fort Meade (F), Zolfo Springs (Z) and Arcadia (A) gages were then decreased by ΔO but limited to a value greater than or equal to zero. For example, if $\Delta O = 20$ cfs and B = 15 cfs, then $B_{adj} = 15 - 20 = -5$ cfs, which would be set to zero. The underlying assumption for such adjustment is that the decrease or increase in flows through the structure P-11 results in a corresponding change in flows at the downstream gages on the same day although the reality of time-lag effects exists for the flow changes.

In addition, if the adjusted upstream gage flow becomes zero, the flow amount at the upstream gage should be deducted from the adjacent downstream gage to assure mass balance. For example, if $\Delta O = 20$ cfs, B = 15 cfs, F = 25 cfs, then $B_{adj} = -5$ cfs, which would be set to zero and $F_{adj} = 25 - 15 = 10$ cfs. The adjusted flow at the Bartow, Fort Meade, Zolfo Springs, and Arcadia gages (B_{adj} , F_{adj} , Z_{adj} and A_{adj} , respectively) can be expressed with the following equations:

B _{adj} = B - ∆O B _{adj} = 0	if $B > \Delta O$ if $B \le \Delta O$	(Equation 10; site-specific gage equation sets)
$F_{adj} = F - \Delta O$	if F > Δ O and B > Δ O	

$F_{adj} = F - B$ $F_{adj} = 0$	if F > Δ O and B ≤ Δ O if F ≤ Δ O or F _{adj} < 0
$\begin{aligned} Z_{adj} &= Z - \Delta O \\ Z_{adj} &= Z - F \\ Z_{adj} &= 0 \end{aligned}$	$\begin{array}{l} \text{if } Z > \Delta O \text{ and } F > \Delta O \\ \text{if } Z > \Delta O \text{ and } F \leq \Delta O \\ \text{if } Z \leq \Delta O \text{ or } Z_{\text{adj}} < 0 \end{array}$
$\begin{array}{l} A_{adj} = A - \Delta O \\ A_{adj} = A - Z \\ A_{adj} = 0 \end{array}$	$ \begin{array}{l} \text{if } A > \Delta O \text{ and } Z > \Delta O \\ \text{if } A > \Delta O \text{ and } Z \leq \Delta O \\ \text{if } A \leq \Delta O \text{ or } A_{adj} < 0 \end{array} $

2.3.7 Lake Hancock Water Budget Routing

The adjusted effective inflows and releases from Lake Hancock through the P-11 structure were analyzed with respect to the LHR, i.e., the retaining of inflows for storage and subsequent release to support minimum flow recovery in the UPR at Bartow, Fort Meade and Zolfo Springs. Adjustments discussed in Sections 2.3.2 through 2.3.6 were applied to daily hydrologic records and releases from the lake were determined based on rating curves or the identified maximum demand (i.e., downstream flow recovery need) and lake level conditions, e.g., water level relative to the adopted minimum lake level.

The water budget was assessed on a daily basis, i.e., using a daily time-step, and the resultant condition served as the starting condition for subsequent day in the simulation period. This routing continued until the end of analysis period. Projected flow time-series for the Peace River at the Bartow, Fort Meade, Zolfo Springs and Arcadia gages were produced and used for analyses discussed in Section 3.

Water budget calculations specific to Lake Hancock were initiated with the modified historical baseline series, the potential releases associated with downstream minimum flow recovery need for the UPR (see Section 2.2.4) and sink loss requirements (see Section 2.2.5). Three water level regimes considered for the Lake Hancock system during the water budget processing were:

- Lake levels were below 97.6 ft-NGVD, and all inflows to the lake were retained regardless of the downstream river condition;
- Lake levels were between the operating levels of 97.6 ft-NGVD and 100 ft-NGVD, and P-11 releases were determined based on whether storage or UPR minimum flow releases were required; and
- Lake levels exceeded the operating level of 100 ft-NGVD, and P-11 releases were determined using the rating curve. Generally, this was considered a flood condition.

3. SIMULATIONS, RESULTS AND DISCUSSION

3.1 LAKE HANCOCK OUTFLOW

The LHR is the water temporarily stored in Lake Hancock and subsequently released to Lower Saddle Creek to support MFLs recovery in the UPR. Through operation of the P-11 control structure at the outlet of the lake, all or a portion of the daily effective inflow could be captured and stored in the lake. On a daily basis, the LHR is determined by multiple factors, including inflows to Lake Hancock, current lake storage, outflows from the lake, as well as downstream recovery needs.

Using the water budget model, effects of the LHR on the long-term outflow at P-11 to Lower Saddle Creek, and ultimately the Peace River could be quantified. As summarized in Table 3, the long-term average effective inflow to Lake Hancock (excluding the effluent from the City of Lakeland Wastewater Facility between 1975 to April 1987) and outflow from the lake for the assessment period from 1975 through 2012 is about 55 cfs.

For all assessed scenarios, more than half of the effective inflow was captured and temporally stored in the lake. On a day-by-day basis, the capture rate (i.e., the temporarily stored quantity relative to the effective inflow) varied from 0% (no capture) to 100% (full capture). As expected, average capture rates and the quantities temporarily stored in the lake were highest for the scenarios involving storage and release to support UPR minimum flow recovery, i.e., for the ECL+MFLs and ECL+MFLs+SL scenarios. The long-term average lake outflow via the P-11 structure is about the same as effective inflow (Table 3), indicating all effective inflows were eventually released downstream.

		•	5	
Scenario	Effective Inflow (cfs)	Temporarily Stored (cfs)	Average Capture Rate (%)	Outflow (cfs)
Baseline		33.35	60.7	54.92
ECL	54.04	30.90	56.2	54.93
ECL+MFLs	54.94	33.55	61.1	54.93
ECL+MFLs+SL		34.87	63.5	54.94

Table 3.Summary of effective inflow, quantity temporarily stored in Lake Hancock, the
average capture rate and the outflow from the lake at the P-11 structure
simulated for four scenarios for the period from 1975 through 2012

The concept of "Building Blocks" has been used for development of minimum flows for many river systems within the District (Kelly et al. 2005). The Building Blocks essentially correspond with seasonal, or flow-based portions of the flow regime, in which Blocks 1, 2 and 3, respectively, represent low, medium and high flow seasons or conditions. These seasonal blocks provided a basis for assessing outflows from the lake may be expected under the scenarios assessed for the LHR analysis.

As indicated in Table 3 and shown graphically in Figure 14, no differences in the longterm average outflow at the P-11 structure relative to the Baseline scenario with the 98.5 ft-NGVD control elevation were identified for the scenarios associated with the existing 100 ft-NGVD structure control elevation (ECL, ECL+MFLs, ECL+MFLs+SL). However, the P-11 outflow increased in Blocks 1 and 2 (the low and medium-flow seasonal blocks), especially for the ECL+MFLs and ECL+MFLs+SL scenarios associated with UPR minimum flow recovery (Figure 14). During Block 1, P-11 outflows increased 45% and 64%, respectively for the two recovery-based scenarios. Outflow increases were more moderate during Block 2, medium flow season, with 9% and 12% increases simulated for the ECFL+MFLs and ECL+MFLs+SL scenarios, respectively. As expected, these scenarios were also associated with decreased outflow via the P-11 structure during Block 3, the high flow period when temporary storage would be increased to support subsequent release during the drier seasons or blocks.

3.2 FLOW ADJUSTMENTS FOR REMOVAL OF HISTORICAL WASTEWATER EFFLUENT AND STRUCTURE OPERATION

Because of the removal of historical effluents from the City of Lakeland Wastewater Treatment Facility, and P-11 structure operations for the LHR in support of minimum flow recovery of the UPR, the projected outflows through P-11 are respectively reduced overall, and on a temporal basis relative to the historical flow condition. The reduction in P-11 outflows between the historical and projected conditions affects the downstream river flows as well. This means downstream historical flows should be adjusted for the purpose of mass balance to reflect the effect of the LHR and the removal of the City of Lakeland Wastewater Treatment Facility effluent. An assumption was made that the necessary flow adjustments would be made on the same day regardless of the downstream gage location on the Peace River. For example, a 5-cfs flow reduction at the P-11 structure would be applied from Bartow to Arcadia on the same day. By doing this, projected time series of flow records from historical could be obtained. The required daily flow adjustment amounts varied for the simulation period. To gain some insight on the scale of the necessary adjustments on a long-term basis, the average flow adjustments for the USGS Peace River at Bartow, Fort Meade, Zolfo Springs and Arcadia gage sites, which are associated with adopted minimum flows for the river, were calculated for the assessment period (Table 4). The average flow adjustments for the Baseline, ECL and ECL+MFLs scenarios did not differ much at each respective gage site. However, the adjustments required for the Fort Meade, Zolfo Springs and Arcadia Gages were notably greater for the ECL+MFLs+SL scenario, which incorporated the effect of sink loss, because the three gages are located downstream of the major sink loss area between Bartow and Fort Meade.

Table 4. Average flow adjustments at the USGS gage site on the Peace River due to removal of the City of Lakeland Wastewater Treatment Facility effluent and structure operation simulated for four scenarios for the period from 1975 through 2012

Scenario	Bartow (cfs)	Fort Meade(cfs)	Zolfo Springs (cfs)	Arcadia (cfs)
Baseline	-2.99	-2.68	-2.72	-3.02
ECL	-2.98	-2.64	-2.69	-3.01
ECL+MFLs	-2.95	-2.60	-2.66	-3.00
ECL+MFLs+SL	-2.94	-5.12	-5.17	-5.58

The average quantity of historical wastewater effluent discharge is about 10 cfs over the period of data records as discussed in Section 2.2.8, which is equivalent to about 3.22 cfs over the 38-year analysis period. Flows at Bartow and Fort Meade historically benefited, i.e., were increased, more than those at further downstream sites because the effluent discharge is less than the sink loss between Bartow and Fort Meade. As indicated in Table 4, the flow adjustments vary by gage location on the Peace River, despite the same value of change in P-11 outflow being applied to each gage site on any given day. This variation is that on some days the projected change in P-11 outflow could be greater than downstream historical flow due to the timing lags and other factors. For example, if historically Bartow flow is 15 cfs and the projected outflow change at P-11 is 20 cfs, then a zero flow would be assigned to Bartow in the process of adjustment instead of -5 cfs. Subsequently, the 15 cfs at Bartow would be fully deducted from the adjacent downstream site at Fort Meade. This adjustment would also be propagated to each downstream site. The smaller absolute flow adjustment values listed in Table 4 may indicate more frequent occurrence of this situation than the relatively larger values for the associated site.

The removal of historical wastewater effluent caused an overall reduction in downstream historical flow as seen in Table 4, and this effect was much greater than the flow reductions associated with structure operations. Nevertheless, the flow adjustments for the historical wastewater effluent discharge described here were necessary for projection of current and future flow conditions in the Peace River and should also be made for

similar analyses for the Peace River system that incorporate historical flow data. These types of flow adjustments are not, however, necessary for use of flow records measured after construction of the current P-11 structure was completed.

3.3 LAKE HANCOCK MINIMUM LEVELS

Minimum levels were adopted into District rules for Lake Hancock and became effective in November 2016, replacing guidance levels previously adopted for the lake (Leeper and Ellison 2017). The adopted minimum levels include a Minimum Lake Level of 97.6 ft-NGVD and a High Minimum Lake Level of 98.8 ft-NGVD that must, respectively, be equaled or exceeded fifty and ten percent of the time on a long-term basis. The minimum levels were developed using current District methods for establishing minimum levels for Category 2 Lakes, which are lakes contiguous with at least 0.5 acres of cypressdominated wetlands where structural alterations have substantially affected water levels. The minimum levels were based on lake level conditions that existed prior to the replacement of the previous P-11 control structure with the current structure.

To assess the effect of the various modeled scenarios on the status of the minimum levels adopted for Lake Hancock, historical and projected lake stage duration curves (Figure 15) were prepared for comparison against regulatory levels, and tenth and fiftieth exceedance percentiles were calculated for projected lake stages for comparison with the adopted minimum levels (Table 5). The comparisons indicate the scenarios associated with use of the existing, modified P-11 control structure (i.e., the ECL, ECL+MFLs and ECL+MFLs+SL scenarios) should support achievement of the adopted minimum lake levels. For example, the lake level at 50% exceedance for all scenarios are at least 0.7 ft greater than the adopted Minimum Lake Level of 97.6 ft-NGVD.

Adopted	Adopted	Exceedance	Water S	urface El	evations for M	lodel Scenarios
Levels ^a	Elevation	Percentile ^b	Baseline	ECL	ECL+MFLs	ECL+MFLs+SL
High Minimum Lake Level	98.8	10%	98.6	100.1	100.1	100.1
Minimum Lake Level	97.6	50%	98.3	99.8	99.7	99.6

 Table 5.
 Comparison of Lake Hancock minimum levels and lake stage exceedance percentiles simulated for four model scenarios

^a All levels and water surface elevations are in ft-NGVD. ^b Lake stage exceedance percentiles are required on a longterm basis for the adopted minimum levels and are associated with elevations listed for the model scenarios.

Figure 16 illustrates projected lake water levels for the Baseline scenario associated with the 98.5 ft-NGVD control elevation associated with the previous P-11 structure and water levels projected for the ECL+MFLs+SL scenario that correspond to operation of the current P-11 structure with a control elevation of 100.0 ft-NGVD to support UPR recovery while accounting for sink loss deficits. Improved likelihood of achieving the minimum levels adopted for Lake Hancock under the ECL+MFLs+SL scenario is evident in the elevated hydrograph for the scenario (Figure 16).

Figure 15. Lake Hancock stage duration curves associated with structure P-11 operating scearios and adopted lake minimum levels

Figure 16. Adopted minimum levels for Lake Hancock and simulated water levels for the Baseline and ECL+MFLs+SL scenarios for the period from 1975 through 2012

3.4 MINIMUM FLOW RECOVERY IN THE UPPER PEACE RIVER

The major purpose of LHR is to restore the adopted minimum flows in the UPR. Although only minimum low flows have been established for the UPR, it is anticipated that minimum flows associated with medium and high flow ranges will be developed for the UPR as part of the reevaluation of the UPR minimum flows that is scheduled for 2025.

The established UPR minimum low flows were based on the lowest acceptable flow under the lowest anticipated flow conditions to maintain water surface elevations necessary for maintaining a 0.6-ft fish passage depth or the lowest wetted perimeter inflection point in each of the three UPR segments. A 95% annual exceedance occurs when the flow is greater than the minimum low flows at least 95% of the days of a calendar year.

Based on the compliance requirement for the UPR (Rule 40D-D.041(7)(d), F.A.C.; Appendix C), the minimum flows established at the Bartow, Fort Meade and Zolfo Springs gage sites are each achieved when the 95% annual exceedance flow is at or above the respective, rule-specified minimum flow rate for three consecutive years. Once the minimum flow at a site has been achieved for three consecutive years, the minimum flow is not met when the 95% annual exceedance flow rate is below the minimum flow rate for two out of ten years commencing the year after achievement. If the two years below the minimum flow occur any time before the ten-year period is complete, the UPR is deemed below its minimum flows and the three consecutive years above the minimum flow rates is again required for compliance. Once the ten-year period is complete, the period will roll forward one year each year.

Investigation of historical flow records at Bartow, Fort Meade and Zolfo Springs indicated that the minimum flows were not met in the UPR for many years during the 1975 through 2012 period assessed for the LHR analyses. Compliance at the Fort Meade site was the poorest; minimum flows established for the site were only met for 3 years in the 38-year assessment period. Minimum flows at Bartow and Zolfo Springs were, respectively, met 9 and 27 years (Table 6).

The number of days the flow threshold associated with the UPR minimum flows were met (MFLs Flow Days Met) and the number of years the 95% exceedance flows associated with the UPR minimum flows were met (MFLs Flow Years Met) were compared among the model scenarios and historical conditions at the Bartow, Fort Meade and Zolfo Springs gage sites. In contrast with historical conditions, i.e., unadjusted, measured flows at the gage sites, the MFLs Flow Days Met were reduced for the Baseline and ECL scenarios, primarily as a result of removal of the effluent discharges from the City of Lakeland Wastewater Treatment Facility. Differences in the MFLs Flow Days Met for the Baseline and ECL scenarios were minor and the number of MFLs Flow Years Met for the three UPR gage sites did not differ between the two scenarios. These results indicate the increase in the P-11 control elevation alone does not improve recovery of the UPR minimum flows.

However, increases in the MFLs Flow Days Met and MFLs Flow Year Met for the three UPR gage sites substantially increased for scenarios associated with P-11 structure operations that would be associated with the LHR and recovery of minimum flows in the UPR. For example, at the Fort Meade gage, the number of MFLs Flow Days Met increased by 21% and the number of MFLs Flow Years met increased by 25 years for the ECL+MFLs scenario relative to the Baseline scenario. A reduction in the number of MFLs Flow Days Met for the minimum flow recovery scenario associated with overcoming sink loss between Bartow and Fort Meade (i.e., Scenario ECL+MFLs+SL) relative to the minimum flow recovery scenario that does not account for sink loss (ECL+MFLs), indicated that flows released at P-11 for the ECL+MFLs+SL scenario were not sufficient to overcome sink losses during the analysis period.

The finding that the flows associated with all the modeled scenarios included in the LHR analysis were not sufficient for full recovery of the minimum flows in the UPR was expected. The Lake Hancock Lake Level Modification Project, which provides the primary basis for the conceptualization of the scenarios included in this LHR analysis was designed and constructed to promote compliance with the UPR minimum flows approximately 89% of the time (SWFWMD 2013).

The District anticipates continuing to apply an adaptive management approach for achieving minimum flow recovery in the UPR. Decisions regarding whether additional projects or water sources may be needed to fully meet minimum flow requirements in the UPR will be based on continued monitoring and evaluation of P-11 operations including releases for river recovery, reevaluation of the existing UPR minimum flows, and trends in hydrologic conditions.

Historical	Number (F	(and Percent low Days Me	Number of MFLs Flow Years Met ^b				
Scenario	Bartow	Fort Meade	Zolfo Springs	Bartow	Fort Meade	Zolfo Springs	
Historical	10,816 (78%)	9,741 (70%)	12,833 (92%)	9	3	27	
Baseline	10,536 (76%)	9,458 (68%)	12,814 (92%)	6	3	27	
ECL	10,529 (76%)	9,437 (68%)	12,813 (92%)	6	3	27	
ECL + MFLs	12,851 (93%)	12,663 (91%)	13,282 (96%)	29	28	32	
ECL + MFLs + SL	12,521 (90%)	12,068 (87%)	13,116 (94%)	26	21	28	

Table 6.	Comparison	of m	inimur	m flows sta	atus in the	Uppe	er Pe	ace River	for historical
	(measured)	and	four	modeled	scenarios	for	the	38-year	(13,880-day)
	simulation pe	eriod	from '	1975 throu	gh 2012				

^a MFLs Flow Days Met are the days the flow threshold associated with the respective UPR minimum flows at Bartow, Fort Meade and Zolfo Springs were equaled or exceeded. ^b MFLs Flow Years Met are the years the 95% exceedance flow threshold associated with the respective UPR minimum flows at Bartow, Fort Meade and Zolfo Springs were equaled or exceeded.

3.5 IMPACTS TO MINIMUM FLOWS IN THE MIDDLE AND LOWER PEACE RIVER

Minimum flows for the MPR were developed and are assessed based on flow at the USGS Peace River at Arcadia gage. This gage is also associated with the minimum flows for the LPR, which are based on the combined flows at the Peace River at Arcadia, Horse Creek near Arcadia and Joshua Creek at Nocatee gages. Tributary flow from Horse Creek and Joshua Creek are not affected by the LHR, so evaluation of the impacts on flows at the Arcadia gage are sufficient for assessing potential impacts of the LHR on minimum flows for both the MPR and LPR.

As shown in Figure 17, differences in long-term average flows at Arcadia relative to the Baseline scenario ranged from 0 to less than 0.5% for the modeled scenarios associated with the existing 100 ft-NGVD structure control elevation (ECL, ECL+MFLs, ECL+MFLs+SL). Minor flow increases of less than 2% in the low and medium flow seasons (i.e., Blocks 1 and 2) and decreases of less than 1% in high flow season (Block 3) were simulated for the scenarios. When compared to the allowable, block-specific flow reductions associated with the adopted MPR (8 to 18%) and LPR (16 to 38%) minimum flows (see Appendix C), these small flow differences at the Arcadia gage indicate the LHR is not expected to adversely impact the status of minimum flows established for the MPR and LPR.

Figure 17. Changes in the average Peace River flows at the Arcadia gage and average flows by seasonal block (Blocks 1, 2 and 3) for three modeled scenarios relative to the flows simulated for the Baseline scenario for the period 1975 through 2012

3.6 IMPACTS TO EXISTING WATER USERS

The PRMRWSA is currently the primary existing legal water user on the Peace River. Individual Water Use Permit No. 20010420.010, issued to the PRMRWSA by the District on February 26, 2019, authorizes a daily maximum withdrawal of 258 million gallons per day (MGD) and an annual average withdrawal of 80 MGD. The permit also includes conditions that limit seasonal, block-specific diversions (i.e., withdrawals) from the river (Table 7). These withdrawal restrictions are similar to the allowable, seasonal flow reductions identified in the minimum flows rule adopted for the LPR (see Appendix C). However, the permitted diversions when the combined Peace River at Arcadia, Horse Creek near Arcadia and Joshua Creek at Nocatee flows exceed 625 cfs during Blocks 2 and 3 are, respectively, 1% and 10% less than the withdrawal limits included in the LPR minimum flows rule.

Table 7. PRMRWSA surface water diversion limits from the Peace River included in Individual Water Use Permit No. 20 010420.010 issued to the PRMRWSA for combined flows in the Peace River at Arcadia, Joshua Creek and Horse Creek

Period	Effective Dates	Where Flow on Previous Day Equals	Allowed Withdrawals
Plook 1	April 20 through	≤130 cfs	0 cfs
DIUCK I	June 25	>130 cfs	16% of the previous day's flow*
		≤130 cfs	0 cfs
Block 2	October 28 through April 19	>130 cfs and < 625 cfs	16% of the previous day's flow*
		≥ 625 cfs	28% of the previous day's flow*
		≤130 cfs	0 cfs
Block 3	June 26 through	>130 cfs and < 625 cfs	16% of the previous day's flow*
		≥ 625 cfs	28% of the previous day's flow*

*Not to exceed the difference between the combined previous day's flows at the Horse Creek near Arcadia, Joshua Creek at Nocatee and Peace River at Arcadia and 130 cfs. Also, withdrawals are capped at a maximum of 258 million gallons per day subject to Special Condition 17 within the water use permit.

Differences in the combined Peace River at Arcadia, Horse Creek and Joshua Creek flows for the scenarios associated with the 100 ft-NGVD control elevation were assessed, relative to the Baseline scenario on a long-term average and block-specific basis (Figure 18). Differences in the long-term average combined flow were minimal, ranging from 0% to less than 0.5% for the ECL, ECL+MFLs and ECL+MFLs+SL scenarios. As was the case for the Arcadia flows alone (see Figure 17), slight flow increases in Blocks 1 and 2 and decreases in Block 3 were noted (Figure 18). These minor flow changes indicated minimal impact of the LHR on the combined flows in the LPR, i.e., the combined flows in the Peace River at Arcadia, Horse Creek and Joshua Creek.

Model Scenario

Figure 18. Changes in the combined daily flow in the Peace River at Arcadia, Horse Creek near Arcadia and Joshua Creek at Nocatee for three modeled scenarios relative to the flows simulated for the Baseline scenario for the period 1975 through 2012

Responses similar to those simulated for the combined flows in the LPR were observed for potential changes in water withdrawals from the Peace River by the PRMRWSA (Figure 19). On an annual basis when comparing the scenarios with the LHR with baseline, the LHR does not cause any impacts on the PRMRWSA water withdrawals.

Figure 19. Changes in potential PRMRWSA surface water withdrawals for three modeled scenarios relative to the flows simulated for the Baseline scenario for the period 1975 through 2012

As an additional note, the historical average flow through P-11 for the assessed period is about 58 cfs, accounting for 6.7% of the historical average flow at Arcadia (i.e., 857 cfs),

and 5% of the combined Peace River at Arcadia, Horse Creek near Arcadia and Joshua Creek at Nocatee (i.e., 1,138 cfs). After the flow adjustments based on the scenario projections, the flow contribution from Lake Hancock through the P-11 control structure is slightly reduced (Table 8), indicating Lake Hancock only accounts for a very small portion of the streamflow at the LPR.

Table 8.	Average flow from Lake Hancock through P-11, at the Peace River at Arcadia,
	and for the combined flows at the Horse Creek near Arcadia, Joshua Creek at
	Nocatee and Peace River at Arcadia

Scenario	Outflow Through the P- 11 Control Structure (cfs)	Flow at the Peace River at Arcadia (cfs)*	Combined Flows at the Horse Creek near Arcadia, Joshua Creek at Nocatee and Peace River at Arcadia (cfs)*
Historical	58	857 (6.7%)	1,138 (5.1%)
Baseline	55	854 (6.4%)	1,135 (4.8%)
ECL	55	854 (6.4%)	1,135 (4.8%)
ECL+MFLs	55	854 (6.4%)	1,135 (4.8%)
ECL+MFLs+SL	55	851 (6.5%)	1,131 (4.9%)

* The percentage in the parentheses indicates the contribution of the outflow through the P-11 control structure.

3.7 IMPACTS TO THE CHARLOTTE HARBOR ESTUARY

The Charlotte Harbor Estuary, the second largest bay in Florida, is a threatened ecosystem because of rapid increases in regional population growth and associated development. Given these stresses, maintaining freshwater flows to the Estuary is important for protecting the health of this ecosystem. The Peace River is a major contributor of freshwater inflow to the Estuary and flows from the river are protected through implementation of the LPR minimum flows and compliance with conditions included in the water use permit issued to the PRMRWSA by the District.

Potential impacts to the Charlotte Harbor Estuary due to changes in Peace River flows were evaluated based on the expected flows past the PRMRWSA withdrawal intake, following any permitted diversions from the river (Figure 20). Differences in the long-term average flows to the Estuary relative to the Baseline scenario were minimal, ranging from 0% for the ECL scenario to less than 0.5% decreases for the ECL+MFLs and ECL+MFLs+SL scenarios. Slight increases in Block 1 and 2 flows and decreases in Block 3 flows of approximately 1% or less were noted for the three scenarios associated with the 100 ft-NGVD control elevation for the P-11 structure. These minor flow changes are not anticipated to lead to a violation of the LRP minimum flows and are expected to support maintenance of ecosystem health in the Charlotte Harbor Estuary.

Figure 20. Change in the Peace River flows to the Charlotte Harbor Estuary for three modeled scenarios relative to the flows simulated for the Baseline scenario for the period 1975 through 2012

4. SUMMARY AND CONCLUSIONS

The District has prospectively adopted a reservation rule for recovery and protection of minimum flows and minimum water levels established for the SWUCA. The District's Consumptive Use of Water rules indicate reservations for this purpose will be adopted on a case-by-case basis to address water that is developed through water resource development projects designed to achieve and maintain minimum flows and levels. A reservation of water stored in Lake Hancock and released to Lower Saddle Creek (i.e., the LHR) for recovery of minimum flows in the UPR that are not being met is currently prioritized for adoption by rule in 2020.

To support adoption of the LHR rule, a spreadsheet-based water budget model was developed and used to project current (i.e., post P-11 structure replacement at the Lake Hancock outlet) hydrologic conditions in Lake Hancock and the Peace River from historical (i.e., pre P-11 structure replacement) conditions. Results from these simulations, i.e., from this LHR analysis were used to assess potential effects of the LHR on outflows from Lake Hancock, recovery of minimum flows in the UPR, minimum levels in Lake Hancock, minimum flows established for the MPR and LPR, permitted water withdrawals from the LPR by PRMRWSA, and flows to the Charlotte Harbor Estuary. Results from these assessments provide a basis for characterizing conditions that can be expected with P-11 structure operations associated with the LHR that is intended to support recovery of minimum flows in the UPR.

Three scenarios associated with operation of the current P-11 structure with a control elevation of 100 ft-NGVD were assessed relative to a Baseline scenario that represented operation of the P-11 structure at the control elevation of 98.5 ft-NGVD associated with

the previous structure. The three scenarios associated with the current structure control elevation were designed to investigate conditions involving: 1) no lake storage or releases for UPR minimum flow recovery (Scenario ECL); 2) storage of water in lake for subsequent release to support UPR minimum flow recovery when the lake level exceeded the Minimum Lake Level of 97.6 ft-NGVD established for Lake Hancock (Scenario ECL+MFLs); and 3) storage of water in lake level exceeded the Minimum flow recovery when the lake level exceeded the Minimum flow recovery when the lake level exceeded the Minimum flow recovery when the lake level exceeded the Minimum flow recovery when the lake level exceeded the Minimum Lake Level of 97.6 ft-NGVD established for Lake Hancock (Scenario ECL+MFLs); and 3) storage of water in lake for subsequent release to support UPR minimum flow recovery when the lake level exceeded the Minimum Lake Level of 97.6 ft-NGVD established for Lake Hancock, while attempting to compensate for a sink loss of 25 cfs based on reported loss values for the Peace River between Bartow and Fort Meade (Scenario ECL+MFLs+SL). This last scenario was considered to most closely represent current conditions in the UPR.

A 38-year analysis period, from 1975 through 2012 was selected based on consideration of available historical flow data and replacement of the previous P-11 control structure with the current P-11 structure in 2013 through 2014. Because of the replacement of the P-11 structure, structure operations intended to support minimum flow recovery in the UPR, the LHR to be adopted to support these efforts, and the elimination of a historical discharge of wastewater effluent that was ultimately delivered to the Peace River through Lake Hancock, it was necessary to adjust historical hydrologic data for the analysis. These adjustments were determined to be necessary throughout the Peace River, with the average quantity of reduction ranging from 2.6 to 5.6 cfs, for the various scenarios and sites included in the analysis. Comparable flow adjustments are considered necessary for other, similar hydrologic investigations that rely on use of historic flow data collected in the Peace River.

Results from the scenario simulations indicated the long-term average outflow of 55 cfs from Lake Hancock at the P-11 structure did not differ from the effective inflow to the lake, regardless of structure control elevation or simulated structure operations. However, operation of the structure to temporarily store water in Lake Hancock, with the intent of helping achieve minimum flows in the UPR, changed the temporal distribution of outflow at the P-11. This was not unexpected as the structure operation for UPR recovery includes capturing inflows during wet season for release during dry season.

During the low-flow Block 1, P-11 outflows increased 45% and 64%, respectively for the two scenarios associated with UPR minimum flow recovery (ECL+MFLs) and minimum flow recovery with compensation for sink losses (ECL+MFLs+SL). Outflow increases were more moderate during Block 2, with 9% and 12% increases simulated for the ECL+MFLs and ECL+MFLs+SL scenarios, respectively. As expected, these scenarios were also associated with decreased outflow via the P-11 structure during Block 3, the high flow period when temporary storage would be increased to support subsequent release during the drier seasons or blocks.

Although the magnitude of outflows at structure P-11 is typically small relative to the longterm average downstream flows at the Peace River at Bartow, Fort Meade, Zolfo Springs and Arcadia gages, the P-11 outflow serves an important role in restoring low flows in the UPR. Increases in the number of days the flow thresholds associated with the UPR minimum flows were achieved (i.e., MFLs Flow Days Met) and the number of years the 95% exceedance flows associated with the minimum flows for the three UPR gage sites were met (i.e., MFLs Flow Years Met) substantially increased for scenarios associated with P-11 structure operations associated with the LHR and recovery of minimum flows in the UPR. For example, at the Fort Meade gage, the number of MFLs Flow Days Met increased by 21% and the number of MFLs Flow Years Met increased by 25 years for the ECL+MFLs scenario relative to the Baseline scenario. Improvement in the number of days the threshold associated with the minimum flow at Zolfo Springs was achieved and the number of years the minimum flow sites. Minimum flows are, however, more frequently met at the Zolfo Springs gage than at the two upstream gages.

The LHR analysis also indicated that sink loss between Bartow and Fort Meade has a strong impact on minimum flow recovery at Fort Meade. Accounting for an anticipated sink loss of up to 25 cfs reduced the number of days the flow threshold for the Fort Meade would be achieved by 4% and reduced the number of years the minimum flows would be met by 7 years for the 38-year simulation period. Effects of accounting for sink loss were relatively less at the Bartow and Zolfo Springs gages.

The finding that the flow releases associated with all the modeled scenarios included in the LHR analysis were not sufficient for full recovery minimum flows in the UPR was not unexpected. The Lake Hancock Lake Level Modification Project, which provides the primary basis for the conceptualization of the scenarios included in this LHR analysis was designed to recover the UPR minimum flows approximately 89% of the time (SWFWMD 2013). The District anticipates continuing to use an adaptive management approach to improve minimum flows in the UPR. Decisions regarding whether additional projects or water sources may be needed to fully meet minimum flow requirements in the UPR will be based on continued monitoring and evaluation of P-11 operations including releases for river recovery, reevaluation of the existing UPR minimum flows, and trends in hydrologic conditions.

Assessed effects on minimum levels for Lake Hancock, minimum flows established for the MPR and LPR, and flows to the Charlotte Harbor Estuary were also positive or minimal. Operation of structure P-11 for minimum flow recovery in the UPR will increase water levels in Lake Hancock relative to historical conditions and support compliance with minimum levels established for the lake. The structure operations associated with the LHR will not negatively affect compliance with minimum flows established for the MPR or LPR and will similarly not significantly affect flows to the Charlotte Harbor Estuary.

Analysis of withdrawal information based on the current water use permit issued to the PRMRWSA indicated that P-11 structure operation in accordance with the LHR and for UPR minimum flows recovery would not negatively impact permitted withdrawals from the Peace River. Withdrawals in the low and medium flow seasons could potentially be

slightly enhanced and withdrawals during the high flow season could slightly be decreased by <1%.

In summary, the findings of this LHR analysis support the conclusion that the current and planned operation of the P-11 structure for UPR minimum flow recovery and the planned adoption of a reservation for the water stored in Lake Hancock at and below 100.0 ft-NGVD and released from Lake Hancock to Lower Saddle Creek when flow thresholds of 17 cfs, 27 cfs and 45 cfs at the Bartow, Fort Meade and Zolfo Springs gage sites are not met will support recovery of minimum flows in the UPR and continued achievement of minimum levels in Lake Hancock. The LHR also will not adversely affect minimum flows established for the MPR and LPR, flows to the Charlotte Harbor Estuary or existing, permitted withdrawals from the Peace River.

5. REFERENCES

- Basso, R. J. 2004. Draft Report An Evaluation of Stream Flow Loss during Low Flow Conditions in the Upper Peace River. Southwest Florida Water Management District. Brooksville, Florida. 20 p.
- BCI Engineers & Scientists, Inc. (BCI), 2005. Lake Hancock Lake Level Modification Preliminary Evaluation Final Report. Prepared for Southwest Florida Water Management District. Brooksville, Florida.
- BCI Engineers & Scientists, Inc. (BCI). 2006a. Lake Hancock Lake Level Modification Project Conceptual Environmental Resource Permit. Submitted to Florida Department of Environmental Protection, August 30, 2006. Prepared for the Southwest Florida Water Management District. Brooksville, Florida.
- BCI Engineers & Scientists, Inc. (BCI). 2006b. Lake Hancock Lake Level Modification Project Lake Hancock Water Budget and Proposed Operations Description, Appendix F. Prepared for the Southwest Florida Water Management District. Brooksville, Florida.
- BCI Engineers & Scientists, Inc. (BCI). 2006c. Lake Hancock Lake Level Modification Project Wetland Functional Assessment, Appendix D, August 2006. Prepared for the Southwest Florida Water Management District. Brooksville, Florida.
- EarthData International, LLC. 2005. Report of topographic survey Lake Hancock/Winter Haven – Polk County, Florida. Frederic, Maryland. Available from the Mapping and GIS Section of the Southwest Florida Water Management District. Brooksville, Florida.
- Hammett, K.M., L.J. Snell and B.F. Joyner. 1981. Hydrologic description of Lake Hancock, Polk County, Florida. Open-File Report 81-131. Department of the Interior United States Geological Survey.
- Harper, H.H., Herr, J.L. and Baker, D.M. December 1999. Lake Hancock water and nutrient budget and water quality improvement project. Final Report, December

1999. Environmental Research & Design, Inc. Orlando, Florida. Prepared for the Southwest Florida Water Management District. Brooksville, Florida.

- Kelly, M., A. Munson, J. Morales and D. Leeper. 2005. Proposed minimum flows and levels for the Middle Segment of the Peace River, from Zolfo Springs to Arcadia. Southwest Florida Water Management District. Brooksville, Florida.
- Leeper, D.A. and D.L. Ellison. 2017. Minimum Levels and Proposed Guidance Levels for Lake Hancock in Polk County, Florida. May 24, 2017. Southwest Florida Water Management District. Brooksville, Florida.
- Lewelling, B.R., A.B. Tihansky, and J.L. Kindinger. 1998. Assessment of the hydraulic connections between ground water and the Peace River, West-Central Florida.
 U.S. Geological Survey Water Resources Investigations Report 97-4211.
 Prepared in cooperation with the Southwest Florida Water Management District.
 U.S. Department of the Interior U.S. Geological Survey.
- Metz, P.A. and B.R. Lewelling. 2009. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida. Scientific Investigations Report 2009–5140. Prepared in cooperation with the Southwest Florida Water Management District. U.S. Department of the Interior U.S. Geological Survey.
- Patton, T.H. 1980. Geologic Observation on the Ordinary High Water Level Line of Lake Hancock, Polk County, Florida. June 1980. Prepared for Pandullo Quirk Associates Gateway "80" Office Park Wayne, New Jersey 07470 and Beckham, McAliley, & Proenza. P.A. Fifth Floor Concord Building 66 West Flagler street Miami, Florida 33130. Patton & Associates, Inc., 537 N.E. 1st Street, Suite 2, Gainesville, Florida 32601.
- Picket & Associates, Inc. 2004. Report of survey/hydrographic survey/Lake Hancock, dated June 2, 2004. Bartow, Florida. Prepared by G.A. Prather for the Southwest Florida Water Management District. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 1999. Report on the Inspection of District Water Control Facility P-11 (Lake Hancock), October 20, 1999, Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2002. Upper Peace River -An Analysis of Minimum Flows and Levels. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2003. Structure profile on the District water control facility P-11 Hancock Water Control Structure, Peace River Basin (20), Polk County, May 28, 2003. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2005. Proposed Minimum Flows and Levels for the Middle Segment of the Peace River, from Zolfo Springs to Arcadia. Brooksville, Florida.

- Southwest Florida Water Management District (SWFWMD). 2006. Final Report Southern Water Use Caution Area Recovery Strategy. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2010. Final Report -Proposed Minimum Flows and Levels for the Lower Peace River and Shell Creek. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2010. Lake Hancock Land Use and Management Plan. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2013. Final Report Southern Water Use Caution Area Recovery Strategy Five-Year Assessment for FY2007-2011. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2014. Southwest Florida Water Management District Structure Profile P-11 Revised 2014. Brooksville, Florida.
- Southwest Florida Water Management District (SWFWMD). 2019. Lake Hancock Lake Level Modification and Outfall treatment Projects. https://www.swfwmd.state.fl.us/projects/lake-hancock-lake-level-modificationproject. Accessed on October 2019.
- U.S. Geological Survey (USGS) 2004. Streamflow Losses through Karst Features in the Upper Peace River Hydrologic Area, Polk County, Florida, May 2002 to May 2003. USGS Fact Sheet 102–03, June 2004. U.S. Department of the Interior U.S. Geological Survey.

APPENDIX A

Excerpts from the Florida Statutes and Florida Administrative Code associated with establishment and implementation of water reservations

The 2019 Florida Statutes Part II Permitting of Consumptive Uses of Water

373.223 Conditions for a permit. —

(4) The governing board or the department, by regulation, may reserve from use by permit applicants, water in such locations and quantities, and for such seasons of the year, as in its judgment may be required for the protection of fish and wildlife or the public health and safety. Such reservations shall be subject to periodic review and revision in the light of changed conditions. However, all presently existing legal uses of water shall be protected so long as such use is not contrary to the public interest.

Chapter 62-40, Florida Administrative Code

WATER RESOURCE IMPLEMENTATION RULE

62-40.410 Water Supply Protection and Management.

The following shall apply when the use of water is regulated pursuant to Part II of Chapter 373, F.S.:

(1) through (2) - Not shown.

(3) Water may be reserved from permit use in such locations and quantities, and for such seasons of the year, as is required for the protection of fish and wildlife or the public health or safety. Such reservations shall be subject to periodic review and revision in light of changed conditions. However, all presently existing legal users of water shall be protected so long as such use is not contrary to the public interest. Reservations shall be established in accordance with Rule 62-40.474, F.A.C.

(4) through (9) - Not shown.

Rulemaking Authority 373.016, 373.019, 373.026(7), 373.036, 373.043, 373.171, 373.219, 373.223, 373.236 FS. Law Implemented 373.016, 373.019, 373.023, 373.026, 373.036, 373.042, 373.0421, 373.103, 373.171, 373.175, 373.219, 373.223, 373.233, 373.236, 373.246, 373.250, 373.413, 373.414, 373.416, 373.418, 373.703, 403.064, 403.0891 FS. History–New 7-20-95, Amended 5-7-05, 5-7-06, 5-6-13.

Chapter 62-40, Florida Administrative Code

WATER RESOURCE IMPLEMENTATION RULE

62-40.474 Reservations.

(1) The governing board or the department, by rule, may reserve water from use by permit applicants, pursuant to Section 373.223(4), F.S., in such locations and quantities, and for such seasons of the year, as in its judgment may be required for the protection of fish and wildlife or the public health and safety. Such reservations shall be subject to

periodic review at least every five years, and revised if necessary in light of changed conditions. However, all presently existing legal uses of water shall be protected so long as such use is not contrary to the public interest.

(a) Reservations may be used for the protection of fish and wildlife to:

1. Aid in a recovery or prevention strategy for a water resource with an established minimum flow or level,

2. Aid in the restoration of natural systems which provide fish and wildlife habitat,

3. Protect flows or levels that support fish and wildlife before harm occurs,

4. Protect fish and wildlife within an Outstanding Florida Water, an Aquatic Preserve, a state park, or other publicly owned conservation land with significant ecological value, or

5. Prevent withdrawals in any other circumstance required to protect fish and wildlife.

(b) Reservations may be used for the protection of public health and safety to:

1. Prevent sinkhole formation,

2. Prevent or decrease saltwater intrusion,

3. Prevent the movement or withdrawal of groundwater pollutants, or

4. Prevent withdrawals in any other circumstance required to protect public health and safety.

(2) Reservations shall, to the extent practical, clearly describe the location, quantity, timing, and distribution of the water reserved.

(3) Reservations can be adopted prospectively for water quantities anticipated to be made available. When water is reserved prospectively, the reservation rule shall state when the quantities are anticipated to become available and how the reserved quantities will be adjusted if the actual water made available is different than the quantity anticipated.

(4) The District shall conduct an independent scientific peer review of all scientific or technical data, methodologies, and models, including all scientific and technical assumptions employed in each model, used to establish a reservation if the District determines such a review is needed. In determining whether to conduct an independent scientific peer review the District should include consideration of:

(a) Whether or not the reservation is based on a previously peer-reviewed methodology;

(b) The level of complexity of the reservation;

(c) Whether or not the water body for which the reservation is being developed includes water resource characteristics that are substantially different than previously peer reviewed reservations; and,

(d) The degree of public concern regarding the reservation.

(5) During the annual development and submittal of the minimum flow and level priority list, required by Section 373.042, F.S., the District shall identify any water bodies for which a reservation of water is proposed under Section 373.223(4), F.S., and whether the reservation is proposed for the protection of fish and wildlife or the public health and safety.

Rulemaking Authority 373.026(7), 373.036, 373.043, 373.171 FS. Law Implemented 373.023, 373.026, 373.036, 373.042, 373.046, 373.103, 373.106, 373.171, 373.175, 373.223, 373.246, 373.418, 373.451, 373.453, 373.703, 403.0891 FS. History–New 5-7-06, Amended 5-6-13.

Department 40, Water Management Districts Division 40D, Southwest Florida Water Management District

Chapter 40D-2, Florida Administrative Code

Consumptive Use of Water

40D-2.302 Reservations from Use.

(1) All available water from the Morris Bridge Sink but not greater than 3.9 million gallons of water on any given day is reserved to be used to contribute to achieving or maintaining the Minimum Flows for the Lower Hillsborough River set forth in Rule 40D-8.041, F.A.C. The Morris Bridge Sink is located in Section 5, Township 28S, Range 20E,

approximately 0.6 miles south of the Hillsborough River and 0.5 miles north of Cow House Creek in Hillsborough County, Florida.

(2) The Governing Board anticipates reserving from use water necessary to recover to, and protect, the Minimum Flows and Levels established for the Southern Water Use Caution Area as set forth in Chapter 40D-8, F.A.C. These reservations will be adopted through future rulemaking on a case-by-case basis, to address water that is developed through water resource development projects designed to achieve and maintain Minimum Flows and Levels. Adopted reservations will be incorporated into this Rule 40D-2.302, F.A.C.

Rulemaking Authority 373.044, 373.113, 373.171 FS. Law Implemented 373.0421, 373.223(4) FS. History–New 1-1-07, Amended 11-25-07.

APPENDIX B

Excerpts from the Florida Statutes and Florida Administrative Code associated with establishment and implementation of minimum flows and levels

The 2019 Florida Statutes

Title XXVIII

NATURAL RESOURCES; CONSERVATION, RECLAMATION, AND USE

373.042 Minimum flows and minimum water levels.—

(1) Within each section, or within the water management district as a whole, the department or the governing board shall establish the following:

(a) Minimum flow for all surface watercourses in the area. The minimum flow for a given watercourse is the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area.

(b) Minimum water level. The minimum water level is the level of groundwater in an aquifer and the level of surface water at which further withdrawals would be significantly harmful to the water resources or ecology of the area.

The minimum flow and minimum water level shall be calculated by the department and the governing board using the best information available. When appropriate, minimum flows and minimum water levels may be calculated to reflect seasonal variations. The department and the governing board shall consider, and at their discretion may provide for, the protection of nonconsumptive uses in the establishment of minimum flows and minimum water levels.

(2)(a) If a minimum flow or minimum water level has not been adopted for an Outstanding Florida Spring, a water management district or the department shall use the emergency rulemaking authority provided in paragraph (c) to adopt a minimum flow or minimum water level no later than July 1, 2017, except for the Northwest Florida Water Management District, which shall use such authority to adopt minimum flows and minimum water levels for Outstanding Florida Springs no later than July 1, 2026.

(b) For Outstanding Florida Springs identified on a water management district's priority list developed pursuant to subsection (3) which have the potential to be affected by withdrawals in an adjacent district, the adjacent district or districts and the department shall collaboratively develop and implement a recovery or prevention strategy for an Outstanding Florida Spring not meeting an adopted minimum flow or minimum water level.

(c) The Legislature finds as provided in s. 373.801(3)(b) that the adoption of minimum flows and minimum water levels or recovery or prevention strategies for Outstanding Florida Springs requires immediate action. The department and the districts are authorized, and all conditions are deemed to be met, to use emergency rulemaking provisions pursuant to s. 120.54(4) to adopt minimum flows and minimum water levels pursuant to this subsection and to adopt recovery or prevention strategies concurrently with a minimum flow or minimum water level pursuant to s.373.805(2). The emergency rules shall remain in effect during the pendency of procedures to adopt rules addressing the subject of the emergency rules.

(d) As used in this subsection, the term "Outstanding Florida Spring" has the same meaning as in s. 373.802.

(3) By November 15, annually, each water management district shall submit to the department for review and approval a priority list and schedule for the establishment of minimum flows and minimum water levels for surface watercourses, aquifers, and surface waters within the district. The priority list and schedule shall identify those listed water bodies for which the district will voluntarily undertake independent scientific peer review; any reservations proposed by the district to be established pursuant to s. 373.223(4); and those listed water bodies that have the potential to be affected by withdrawals in an adjacent district for which the department's adoption of a reservation pursuant to s. 373.223(4) or a minimum flow or minimum water level pursuant to subsection (1) may be appropriate. By March

1, annually, each water management district shall include its approved priority list and schedule in the consolidated annual report required by s.373.036(7). The priority list shall be based upon the importance of the waters to the state or region and the existence of or potential for significant harm to the water resources or ecology of the state or region, and shall include those waters which are experiencing or may reasonably be expected to experience adverse impacts. Each water management district's priority list and schedule shall include all first magnitude springs, and all second magnitude springs within state or federally owned lands purchased for conservation purposes. The specific schedule for establishment of spring minimum flows and minimum water levels shall be commensurate with the existing or potential threat to spring flow from consumptive uses. Springs within the Suwannee River Water Management District, or second magnitude springs in other areas of the state, need not be included on the priority list if the water management district submits a report to the Department of Environmental Protection demonstrating that adverse impacts are not now occurring nor are reasonably expected to occur from consumptive uses during the next 20 years. The priority list and schedule is not subject to any proceeding pursuant to chapter 120. Except as provided in subsection (4), the development of a priority list and compliance with the schedule for the establishment of minimum flows and minimum water levels for the establishment of minimum flows and minimum flows and compliance with the schedule for the establishment of minimum flows and management district submits a report to this subsection satisfies the requirements of subsection (1).

(4) Minimum flows or minimum water levels for priority waters in the counties of Hillsborough, Pasco, and Pinellas shall be established by October 1, 1997. Where a minimum flow or minimum water level for the priority waters within those counties has not been established by the applicable deadline, the secretary of the department shall, if requested by the governing body of any local government within whose jurisdiction the affected waters are located, establish the minimum flow or minimum water level in accordance with the procedures established by this section. The department's reasonable costs in establishing a minimum flow or minimum water level shall, upon request of the secretary, be reimbursed by the district.

(5) A water management district shall provide the department with technical information and staff support for the development of a reservation, minimum flow or minimum water level, or recovery or prevention strategy to be adopted by the department by rule. A water management district shall apply any reservation, minimum flow or minimum water level, or recovery or prevention strategy adopted by the department by rule without the district's adoption by rule of such reservation, minimum flow or minimum water level, or recovery or prevention strategy.

(6)(a) Upon written request to the department or governing board by a substantially affected person, or by decision of the department or governing board, before the establishment of a minimum flow or minimum water level and before the filing of any petition for administrative hearing related to the minimum flow or minimum water level, all scientific or technical data, methodologies, and models, including all scientific and technical assumptions employed in each model, used to establish a minimum flow or minimum water level shall be subject to independent scientific peer review. Independent scientific peer review means review by a panel of independent, recognized experts in the fields of hydrology, hydrogeology, limnology, biology, and other scientific disciplines, to the extent relevant to the establishment of the minimum flow or minimum water level.

(b) If independent scientific peer review is requested, it shall be initiated at an appropriate point agreed upon by the department or governing board and the person or persons requesting the peer review. If no agreement is reached, the department or governing board shall determine the appropriate point at which to initiate peer review. The members of the peer review panel shall be selected within 60 days of the point of initiation by agreement of the department or governing board and the person or persons requesting the peer review. If the panel is not selected within the 60-day period, the time limitation may be waived upon the agreement of all parties. If no waiver occurs, the department or governing board may proceed to select the peer review panel. The cost of the peer review shall be borne equally by the district and each party requesting the peer review, to the extent economically feasible. The panel shall submit a final report to the governing board within 120 days after its selection unless the deadline is waived by agreement of all parties. Initiation of peer review pursuant to this paragraph shall toll any applicable deadline under chapter 120 or other law or district rule regarding permitting, rulemaking, or administrative hearings, until 60 days following submittal of the final report. Any such deadlines shall also be tolled for 60 days following withdrawal of the request or following agreement of the parties that peer review will no longer be pursued. The department or the governing board shall give significant weight to the final report of the peer review panel when establishing the minimum flow or minimum water level.

(c) If the final data, methodologies, and models, including all scientific and technical assumptions employed in each model upon which a minimum flow or level is based, have undergone peer review pursuant to this subsection, by request or by decision of the department or governing board, no further peer review shall be required with respect to that minimum flow or minimum water level.

(d) No minimum flow or minimum water level adopted by rule or formally noticed for adoption on or before May 2, 1997, shall be subject to the peer review provided for in this subsection.

(7) If a petition for administrative hearing is filed under chapter 120 challenging the establishment of a minimum flow or minimum water level, the report of an independent scientific peer review conducted under subsection (6) is admissible as evidence in the final hearing, and the administrative law judge must render the order within 120 days after the filing of the petition. The time limit for rendering the order shall not be extended except by agreement of all the parties. To the extent that the parties agree to the findings of the peer review, they may stipulate that those findings be incorporated as findings of fact in the final order.

(8) The rules adopted pursuant to this section are not subject to s. 120.541(3).

History.—s. 6, part I, ch. 72-299; s. 2, ch. 73-190; s. 2, ch. 96-339; s. 5, ch. 97-160; s. 52, ch. 2002-1; s. 1, ch. 2002-1; s. 6, ch. 2005-36; s. 1, ch. 2013-229; s. 5, ch. 2016-1; s. 16, ch. 2017-3; s. 38, ch. 2018-110.

Note.-Former s. 373.036(7).

The 2019 Florida Statutes

Title XXVIII

NATURAL RESOURCES; CONSERVATION, RECLAMATION, AND USE

373.0421 Establishment and implementation of minimum flows and minimum water levels.—

(1) ESTABLISHMENT.-

(a) Considerations.—When establishing minimum flows and minimum water levels pursuant to s.373.042, the department or governing board shall consider changes and structural alterations to watersheds, surface waters, and aquifers and the effects such changes or alterations have had, and the constraints such changes or alterations have placed, on the hydrology of an affected watershed, surface water, or aquifer, provided that nothing in this paragraph shall allow significant harm as provided by s. 373.042(1) caused by withdrawals.

(b) Exclusions.-

1. The Legislature recognizes that certain water bodies no longer serve their historical hydrologic functions. The Legislature also recognizes that recovery of these water bodies to historical hydrologic conditions may not be economically or technically feasible, and that such recovery effort could cause adverse environmental or hydrologic impacts. Accordingly, the department or governing board may determine that setting a minimum flow or minimum water level for such a water body based on its historical condition is not appropriate.

2. The department or the governing board is not required to establish minimum flows or minimum water levels pursuant to s. 373.042 for surface water bodies less than 25 acres in area, unless the water body or bodies, individually or cumulatively, have significant economic, environmental, or hydrologic value.

3. The department or the governing board shall not set minimum flows or minimum water levels pursuant to s. 373.042 for surface water bodies constructed before the requirement for a permit, or pursuant to an exemption, a permit, or a reclamation plan which regulates the size, depth, or function of the surface water body under the provisions of this chapter, chapter 378, or chapter 403, unless the constructed surface water body is of significant hydrologic value or is an essential element of the water resources of the area.

The exclusions of this paragraph shall not apply to the Everglades Protection Area, as defined in s. 373.4592(2)(i).

(2) If, at the time a minimum flow or minimum water level is initially established for a water body pursuant to

s. 373.042 or is revised, the existing flow or water level in the water body is below, or is projected to fall within 20 years below, the applicable minimum flow or minimum water level, the department or governing board, as part of the regional water supply plan described in s. 373.709, shall concurrently adopt or modify and implement a recovery or prevention strategy. If a minimum flow or minimum water level has been established for a water body pursuant to s. 373.042, and the existing flow or water level in the water body falls below, or is projected to fall within 20 years below, the applicable minimum flow or minimum water level, the department or governing board shall expeditiously adopt a recovery or prevention strategy. A recovery or prevention strategy shall include the development of additional water supplies and other actions, consistent with the authority granted by this chapter, to:

(a) Achieve recovery to the established minimum flow or minimum water level as soon as practicable; or

(b) Prevent the existing flow or water level from falling below the established minimum flow or minimum water level.

The recovery or prevention strategy must include a phased-in approach or a timetable which will allow for the provision of sufficient water supplies for all existing and projected reasonable-beneficial uses, including development of additional water supplies and implementation of conservation and other efficiency measures concurrent with and, to the maximum extent practical, to offset reductions in permitted withdrawals, consistent with this chapter. The recovery or prevention strategy may not depend solely on water shortage restrictions declared pursuant to s. 373.175 or s. 373.246.

(3) To ensure that sufficient water is available for all existing and future reasonable-beneficial uses and the natural systems, the applicable regional water supply plan prepared pursuant to s.373.709 shall be amended to include any water supply development project or water resource development project identified in a recovery or prevention strategy. Such amendment shall be approved concurrently with relevant portions of the recovery or prevention strategy.

(4) The water management district shall notify the department if an application for a water use permit is denied based upon the impact that the use will have on an adopted minimum flow or minimum water level. Upon receipt of such notice, the department shall, as soon as practicable and in cooperation with the water management district, conduct a review of the applicable regional water supply plan prepared pursuant to s. 373.709. Such review shall include an assessment by the department of the adequacy of the plan in addressing the legislative intent of s.373.705(2)(a) which provides that sufficient water be available for all existing and future reasonable-beneficial uses and natural systems and that the adverse effects of competition for water supplies be avoided. If the department determines, based upon this review, that the regional water supply plan does not adequately address the legislative intent of s. 373.705(2)(a), the water management district shall immediately initiate an update of the plan consistent with s. 373.709.

(5) The provisions of this section are supplemental to any other specific requirements or authority provided by law. Minimum flows and minimum water levels shall be reevaluated periodically and revised as needed.

History.—s. 6, ch. 97-160; s. 36, ch. 2004-5; s. 13, ch. 2010-205; s. 6, ch. 2016-1.

APPENDIX C

Excerpts from the Florida Administrative Code associated with minimum flows established for the Peace River

Chapter 40D-8, Florida Administrative Code

WATER LEVELS AND RATES OF FLOW

40D-8.041 Minimum Flows.

(5) Minimum Flows for Middle Peace River.

(a) The Minimum Flows are to ensure that the minimum hydrologic requirements of the water resources or ecology of the natural systems associated with the river are met.

(b) Minimum Flows for the Middle Peace River at the USGS Peace River Arcadia Gage ("Arcadia Gage") are set forth in Table 8-6 below. The long-term compliance standards set forth in Table 8-7 are established based on the application of the Minimum Flows to the lowest anticipated natural flow conditions. Minimum Flows for the Middle Peace River are both seasonal and flow-dependent. Two standards are flow-based and applied continuously regardless of season. The first is a Minimum Low Flow threshold of 67 cfs at the Arcadia Gage. The second is a Minimum High Flow threshold of 1,362 cfs at the Arcadia Gage. The Minimum High Flow is based on changes in the number of days of inundation of floodplain features. There are also three seasonally dependent or Block-specific Minimum Flows. The Block 1 and Block 2 Minimum Flows are based on potential changes in habitat availability for fish species and macroinvertebrate diversity. The Block 3 Minimum Flow is based on changes in the number of days of connection with floodplain features.

	Table 8-6 Minimum Flow for Middle Peace River at USGS Peace River at Arcadia Gage					
Period	Effective Dates	Where Flow on Previous	Minimum Flow Is:			
		Day Equals:				
Annually	January 1 to	≤67	67 cfs			
	December 31	≤67 cfs and <1,362	Seasonally dependent – see Blocks below			
		>1,362	Previous day flow minus 8%			
Block 1	April 20 to June	≤67	67 cfs			
	25	>67 cfs and <75 cfs	67 cfs			
		>75 cfs and <1,362	previous day flow minus 10%			
		>1,362	previous day flow minus 8%			
Block 2	October 27 to	≤67	67 cfs			
	April 19	>67 cfs and <82 cfs	67 cfs			
		>82 cfs and <1,362	previous day flow minus 18%			
		>1,362	previous day flow minus 8%			
Block 3	June 26 to	≤67 cfs	67 cfs			
	October 26	>67 cfs and <73 cfs	67 cfs			
		>73 cfs and <1,362 cfs	previous day flow minus 13%			
		>1,362	previous day flow minus 8%			

Table 8-7 Compliance Standards for Middle Peace River at Arcadia Gage					
Minimum Flow Hydrologic Statistic Flow (cfs)					
Annual Flow (January 1 through December 31)	10-Year Mean	547			
	10-Year Median	243			
	5-Year Mean	534			

	5-Year Median	196
Block 1 (April 20 through June 25)	10-Year Mean	219
	10-Year Median	121
	5-Year Mean	160
	5-Year Median	64
Block 2 (October 27 through April 19)	10-Year Mean	359
	10-Year Median	182
	5-Year Mean	300
	5-Year Median	122
Block 3 (June 26 through October 26)	10-Year Mean	977
	10-Year Median	631
	5-Year Mean	790
	5-Year Median	382

(c) Compliance – The Minimum Flows are met when the flows in Table 8-7 are achieved.

 \diamond

Chapter 40D-8, Florida Administrative Code

WATER LEVELS AND RATES OF FLOW

40D-8.041 Minimum Flows.

(7) Minimum Flows for upper Peace River.

(a) Over the last several decades there has been a significant decline in flow in the upper Peace River, especially during the dry season. One of the major contributing factors is the elimination of baseflow as a result of ground water withdrawals that have lowered the potentiometric surface of the upper Floridan aquifer. In addition, surface-water drainage alterations, reduction in surface storage, long-term cyclical declines in rainfall and karst openings in the riverbed have played significant roles in reducing flow in the upper Peace River.

(b) The minimum flows are to ensure that the minimum hydrologic requirements of fish and natural systems associated with the river are met and not jeopardized by withdrawals. At this time only Minimum Low Flows are being established. It is anticipated that mid- and high-minimum flows will be established once the controlling factors that affect those flows are better understood.

(c) The Minimum Low Flows for the upper Peace River are set forth in Table 8-8 below. The Minimum Low Flows are established based on the lowest acceptable flow under the lowest anticipated flow conditions. This is determined by providing for the hydrologic requirements of biological communities associated with the upper Peace River system, as well as considering non-consumptive uses including fishing, wildlife observation, general recreation, aesthetic enjoyment, canoeing and boating. This determination uses professional experience and judgment to identify key habitats and hydrologic requirements for specific biotic assemblages. This approach results in establishing Minimum Low Flows for the upper Peace River based on maintaining the higher of the water elevations needed for fish passage (0.6 feet or 7.2 inches) or the lowest wetted perimeter inflection point (as much stream bed coverage as possible for the least amount of flow) as set forth below. A ninety-five percent annual exceedance occurs when the flow is greater than the Minimum Low Flow at least ninety-five percent of the days, or 350 days, of a calendar year.

Table 8-8 Minimum Flows for the upper Peace River		
Location/Gage	Minimum Flow (cubic feet per second)	
Bartow / USGS Bartow River Gage No. 02294650	Annual 95% exceedance flow of 17 cfs	
Ft. Meade / USGS Ft. Meade River Gage No. 02294898	Annual 95% exceedance flow of 27 cfs	
Zolfo Springs / USGS Zolfo Springs River Gage No. 02295637	Annual 95% exceedance flow of 45 cfs	

(d) Compliance – The Minimum Low Flow is achieved when the measured flow rate is at or above the Minimum Low Flow for three consecutive years. Once the Minimum Low Flow has been achieved for three consecutive years, the Minimum Low Flow is not met when the measured flow rate is below the Minimum Low Flow for two out of ten years commencing the year after achievement. If the two years below the minimum flow occur anytime before the ten year period is complete, the upper Peace River is deemed below its Minimum Low Flow and the three consecutive years above the Minimum Low Flow is again required for compliance. Once the ten-year period is complete, the period will roll forward one year each year.

Chapter 40D-8, Florida Administrative Code

WATER LEVELS AND RATES OF FLOW

40D-8.041 Minimum Flows.

(8) Minimum Flows for the lower Peace River.

(a) The Minimum Flows are to ensure that the minimum hydrologic requirements of the water resources or ecology of the natural systems associated with the estuarine reach of the lower Peace River are met.

(b) Minimum Flows for the estuarine reach of the lower Peace River are based on the sum of the combined flows of the USGS Peace River near Arcadia Gage #02296750 plus the flow at the USGS Horse Creek near Arcadia Gage #02297310, and the USGS Joshua Creek at Nocatee Gage #02297100, and are set forth in Table 8-20 below. Minimum Flows for the lower Peace River are both seasonal and flow dependent. One standard, the Minimum Low Flow Threshold, is flow based and applied continuously regardless of season. No surface water withdrawals shall be permitted that would cumulatively cause the flow to be reduced below the Minimum Low Flow Threshold of 130 cfs based on the sum of the mean daily flows for the three gages listed above. Additionally, permitted withdrawals shall cease when flows are below the Minimum Low Flow Threshold of 130 cfs. The total permitted maximum withdrawals on any day shall not exceed 400 cfs. There are also three seasonally dependent or Block specific Minimum Flows that are based on the sum of the mean daily flows for the three gages denoted above that would occur in the absence of any permitted upstream withdrawals. The Block Minimum Flows are based on potential changes in habitat availability for select salinity ranges within a season.

Ta	able 8-20-Minim	um Flow for Lower Peace I	River based on the sum of flows from Horse Creek,	
Joshua Creek, and the Peace River at Arcadia gages.				
Period	Effective	Where Flow on	Minimum Flow Is	
	Dates	Previous Day Equals:		
Annually	January 1	≤130 cfs	Actual flow (no surface water withdrawals permitted)	
	through	>130 cfs	Seasonally dependent – see Blocks below	
	December 31			
Block 1	April 20	≤130 cfs	Actual flow (no surface water withdrawals permitted)	
	through June	>130 cfs	previous day's flow minus 16% but not less than 130 cfs	
	25			
Block 2	October 28	≤130 cfs	Actual flow (no surface water withdrawals permitted)	
	through April	>130 cfs and <625 cfs	previous day's flow minus 16% but not less than 130 cfs	
	19	≥625 cfs	previous day's flow minus 29%	
Block 3	June 26	≤130 cfs	Actual flow (no surface water withdrawals permitted)	
	through	>130 cfs and <625 cfs	previous day's flow minus 16% but not less than 130 cfs	
	October 27	≥625 cfs	previous day's flow minus 38%	

(c) Minimum five-year and ten-year moving mean and median flow values are set forth in Table 8-20 as a tool to assess whether flows to the lower Peace River remain above flow rates that are expected to occur with implementation

of the Minimum Flow described in Table 8-21 and a daily maximum withdrawal rate of 400 cfs. The means and medians are based on evaluation of daily flow records for the three gages listed above for the period 1951 through 2008. Yearly means and medians were computed for January 1 through December 31 of each year, then moving five-year and ten-year averages were calculated from these yearly values. Therefore, the five-year and ten-year means and medians are hydrologic statistics that represent the flows that will be met or exceeded if compliance with the Minimum Flow and the 400 cfs maximum withdrawal rate is maintained during hydrologic conditions similar to the 1951-2008 period. Climatic changes or future structural alterations in the watershed could potentially affect surface water or groundwater flow characteristics within the watershed and flows in the river. Therefore, as additional information relevant to Minimum Flows development becomes available, the District is committed to periodically evaluate whether any declines in these minimum moving average values below that expected with the application of the Minimum Flow are due to factors other than permitted water use.

Table 8-21	I Minimum Five-Year and Ten-Y	Year Moving Mean and Median flows for the lower
Peace River bas	sed on the sum of flows from Ho	rse Creek, Joshua Creek, and the Peace River at Arcadia
Minimum Flow	Hydrologic Statistic	Flow (cfs)
Annual Flow	10-Year Mean	713
	10-Year Median	327
	5-Year Mean	679
	5-Year Median	295
Block 1	10-Year Mean	284
	10-Year Median	264
	5-Year Mean	204
	5-Year Median	114
Block 2	10-Year Mean	429
	10-Year Median	383
	5-Year Mean	330
	5-Year Median	235
Block 3	10-Year Mean	1260
	10-Year Median	930
	5-Year Mean	980
	5-Year Median	595

(d) The Minimum Flows for the lower Peace River will be reevaluated to incorporate additional ecological data for the Lower Peace River within 5 years of adoption of this rule.

APPENDIX D

Relevant data and model files for the water budget model and model scenario applications, and PRMRWSA's Water Use Permit analysis

The following files are available in digital formats, including

- File "20191115_LakeHancockWaterBudgetModel.xlsm" Includes the water budget model and four scenario anlayses
- File "20191115_PRMRWSA-WUP-Analysis.xlsx"
 Uses the results from the water budget model to evaluate the impact on Water Use Permit No. 20010420.010, issued to the PRMRWSA by the District on February 26, 2019

APPENDIX E

Final independent, scientific peer review report

то:	Doug Leeper, MFLs Program Lead, Southwest Florida Water Management District
	Lei Yang, PhD, PE, Chief Professional Engineer, Southwest Florida Water Management District
FROM:	Ken Watson, Lake Hancock/Lower Saddle Creek Reservation Peer Review Panel Chair
	Harry Downing, Lake Hancock Lower Saddle Creek Reservation Peer Review Panelist
DATE:	12/20/2019
SUBJECT:	Final Technical Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)
	Agreement Number 19C0000013
	Southwest Florida Water Management District
	2379 Broad Street
	Brooksville, Fiorida 34604

Introduction

The peer review for the Lake Hancock Proposed Reservation was conducted in three phases. The first phase was an initial review of the "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)". The initial conclusions and recommendations were documented in a report titled "DRAFT Technical Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)", which was submitted on December 5, 2019, and is included as Attachment A. Following submittal of the draft peer review report, District staff made changes to the Reservation report and responded to reviewers comments in a document titled "District Staff Response to an Initial Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)", which is included as Attachment B.

A Peer Review conference call was conducted on December 17, 2019, in which the peer reviewers discussed the District's responses to peer reviewer comments. Generally, the reviewers found that the District responses and report changes were sufficient to address reviewers' concerns. However, there remained one item of concern, regarding how flow in a downstream gage was handled when an upstream gage flow was set to zero as part of the water-balance modeling effort. This concern was addressed and reported in a memorandum titled "Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle

Creek in Polk County, Florida", which is included as Attachment C. Both reviewers concur that the changes to the mass balance equation in Section 2.6 addressed the concerns raised in the December 17 conference call.

Summary of items addressed following submittal of the initial peer review report

Chapter 2 originally received the most scrutiny because it contains most of the information specified for review (i.e., all scientific data, methodologies, and models, including all scientific and technical assumptions employed in each model used to establish a reservation). Following the District's review of the December 5, 2019, peer review report (Attachment A), the District provided responses to peer review comments (Attachment B) and updated the draft Reservation report (December 16, 2019). The revised report included the following additional information and modifications. Most of the added information helped with clarity and provided additional information for context.

Chapter 1

• Section 1.2. Estimate of increased lake volume associated with new structure P-11 was added.

Chapter 2

- Section 2.1. A discussion regarding greater evapotranspiration and recharge losses associated with increased lake size was added.
- Section 2.2.3. A Lake stage duration curve was added for the period of 1975 to 2012 and compared to minimum Lake level criteria and structure control elevations.
- Section 2.2.5. Language was modified to better explain the development, data variability, and use of the control structure rating curves.
- Section 2.2.6. This section was added to describe a weir equation that may be used for estimating flow rates associated with different hydraulic heads.
- Section 2.2.7 (formerly Section 2.2.6) was modified to include stage surface area information and shows a substantial increase in surface area as a result of increasing the flood stage to 100 feet. BCI (ref as 2006a, c in report) indicated that the increase elevation would enhance wetland function. This information was not reviewed by the Peer review panel.
- Section 2.3.1 Model scenario descriptions were moved to this new section.
- Section 2.3.6 (formerly section 2.3.2). More information was added regarding the flow mass balance from the control structure downstream to the flow gages. This information was added in response to a request for additional clarification on this topic.

Chapter 3

- Section 3.2 (formerly Section 3.3). Wastewater flow adjustment language was added to clarify the magnitude of the adjustment and explain why daily adjustments sometimes varied from gage to gage.
- Section 3.3 (formerly section 3.4). Lake stage duration curves were added to assist with the discussion of impacts associated with the model scenarios.

The peer review panel reviewed the modified report and responses and discussed the information in a December 17, 2019, conference call. Generally, both reviewers noted that their comments had been adequately addressed by District staff; however, Harry Downing thought that it would be beneficial for staff to further assess a propagation of a mass-balance issue associated with assignment of potential negative flows to zero at multiple streamflow gaging stations in the Peace River. This process is presented in Section 2.6 of the report and impacts various tables and figures presented in Chapter 3 of the reservation report.

The peer review panel received a memo on December 19, 2019, that addresses the massbalance concern (Attachment C). Both reviewers concur that the memo and report updates satisfy the concerns.

List of Attachments

Attachment A. DRAFT Technical Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report) (Peer Review tables with District responses are included in Attachment B.)

Attachment B. District Staff Response to an Initial Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report) (includes December 5, 2019, Peer review report tables with District comments)

Attachment C. Mass Balance Concern in Equation 10 in Section 2.3.6 of the draft report "Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida"

Attachment A.

DRAFT Technical Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)

(Peer Review tables with District responses are included in Attachment B.)
DRAFT Technical Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)

AGREEMENT NUMBER 19C0000013

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT 2379 BROAD STREET BROOKSVILLE, FLORIDA 34604

Table of Contents

Introduction	7
Review	7
Chapter 1. Purpose and Background	7
Chapter 2. Lake Handcock Reservation Analysis	8
Chapter 3. Simulations, Results, and Discussion	9
Chapter 4. Summary and Conclusions	10

Tables

Table 1A. Comments and Recommendation (Ken Watson)	17
Table 1B. Comments and Recommendation (Harry Downing)	23
Table 2A. General Comments/Statement Regarding Overall Conclusions, QA, Assumptions, and	
Procedures (Ken Watson)	29
Table 2B. General Comments/Statement Regarding Overall Conclusions, QA, Assumptions, and	
Procedures (Harry Downing)	32

Figures

Figure 1. P11Q residual histogram (Historical vs Baseline scenarios)	9
Figure 2. P-11 raw data, rating curve, and Adj P11 Q under operating rules	11
Figure 3 A, B, C. Flow duration curves for P-11 operating scenarios at different scales	12
Figure 4. Lake stage duration curves for P-11 operating scenarios including regulatory levels	13

Introduction

The Southwest Florida Water Management District (District) contracted with an independent panel of experts to provide a technical peer review of a document titled "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report). The peer review panel includes:

Ken Watson, Ph.D. (panel chair) Harry Downing, PE

Rule 62-40.474(4), Florida Administrative Code (FAC) addresses independent peer review for proposed reservations specifying review of all scientific data, methodologies and models, including all scientific and technical assumptions employed in each model used to establish a reservation if a water management district determines that a review is needed. The District is committed to an independent peer review and engaged two independent experts to evaluate and review information used to develop a proposed reservation.

Review

The stated objective of the investigation described in the Report is to "document analyses supporting the adoption of the LHR (Lake Hancock Reservation), based on development and use of a daily water budget model." Therefore, the panels review was focused on the model and the supporting data and assumptions used to develop the model. Table 1 (one table for each reviewer) includes comments and Table 2 (one for each reviewer) contains overall conclusions regarding the data, assumptions and conclusions presented in the report.

The Report is divided into four chapters - 1. Purpose and Background, 2. Lake Hancock Reservation Analysis, 3. Simulations, Results and Discussion and 4. Summary and Conclusions. An Executive Summary and References Chapter (Chapter 5) also is included, along with four Appendices. Three of the four Appendices were excerpts from Florida Statues and Regulations not subject to our review. The fourth Appendix identified Excel files used for the modeling. These files were spot checked for consistency with the Document.

Chapter 1. Purpose and Background

There are no technical comments regarding the information in this chapter; however, the information plays an important role in defining the objectives of the Reservation and developing the model and its application. This chapter includes a discussion of the regulatory background associated with Reservations and Minimum Flows and Levels. For this technical review, the important items in this chapter are the MFLs associated with the Upper Peace River (UPR) (adopted in 2006 and effective in 2007) and Lake Hancock (effective 2016), and the

associated operating objectives of the new P-11 structure for the Lake Hancock Lake Level Modification Project, completed in 2013. At the time of their adoption, the District determined the UPR minimum flows were not being met. The Lake Hancock Lake Level Modification and Ecosystem Restoration Project consists of two initiatives deemed critical to achieving UPR minimum flows by 2025. These initiatives include the Lake Hancock Lake Level Modification Project and Lake Hancock Outfall Treatment Project.

The goal of the Lake Hancock Lake Level Modification Project is to store an additional 1.5 ft of water in Lake Hancock to meet minimum flow requirements in the UPR by raising the control elevation of the lake outflow structure (P-11) on Lower Saddle Creek from 98.5 to 100 ft-NGVD. The additional water storage is achieved by capturing inflows to the lake during wet season and releasing flows to the UPR through Lower Saddle Creek during dry season when flow conditions in the UPR (as measured at the Bartow, Fort Meade, Zolfo Springs, and Arcadia USGS gages) are below minimum flow thresholds. When lake stage exceeds 100 ft-NGVD, overflow occurs because the crest of the P-11 structure weir gates is at 100 ft-NGVD. When lake stage falls below 97.6 ft-NGVD (the established Minimum Lake Level for Lake Hancock), no flow releases are made. The water storage between 97.6 and 100 ft-NGVD is the maximum volume at a given time that can be achieved through the operation of the new, i.e., currently existing P-11 structure. These metrics are used in the P-11 structure operating rule for several tested water budget model applications.

Chapter 2. Lake Handcock Reservation Analysis

Chapter 2 received the most scrutiny because it contains most of the information specified for review (i.e., all scientific data, methodologies and models, including all scientific and technical assumptions employed in each model used to establish a reservation). Table 2 (attached) includes the reviewers' evaluation of the data, assumptions, models, model application and conclusions as presented in the Report. All criteria were found to be appropriate and supported. However, suggestions were offered in Table 1 that may help readers more quickly draw these same conclusions.

As an example, the piecewise linear functions (Figure 8 page 17) effectively represent the application of the P11 Structure operating rule in the water budget model scenarios for both the baseline (former structure) and current scenarios. Upon inspection of the water budget model Excel file, the residuals (observed – projected) were found to sum to near zero (accounting for wastewater deduction) and appear to be symmetrically distributed (Figure 1) supporting the use of the regression model. Other figures are provided for consideration in the attached comments.

Also, offered was a suggestion to create a table (or two) that include a brief summary of the different application scenarios, associated parameters, a measure of the result. This would allow reviewers/readers to more efficiently track the different scenarios presented and perhaps even the results as applied to the USGS gages. Some of this information is included on page 23, sections in Sections 2.3.6 and 3.1. And finally, the routing equations (7 and 8 on page 21) associated with the operating schedule adjustments might benefit from an example.

Figure 1. P11Q residual histogram (Historical vs Baseline scenarios)

Chapter 3. Simulations, Results, and Discussion

Chapter 3 is where the water budget model is applied to scenarios that represent the effort to meet MFLs. Model scenarios include

- 1) Historical Baseline (**Baseline**). Operation schedule includes releasing water only when lake levels exceed 98.5 ft-NGVD to represent the structure condition prior to the P-11 structure replacement.
- 2) Existing Control Level (ECL). Operation schedule includes releasing water only when lake levels exceed 100 ft-NGVD to represent the current P11.
- 3) ECL with operation for meeting MFLs in the UPR (ECL+MFLs). Operation schedule includes releasing flow through P-11 when UPR minimum flows recovery was needed. If no downstream minimum flows were needed, the P-

11 structure was held at 100 ft-NGVD and overflows would occur over the top of weirs when lake levels exceeded 100-ft NGVD.

4) ECL with operation for meeting MFLs and overcoming sink loss in the UPR (ECL+MFLs+SL). Operation schedule includes releasing flow through P-11 when downstream flow augmentation was needed for minimum flows recovery and to compensate for sink loss between Bartow and Fort Meade. If no downstream flows were needed, the P-11 structure was held at 100 ft-NGVD and overflows occurred when lake level exceeded 100-ft NGVD. This scenario corresponds with the District's current understanding of hydrologic conditions in the UPR and operational protocols for the P-11 structure.

Chapter 3 provides a good discussion of the model scenarios and the scenarios are appropriate for demonstrating the range of conditions that can be simulated using the water budget model. Neither reviewer had technical issues with Chapter 3, but some suggestions were offered that may provide some additional clarity regarding the simulated impacts.

Several duration curves were provided in the comments (Table 1) which may help with displaying the impacts differently than the bar charts presented in the report. For example, Figure 3 (in Attachment A of Table 1) is a lake stage duration curve (SDC) under the various model scenarios along with regulatory levels. Figure 2 (Attachment A of Table 1) depicts flow duration curves (FDC) for the various scenarios and identifies clearly where the MFL augmentation flows are coming from on the FDC, for example.

Chapter 4. Summary and Conclusions

The summary and conclusions are consistent with the findings presented in the body of the report.

Figures

Figure 2. P-11 raw data, rating curve, and Adj P11 Q under operating rules

Figure 3 A, B, C. Flow duration curves for P-11 operating scenarios at different scales

[Adj Lake Stage (98.5 ft Rule) represents Historical Baseline scenario]

Attachment B.

District Staff Response to an Initial Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)

(includes December 5, 2019, Peer review report tables with District comments)

District Staff Response to an Initial Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)

December 2019

Environmental Flows and Assessments Section Natural Systems and Restoration Bureau Resource Manamgment Division

SWFWMD does not discriminate on the basis of disability. This nondiscrimination policy involves every aspect of SWFWMD'S functions, including access to and participation in SWFWMD's programs and activities. SWFWMD designates the Human Resources Office Chief as the Americans with Disabilities Act (ADA) Compliance Coordinator. Anyone requiring reasonable accommodation as provided for in the ADA should contact SWFWMD'S Human Resources Office, 2379 Broad Street, Brooksville, Florida 34604-6899; telephone 352-796-7211, ext. 4706 or 1-800-423-1476 (FL only), ext. 4706; TDD 1-800-231-6103 (FL only); or email to ADACoordinator@WaterMatters.org.

Report Content

This document summarizes Southwest Florida Water Management District staff responses to an initial peer review report entitled, "DRAFT Technical Peer Review of "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" (Report)" that was completed for the District in December 2019. The initial peer review report was prepared by a peer review panel (Panel) composed of Ken Watson (Panel Chair) and Harry Downing (Panelist).

The Panel's initial peer review report includes an introductory section and a general review section that generally addresses the four chapters of the District's original draft reservation report:

- Chapter 1. Purpose and Background;
- Chapter 2. Lake Hancock Reservation Analysis;
- Chapter 3. Simulations, Results and Discussion; and
- Chapter 4. Summary and Conclusions.

The Panel's initial peer report also includes several figures to support and illustrate information included in the general review section.

In addition, specific comments made by each reviewer that address the comments included in the general review section are itemized in four tables:

- Table 1a. Comments and recommendation (Ken Watson);
- Table 1b. Comments and recommendation (Harry Downing);
- Table 2a. General comments/statement regarding overall conclusions, QA, assumptions, and procedures (Ken Watson); and
- Table 2b. General comments/statement regarding overall conclusions, QA, assumptions, and procedures (Harry Downing).

The comments included in these four tables provide the basis for this staff response document. Tables 1a and 1b in the Panel's initial peer review report include a column for District responses. These two tables have been reproduced in **Appendix A** and **Appendix B** of this staff response document and filled-in with District staff responses. Tables 2a and 2b in the Panels' initial peer review report do not include a column for District responses. District staff have reproduced these two tables in modified form within **Appendix C** and **Appendix D** of this staff response document. The tables have been modified to incorporate a column that includes staff responses to the Panelist's comments.

All comments included in the Panel's initial peer review report have been addressed through responses included in this District staff response document or through changes made to the District's draft report on a proposed reservation for Lake Hancock and Lower Saddle Creek

This staff response document and the updated, draft reservation report will be provided to the Panel for their consideration and to support their development of a final peer review report.

<u>APPENDIX A</u>

Table 1A. Comments and Recommendation (Ken Watson)

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida				
	_	Number Does Comment Directly and Materially Affect Conclusions of Report? (Yes/No)	To be completed by Reviewer(s)		
Comment No. Figure, Table, c Parge and	Figure, Table, o Page and Paragraph Number		A. Reviewer's Specific Comments	B. District Response	
1	Title and Pg. 1	No	Consider changing title to reflect objective of document in last paragraph of Page 1 and the Executive summary. The report documents a water balance model to support a reservation. Maybe something like "Water Balance Evaluation of Proposed LH Reservation"	Changed the title to "Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida" from "Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida."	
			Executive Summary		
2	Par.5	No		No response needed.	
			Chapter 1: Purpose and Background		
3	Pg. 4 Par 2	No	Consider adding approximate volume of storage associated with a 1.5 ft increase in stage. About 1.1 vs 0.7 billion cubic ft or about 13 cfs for a year?	Added "approximately 4.359 billion gallons or 13,377 acre-feet" associated with the maximum volume for storage between lake water surface elevation of 97.6 and 100.0 ft-NGVD.	
4	Pg. 12	No	Consider rewording last sentence of last bullet.	Revised the sentence to note that inflows are to be captured when flows at the USGS stations at Bartow, Fort Meade and Zolfo Springs exceed the flow rates associated with the respective minimum flows established for the three stations.	

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida			
	r t		To be completed by Re	eviewer(s)
Comment No.	Figure, Table, o Page and Paragraph Number	Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response
			Chapter 2: Lake Hancock Reservation Analysis	
5	Pg. 8 (paragraph following eq. 3)	No	The assertion of something being "negligible" and "ignored" should be supported with some information for context. Consider adding a brief discussion of at least evaporation. For example, 45 inches/year of evaporation from an estimated lake surface of 3,500 acres is about 18 cfs. Agree, the difference associated with an expanded surface area is negligible.	Additional paragraphs were added discussing why the increased evapotranspiration and aquifer recharge were considered negligible and ignored.
6	Pg. 17 or 18	No	The report is fairly silent regarding changes in the hydroperiod of LH shoreline areas. Consider adding more description of lake bathymetry and riparian area as background information and context for the LH minimum levels discussion in Section 3.4. Suggested additions for discussion include a) stage-duration curves (for example, Figure 3 of Attachment A), b) contour map of lake bathymetry, c) LH stage-surface area relationship, d) map(s) of P50 inundation area, and e) limited discussion (from prior LH studies of ecological effects of new P-11 and operational schedule).	The original reservation report did not include discussion of changes in the inundation of Lake Hancock shoreline areas because these analyses were extensively addressed in previous studies, during the Lake Hancock Lake Level Modification Project evaluation and permit application phases. These previous studies (i.e., BCI 2005, 2006a and 2006c) are referenced in the original reservation report. However, District staff did add a stage duration curve and associated text in Section 2.2.3, as well as a contour map for lake bathymetry, a graph of lake surface area versus lake stage, and related text to Section 2.2.7. District staff notes that the P50 (i.e., the Minimum Lake Level) inundation area is included in the lake bathymetry contour map.

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida					
	7	o # 1	To be completed by Re	eviewer(s)		
Comment No.	Figure, Table, o Page and Paragraph Number Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response			
7	Pg. 20, 21	No	Consider a table up front that describes the water budget model setup up and model scenarios. I.e., explain historic, baseline and other operating scenarios. Refer to something like attached Figure 1 (Attachment A) to compare the raw data, rating cures and how scenario flows fall (as they must) on the rating curve. The objective of the table is to have important information for the different scenarios in one location for reference.	Moved the entire original Section 3.1 up as a new Section 2.3.1 to define model scenarios and introduce relevant data and model setup earlier in the document where the detailed modeling information is presented.		
8	Pg. 21	No	Consider explicitly defining O_{pry} . in Equation 7. Maybe in bottom paragraph of page 20 – i.e., is it the calculated baseline? Refer to Figure 1 (Attachment A) and or suggested table.	A definition of O _{prj} was added in Section 2.3.6 (originally Section 2.3.2).		
9	Pg. 21	Maybe	Consider explaining the scenario when applying the ΔO to Bartow (B) results in B_{adj} < 0 and therefore set at 0. The train of equations may benefit from an example with values. For example, if ΔO =20, B=15, F=25, does the answer for F_{adj} for the middle "if" test make sense? If ΔO =20 and B=15, there is a measurement error or a loss between the structure and B, I think. And since B_{adj} is set to zero, then F_{adj} would equal the gain between the Bartow and Fort Meade gages, i.e. F – B and not F - ΔO – B as shown.	Examples were added in Section 2.3.6 (originally Section 2.3.2).		
	Chapter 3: Simulations, Results and Discussion					
10	Pg. 24	No	Section 3.1 describes scenarios, although baseline is inferred in previous section. See comment 7.	The revisions made to the reservation report based on reviewer comment 7 above and		

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida				
	r t o)		To be completed by Reviewer(s)		
Comment No.	Comment No. Figure, Table, o Page and Paragraph Number Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response		
				District staff's response to that comment address this issue.	
11	Pg. 28 - 33	No	The impacts discussed and depicted seem reasonable. Consider using flow duration curves and lake stage duration curves as an additional means of depicting impacts. (see figures in Attachment A)	Lake stage duration curves were added in Section 3.3 (originally Section 3.4). P-11 flow duration curves appear to be too busy to show a good indication of differences among scenarios; as a result, District staff opted to not include these curves in the revised report.	
			Chapter 4: Summary and Conclusions		
12		No	The summary and conclusions are consistent with the findings presented in the body of the report.	District staff agree with this comment.	
			Chapter 5: References		
				No response needed.	
			Figures		
13	Fig. 8	Maybe	More explanation may be needed. For example, there is much scatter in the raw data, and the low limit at 98.5 (normal pool operating rule). We usually think of a rating curve as a function of the structure or the river, but these rating curves may be more related to operating rules, with some deference to the raw data. Also, translating the rating curve implies that the structure is not controlling flow beyond its operating schedule. Consider a figure like Figure 1 (Attachment A) at end of comments.	Additional text was added to explain the reasoning behind the scatter of historical data and more discussion on the rating curves was included in Section 2.2.5. Also, the rating curve figure was updated to include historical flow data points. An additional Section 2.2.6 was added to discuss how flow release determinations were made when lake stages were between 97.6 and 100 ft-NGVD.	

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida			
	Ļ	o) it	To be completed by Re	eviewer(s)
Comment No.	Figure, Table, o Page and Paragraph Number	Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response
14	Table 4	No	The average WWTP discharge was about 10 cfs when discharge occurred and 3.22 cfs averaged over the period of record. Consider further explaining how that translates to the flow losses that differ for each gage. The range of WWTP discharge was 4.55 to 18.83 cfs, which may help explain. How does sink loss influence WWTP impacts such that loss values exceed the WWTP discharge? Also, consider the error associated with going back and forth using equations 5 and 6, although I expect this to be small.	Additional text explaining the impacts on different downstream gage location was added in Section 3.2 (originally Section 3.3). It is District staff's position that the error introduced using original Equations 5 and 6 is very limited because Equations 5 and 6 were based on the same regression and expressed in different forms.
15	Fig. 12	No	Consider explaining why the P50 lake level for baseline scenario is 0.7 feet higher than the P50 (Minimum Lake Level) adopted by rule. Consider adding results for the time series of observed lake stage to Figure 12.	Additional text explaining why the baseline scenario is 0.7 ft higher than the Minimum Lake Level (which is the water level that must be equaled or exceeded 50% of the time on a long-term basis) was added in the second paragraph in Section 3.3 (originally Section 3.4). Staff notes that information describing required exceedances for the adopted Minimum Lake Level and High Minimum Lake Level (which is the water level that must be equaled or exceeded 10% of the time on a long-term basis) is included in the section. This information, along with tenth and fiftieth exceedance percentiles for the scenarios assessed with the water budget model was presented to explore compliance with the adopted lake levels for the modeled scenarios.

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida					
	Figure, Table, or Page and Paragraph Number Does Comment Directly and Materially Affect Conclusions of Report? (Yes/No)	o t	To be completed by R	eviewer(s)		
Comment No.		A. Reviewer's Specific Comments	B. District Response			
			Tables			
16	Table 5	No	Same as above. Consider explaining why the P50 lake level for baseline scenario is 0.7 feet higher than the P50 (Minimum Lake Level) adopted by rule. Consider adding results for the time series of observed lake stage to Table 5.	See response to the reviewer's comment number 15 above.		
			Appendix A	·		
			No comment	No response needed.		
		I	Appendix B			
			No Comment	No response needed.		
	Appendix C					
			No comment	No response needed.		
			Appendix D	•		
			No comment	No response needed.		

<u>APPENDIX B</u>

Table 1B. Comments and Recommendation (Harry Downing)

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida					
haph 1 (0		H ()	To be completed by Reviewer(s)			
Comment No.	Figure, Table, o Page and Paraç Number	Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response		
			Executive Summary			
1	Par.5	No	No Comments	No response needed.		
	_		Chapter 1: Purpose and Background			
2	Pg. 4, Next to last Par.	No	Information regarding the static volume between 97.6 and 100.0 feet NGVD would be great. It appears that it is 20,000 plus acrefeet. Suggest adding static volume	A parenthetic reference to the static lake volume between surface elevations of 97.6 and 100 ft-NGVD was included in Section 1.2.		
3	Pg. 7, Par. 1	No	Expect depth to increase from original due to increased lake level stage. Think it would be around 4-6 feet rather than 4-5	District staff agree with this comment. Additional text and citations regarding the lake depth were added to Section 2.1.		
4	Pg.7, Fig. 3	No	P11 discharge should be P-11 Discharge	Corrected the "P-11" label in the figure. Also modified some colors in the figure to improve clarity in printed copies of the report.		
			Chapter 2: Lake Hancock Reservation Analysis			
5	Pg. 10, Par.2	No	100.0 feet NGVD was chosen also due to minimal impacts to surrounding infrastructure, and facilities. Consider adding comment.	A phrase addressing impact minimization as part of the selection process for the 100-ft elevation was added to the last sentence of the paragraph.		

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida						
	or graph		To be completed by Reviewer(s)				
Comment No.	Figure, Table, c Page and Para Number	Does Commen Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response			
6	Pg. 12, 2 nd bullet	No	"without causing downstream flooding" should be "without causing increased downstream flooding" The established rating curve was developed so that downstream releases would be similar to the previous operation of the structure. Change wording.	Suggested revision was made.			
7	Pg.13, Par. 1	No	"fall" should be "fallen"	Corrected.			
8	Pg. 14	No	Remove "as" fromas for model warmup	Corrected.			
9	Fig. 7	No	P11 should be P-11,	Corrected.			
10	Fig. 8	Yes	P11 should be P-11, also in the reference in the Table of Contents. Some discussion has been generated about the graph and regression fit to the historical data. It should be noted that the curve represents generalized flood releases during an era when P-11 was not operated for MFLs. Add verbiage to reflect intent of curve was to be used as a basis for comparing Lake Stage alterations where specific operational protocol was not available. Also, the Lake was not being operated for MFL recovery at the time	The "P11" term was changed to "P-11", as suggested. Also, additional text regarding the curves was added to Section 2.2.5.			

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida						
	or graph	• •	To be completed by Reviewer(s)				
Comment No.	Figure, Table, o Page and Para Number	Does Commen Directly and Materially Affe Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response			
11	Fig. 10	No	It appears that flows above 10 cfs at Fort Meade were reported to the nearest cfs. Also Figure title is on the next page	The data used for the plot were downloaded from USGS. District staff noticed the format of the data is not consistent over the period of analysis (e.g., one decimal place is shown for data values less than 100 cfs but greater than 1 cfs for the period since water year 2002). The District used the original downloaded data and no alterations were made. The x and y axes labels used for the report figure were formatted to include no decimal places.			
12	Pg. 21	Potentially	The mathematical discussion of how adjustments were made to downstream flows should be elaborated on for understanding or clarity. May have to adjust outfall discharge estimates based on what happened historically at USGS gauge at Bartow. Basically, whatever adjustments were made at Bartow because of changes in P-11 discharges should be reflected similarly at the other downstream gauges.	To better present model development, model setup and adjustments, Section 2.3 was restructured, and additional text was added per both reviewers' comments. We note that the adjustment in P-11 flow is reflected in flows for all downstream gages. However, sites downstream of Bartow have additional impacts due to sink loss.			

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida			
	or Jraph	o) t	To be completed by Reviewer(s)	
Comment No.	Figure, Table, o Page and Paraç Number	Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response
13	Pg. 23, 1 st	No	Recommend getting rid of in which to be consistent with wording	Removed the phrase as suggested.
14	bullet Pgs. 23-24	Only minor	for remaining bullets On pages 23 and 24 discussion involves the 4 different scenarios that were performed to demonstrated comparative conditions for Lake Hancock releases. An initial simulation (1) was performed to establish inflows into Lake Hancock with historical waste-water treatment flows removed and P-11 operated only when simulated Lake elevations exceeded the ECL of 98.5 ft. NGVD. Baseline conditions were established for downstream flows at the various gauging stations using mass balances adjustments according to page 21 equations. Due to the timing of releases, inconsistencies between gauging stations (mainly Bartow and Fort Meade), sink losses, etc. negative flows could result which were adjusted to zero flow accordingly. This condition could result in added releases from P-11 to prevent negative flows. This situation should be verified, and adjustments made accordingly. Scenario number (2) is not be needed, because the system with the new structure would not be operated for just ECL releases. I agree with simulations (3) and (4) to establish sink loss effects. Review simulations and check that upstream gauge adjustment with limitations (not allowing negative flows) are the only ones translated downstream. This should only affect the 98.5 Baseline ECL condition since the other scenarios include operation for the MFL releases. The baseline 98.5 ft. scenario may require additional releases from P-11 when not specified by the release schedule to maintain the	District staff understands these comments but has continued to retain all four scenarios in the draft report. We note that the modeled scenarios (Baseline, ECL ECL+MFLs and ECL+MFLs+SL) were assessed to provide insight regarding how progressive operations would benefit the UPR minimum flows. Results from each scenario provide useful information concerning potential changes to flows in the river and downstream withdrawals as a result of modification of the structure and use of the modified structure for Upper Peace River minimum flow recovery. Text associated with a description of the model scenarios (now in Section 2.3.1) has been revised to clarify our purposes for each scenario.

	Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida					
	ır Jraph	o # 0	To be completed by Reviewer(s)			
Comment No.	Figure, Table, o Page and Paraç Number	Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response		
			I am ok with having Scenario (2), but not sure that it has any real meaning for the reservation Table 3 and other tables.	part of the reason why the long-term average adjustment quantity varies by gage location, which is explained in text added to Section 3.2 (originally Section 3.3).		
	·		Chapter 3: Simulations, Results and Discussion			
15	All of Sect 3	Yes, but Not Significantly	Table 4 explains some of the issue that is going on. It would not be expected that the changes in baseline would change effects progressing downstream from a mass balance perspective. The baseline potentially needs review; however, it is not expected to change outcome of the report to any significance.	District staff reviewed the values originally included in Table 4. See the District staff responses to reviewer comments 12 and 14.		
16	Pg. 27, Par. 2	No	NGDV needs to be changed to NGVD	Changed.		
17	Pg. 27, Par. 2	No	exceed, should be exceeded to match verb tense, and "or" should be and ???	Changed "exceed" to "exceeded."		
18	Pg. 31, Par. 2	No	A sentence indicating the flow representation of the Lake Hancock Watershed on the total inflow to Peace River at its mouth and tributaries	District staff did not include this suggested addition in the revised, draft report, as we do not fully understand the comment. We suspect the addition will have minimal impact of interpretation of the reported modeling analyses, but welcome clarification regarding the need for the suggested sentence.		
		·	Chapter 4: Summary and Conclusions	· · · · · · · · · · · · · · · · · · ·		
19	Pg. 35, Par. 4	Not Significantly	The adjustments in flows indicated may change as a result of reanalysis of the baseline flow effects. Change mass balance model as needed.	District staff believe we have addressed this comment in the response provided for reviewer comments 12 and 14.		

		Propose	ed Reservation for Lake Hancock and Lower Saddle Creek in Polk C	County, Florida	
	or graph		To be completed by Review	ver(s)	
Comment No.	Figure, Table, c Page and Para Number	Does Comment Directly and Materially Affec Conclusions of Report? (Yes/N	A. Reviewer's Specific Comments	B. District Response	
			Chapter 5: References		
20	General	No	Should reference information regarding the ERP submittal to FDEP	An additional reference (i.e., BCI 2006a) regarding the CERP was cited in Sections 2.2.1 and 2.2.7 and added to the references cited list (Section 5).	
			Figures		
			See previous comments for pertinent sections of the report	No response needed.	
-	Tables				
			See previous comments for pertinent sections of the report	No response needed.	
	1		Appendix A		
21		No	Florida Statutes and Florida Administrative Code for justification of the Reservation Requirement, Peer Review of the analyses, and public comment period.	No response needed.	
			Appendix B		
22		No	In regard to this section, an ERP was submitted regarding the Minimum Flows and Levels Recovery Project. Also, public review and comment is discussed by the rule.	District staff agree with these comments.	
	•	•	Appendix C		
23		No	Adoption of the Upper, Middle, and Lower Peace River Minimum Flows. Only Minimum Flows have been adopted for the Upper, Block flows for the expected range of flows have been adopted for the Middle and Lower Peace River.	No response needed.	
	1		Appendix D		
			Models available for review	No response needed.	

<u>APPENDIX C</u>

Table 2A. General Comments/Statement Regarding Overall Conclusions, QA, Assumptions, and Procedures (Ken Watson)

Task/subtask	A. Reviewer's Specific Comments	B. District Response
 Conclusions: Determine whether the conclusions in the draft reservation report are supported by the analyses presented 	The conclusions are presented in Section 4 of the report and are supported by the analysis.	District staff agree with these comments.
 2. Supporting data and information: Review the relevant data, and information that support the conclusions made in the draft reservation report to determine whether: The data and information used were properly collected; 	The data used were primarily USGS streamflow gage data and Lake Hancock water level data and are presumed to be properly collected. LIDAR data, spot checked by a professional land surveyor, were used to estimate lake volumes as a function of stage. Discharge data were provided by the City of Lakeland waste- water treatment facility, but no other information regarding the confidence in the data was provided but permit conditions will generally require regular reporting.	District staff agree with these comments.
 Reasonable quality assurance assessments were performed on the data and information; 	No information was provided in the report regarding QA. As pointed out in previous response, USGS data are presumed to be properly collected, including QA.	District staff agree with this comment regarding USGS data. We presume that flow data is properly collected and reported by the USGS.
 Exclusion of available data from analyses was justified; and 	Climate data often are used for water balance modeling but not in this example. Computing; Estimating net inflow based on change in storage and known outflow, and excluding climatic variables, is an appropriate method for this analysis.	District staff agree with these comments.
The Data used were the best information available.	The USGS data are generally the best available. Other information regarding WWTP discharge would be the only data available for that purpose and therefore the best.	District staff agree with these comments.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
 3. Technical Assumptions: Review the technical assumptions inherent to the analyses used in the draft reservation report to determine whether: The assumptions are clearly stated, reasonable and consistent with the best information available; 	The assumptions used were generally stated clearly although suggestions were provided in the comments regarding the rating curves and their application. The rating curves are appropriate and recommendations regarding their use were provided to help clarify. The rating curves might better be defined as an operating schedule.	Section 2.2.5 was modified to provide additional details regarding development and use of the discharge rating curves for the P-11 structure.
The assumptions were eliminated to the extent possible, based on the available information; and	Assumptions were eliminated to the extent possible.	District staff agree with this comment
 Other analyses that would require fewer assumptions but provide comparable or better results are available. 	Assumptions were minimal.	District staff agree with this comment.
 4. Procedures and analyses: Review the procedures and analyses used in the draft reservation report to determine whether: The procedures and analyses were appropriate and reasonable, based on the best information available; 	The mass balance approach is appropriate and reasonable and based on the best information available.	District staff agree with these comments.
The procedures and analyses incorporate all necessary factors;	The procedures and analyses incorporate all necessary factors. These include substantial WWPT inflows and estimated sink losses	District staff agree with these comments.
 The procedures and analyses were correctly applied; 	The procedures and analyses were correctly applied. Gains and losses were tracked appropriately downstream. Comments were provided to clarify.	District staff agree with these comments. The report was amended to clarify presentation of the information, per reviewer comments.
 Limitations and imprecisions in the information were reasonably handled; 	Limitations and imprecisions in the information appear to have been reasonably handled, but suggestions were provided to clarify and or speak to sources of error. For example, in the rating curve and use of the stage volume relationship.	District staff agree with the comment regarding our handling of limitations and precisions in the information used in the analyses. The report was amended to clarify presentation of relevant information, per reviewer comments.
The procedures and analyses are repeatable;	Yes, the procedures and analyses are repeatable;	District staff agree with this comment.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
Conclusions based on the procedures and analyses are supported by the data.	Yes, conclusions based on the procedures and analyses are supported by the data.	District staff agree with this comment
 If a proposed method used in the draft reservation report is not scientifically reasonable, the CONSULTANT shall: 	The proposed method is scientifically reasonable.	No response needed.
 List and describe scientific deficiencies and, if possible, evaluate the error associated with the deficiencies; 	N/A	
Determine if the identified deficiencies can be remedied.	N/A	No response needed.
 If the identified deficiencies can be remedied, then describe the necessary remedies and an estimate of time and effort required to develop and implement each remedy. 	N/A	No response needed.
 If the identified deficiencies cannot be remedied, then, if possible, identify one or more alternative methods that are scientifically reasonable. If an alternative method is identified, provide a qualitative assessment of the relative strengths and weaknesses of the alternative method(s) and the effort required to collect data necessary for implementation of the alternative methods. 	N/A	No response needed.
 6. If a given method or analyses used in the draft reservation report is scientifically reasonable, but an alternative method is preferable, the CONSULTANT shall: List and describe the alternative scientifically reasonable method(s) and include a qualitative assessment of the effort required to collect data necessary for implementation of the alternative method(s) 	A water balance model performed in the manner performed is the appropriate approach.	District staff agree with this comment.

<u>APPENDIX D</u>

Table 2B. General Comments/Statement Regarding Overall Conclusions, QA, Assumptions, and Procedures (Harry Downing)

Task/subtask	A. Reviewer's Specific Comments	B. District Response
1. Conclusions: Determine whether the conclusions in the draft reservation report are supported by the analyses presented.	I agree the conclusions are supportive of the implementation of the Lake Hancock Reservation and that the benefits as noted to the upper Peace River Minimum Flows and Levels will be affected with little to no impact on existing legal users.	District staff agree with these comments.
 2. Supporting data and information: Review the relevant data, and information that support the conclusions made in the draft reservation report to determine whether: The data and information used were properly collected; 	The data and information used were properly collected. The best available information was acquired and reviewed to simulate expected MFL recovery with accuracy. This includes, stage, flow, operational, and historical data.	District staff agree with these comments.
 Reasonable quality assurance assessments were performed on the data and information; 	Reasonable quality assurance assessments were performed on the data and information. Agree that various scenarios were modeled to verify results.	District staff agree with these comments.
 Exclusion of available data from analyses was justified; and 	Exclusion of available data from analyses was justified. The aggregation of rainfall, evaporation, inflow, and groundwater exchanges into an effective inflow is justified due to the variance expected in the individual components of those assigned to inflow.	District staff agree with these comments.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
The Data used were the best information available.	The data used were the best information available. The use of USGS data for historical flow and stage records were the only data available.	District staff agree that the USGS data are the best available historical flow and stage records and add that we were also able to use the best available information regarding flow augmentation associated with a wastewater treatment effluent and permitted water withdrawals from the lower Peace River.
 3. Technical Assumptions: Review the technical assumptions inherent to the analyses used in the draft reservation report to determine whether: The assumptions are clearly stated, reasonable and consistent with the best information available; 	The assumptions are clearly stated, reasonable and for the most part consistent with the best information available. The assumptions were justified to the extent possible, based on the available information, and for the anticipated simulation accuracies. Mass balance assumptions for changes in P-11 outflow and resultant downstream responses may require additional analyses.	District staff believe we have addressed assumptions associated with the mass- balance adjustments issue in the responses provided for reviewer comments 12 and 14 in Table 1B, and with relevant changes made to the draft report
The assumptions were eliminated to the extent possible, based on the available information; and	The assumptions were eliminated to the extent possible, based on the available information. All assumptions are justified except for the mass balance adjustments for the downstream gauges for the baseline conditions.	District staff believe we have addressed assumptions associated with the mass- balance adjustments issue in the responses provided for reviewer comments 12 and 14 in Table 1B, and with relevant changes made to the draft report.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
Other analyses that would require fewer assumptions but provide comparable or better results are available.	Other analyses that would require fewer assumptions but provide comparable or better results are available. Do not agree that simpler analyses are available. Time series simulations using historical data provide good projection of expected results.	District staff agree with these comments.
 4. Procedures and analyses: Review the procedures and analyses used in the draft reservation report to determine whether: The procedures and analyses were appropriate and reasonable, based on the best information available; 	The procedures and analyses were appropriate and reasonable, based on the best information available. The mass balance time series approach used in the analyses is justified but may require additional adjustment for maintaining mass balances along the stream. It is expected that the adjustments will be minor or considered fine tuning.	District staff agree the mass balance time-series approach used in our analyses is justified, and note that the mass- balance-adjustments issue and associated assumptions are addressed in the District responses provided for reviewer comments12 and 14 in Table 1B, and with the changes made to the draft report.
The procedures and analyses incorporate all necessary factors;	The procedures and analyses incorporate all necessary factors. All pertinent factors were addressed which includes anticipated sink losses.	District staff agree with these comments.
The procedures and analyses were correctly applied;	The procedures and analyses were correctly applied for the most part. Adjustment for historical flow losses and downstream effects will require further analyses to achieve mass balance accuracy.	District staff believe the procedures and analyses employed were correctly conducted. Based on the response concerning mass- balance provided in our responses to reviewer comments 12 and 14 in Table 1B, and with relevant changes made to the draft report, we do not think additional analyses are necessary.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
 Limitations and imprecisions in the information were reasonably handled; 	Limitations and imprecisions in the information were reasonably handled. Regression fitting of the historical operations of P-11 for the establishment of baseline discharge conditions for determining adjustments in operation schedules for MFL recovery appears reasonable along with the time series mass balance approach.	District staff agree with these comments.
 The procedures and analyses are repeatable; 	The procedures and analyses are repeatable. All data and stated assumptions are clearly detailed for recreation of the results provided in the draft report.	District staff agree with these comments.
 Conclusions based on the procedures and analyses are supported by the data. 	Conclusions based on the procedures and analyses are supported by the data. Recent operations of P-11 for MFL recovery, verifies the expected MFL Recovery with no impact to existing legal users. Adjustment in the baseline condition is expected to have minimal effect on reported values and conclusions.	District staff agree with these comments.
 5. If a proposed method used in the draft reservation report is not scientifically reasonable, the CONSULTANT shall: List and describe scientific deficiencies and, if possible, evaluate the error associated with the deficiencies; 	The methods used are scientifically reasonable. Mass balance adjustments on P-11 and downstream gauging stations need to be addressed further. For example, if a P-11 discharge reduction is greater than the daily flow at Bartow, the remaining flows not accounted for in the reduction need to be accounted for in some manner if not already done so.	District staff agree the methods used for the proposed reservation analysis are scientifically reasonable and note the potential mass-balance issue identified in this comment is addressed in our responses to reviewer comments 12 and 14 in Table 1B, and with relevant changes made to the draft report.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
 Determine if the identified deficiencies can be remedied. 	The modeling approached used eliminates deficiencies as practical except as noted.	District staff assumes the potential deficiency noted by the reviewer in this comment is associated with the mass- balance issue. As noted in our responses to reviewer comments 12 and 14 in Table 1B, and with relevant changes made to the draft report, staff believes this issue has been addressed.
 If the identified deficiencies can be remedied, then describe the necessary remedies and an estimate of time and effort required to develop and implement each remedy. 	The identified deficiency can be remedied. It will require reprogramming and Q/A to fully ensure mass balances have been maintained. Also, some text and tables will have to be modified to reflect the changes. It is estimated that a week should be sufficient time for the correction. Again, no significant changes in the conclusions are expected.	As noted in our responses to reviewer comments 12 and14 in Table 1B, and with relevant changes made to the draft report, staff believes the mass-balance issue has been addressed, and no remedy is required.
 If the identified deficiencies cannot be remedied, then, if possible, identify one or more alternative methods that are scientifically reasonable. If an alternative method is identified, provide a qualitative assessment of the relative strengths and weaknesses of the alternative method(s) and the effort required to collect data necessary for implementation of the alternative methods. 	The identified deficiency can be remedied.	As noted in our responses to reviewer comments 12 and 14 in Table 1B, and with relevant changes made to the draft report, staff believes the mass-balance issue associated with this comment has been addressed, and no remedy is required.

Task/subtask	A. Reviewer's Specific Comments	B. District Response
 6. If a given method or analyses used in the draft reservation report is scientifically reasonable, but an alternative method is preferable, the CONSULTANT shall: List and describe the alternative scientifically reasonable method(s) and include a qualitative assessment of the effort required to collect data necessary for implementation of the alternative method(s) 	No scientific method in my opinion is preferable. The accuracies achieved in most cases would be more accurate than other analytical methods.	District staff agree with these comments.

Attachment C.

Mass Balance Concern in Equation 10 in Section 2.3.6 of the draft report "Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida"

- TO: Ken Watson, Lake Hancock/Lower Saddle Creek Reservation Peer Review Panel Chair Harry Downing, Lake Hancock Lower Saddle Creek Reservation Peer Review Panelist
- **THROUGH:** Doug Leeper, MFLs Program Lead, Southwest Florida Water Management District
- **FROM:** Lei Yang, PhD, PE, Chief Professional Engineer, Southwest Florida Water Management District
- **DATE:** 12/19/2019
- **SUBJECT:** Mass Balance Concern in Equation 10 in Section 2.3.6 of the draft report "Water Budget Evaluation for a Proposed Reservation for Lake Hancock and Lower Saddle Creek in Polk County, Florida"

This memorandum addresses a technical concern identified in an initial peer review report developed by Ken Watson and Harry Downing, and further discussed by the reviewers and District staff during a peer review conference call facilitated by District staff on December 17, 2019.

The issue involved adjustments made at streamflow gage sites in the Peace River as part of the water budget modeling associated with the District's analyses supporting the development of a proposed water reservation for Lake Hancock and Lower Saddle Creek.

One of the peer reviewers, Harry Downing, indicated that when a flow at an upstream gage on the Peace River was set to zero due to necessary flow adjustments for the modeling efforts, the flow at the immediately downstream gage should be reduced by the starting, unadjusted flow value for the upstream gage and should not be further reduced by the outflow change at Structure P-11. This approach is intended to avoid a double deduction in flow at downstream gage sites.

District staff acknowledged this concern, which is associated with Equation 10 in Section 2.3.6 of the District's draft report that was under review by the Panel and have made relevant changes in the model files and the draft reservation report. Changes to the report include those made to portions of the text, equations, reported values, tables and figures.

These changes and other minor, editorial changes are reflected in updated report and data files provided to the Peer Review Panel for their consideration.

District staff notes that these changes do not cause any change in the report conclusions.